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INFLUENCE ON THE OBSERVABLE SPECTRUM
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Abstract: Linear calculations of undamped magnetoacoustic waves in thin solar magnetic flux wbes are
presented and their influence on the Stokes V' profiles of various iron lines is studied. This is a necessary first
step for the diagnostics of the properties of flux tube waves, in particular the amount of energy transporied by
them into the upper aimosphere. It is shown that, with sufficiently high spatial resofution, observations can
distinguish between standing and propagating waves on the basis of line parameters of photospheric speciral
lines alone. Particular attention is given to exploring quantitative diagnostics for the wave amplitude, since
it is currently the most important unknown parameter determining the energy flux carried by the waves, It
is found that although this parameter can be derived relatively simply if the thermal fluctuations produced
by the wave are ignored (i.e. for an isothermal wave), the task becomes much more complex for the more
realistic case of a coupled variation of temperature and velocity.

1. Introduction

Physical considerations lead us to expect a rich variety of wave modes in solar magnetic flux tubes, including
longitudinal tube waves (cf. Spruit and Roberts, 1983; Roberts, 1984, 1986; Thomas, 1985). Indirect
observational evidence for the presence of large amplitude longitudinal waves in solar flux tubes is also
mounting (Solanki, 1986, 1989), although direct evidence is still lacking. Such waves are expected 10
play an important role in heating the outer solar atmosphere. So far investigations of waves in flux tubes
have either concentrated on the purely MHD aspects, which have been dealt with in great detail by various
authors {e.g., Defouw, 1976; Roberts and Webb, 1978, 1979; Webb and Roberts, 1980; Spruit, 1981; Rae
and Roberts, 1982; Herbold et al., 1985; Musielak et al., 1989), or on the purely observational. No attempts
have been made to combine the two approaches quantitatively. Indeed, we have only a rough qualitative
idea of what the observational signatures of flux tube waves are. Here, we describe the first investigation
of the influence of longitudinal flux tube waves on spectral line profiles, in particular on Stokes V' profiles
which are the main carriers of information on magnetic elements or small flux tubes. We hope to identify
the observations best suited to deriving information on flux tube waves, and 1o develop methods for their
analysis. In a future step presently available observations may also be used 0 diagnose some interesting
paramelers, e.g. o set limilts on the energy flux being carried by such waves into the chromosphere. We do
not atlempt to reproduce directly the observations at this stage.

2. Longitudina! Flux Tube Waves

2.1. Summary of Hydrodynamics

The basic assumptions of the model are: 1) The flux tube structure is described by the thin tube approxima-
tion (Defouw, 1976; Roberts and Webb, 1978, 1979; Parker, 1979), which agrees very well with observations
(Zayeret al., 1989). 2) The waves considered are linear. This assumption allows us 10 vary wave parameters
easily, thus permitting us to assess the influence of waves over as wide a range of properties as possible,
3) Radiative damping is neglected. Its influence will be studied in a future publication. 4) The gas inside
the flux tube is not coupled to the field free surroundings; i.e. the calculated flux tube waves do not excite



disturbances in the field-free atmosphere surrounding the flux tube.
For the caiculation of the flux tube wave the following differential equation for the normalized velocity,
Q, must be solved (see Roberts and Webb, 1978, for a derivation):
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Q(2) is related to the local longitudinal velocity, v, of the oscillations due to the wave via

(A3
Qlz) = \/po(omo(t))érw) v(z). (2

Subscript zero denotes quantities related to the undisturbed, stationary atmosphere. p is the gas density,
A is the cross-sectional area of the flux tube, z is the height in the atmosphere (the height scale has been
chosen such that mp0 = 1 in the quiet sun corresponds © z = 0) and cp is the tube speed defined as
ct = v /(2 + v}), where c, is the sound speed and v 4 is the Alfvén speed within the flux mbe. Eq. (2)
determines v once Q is known from a solution of Eq. (1).

In Eq. (1) w is the frequency of the wave and
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Here g is accelaration due to gravity, 4 is the ratio of heat capacities, ¢ = py B} /(4 mypo + BY), pis the gas
pressure and B is the magnetic field strength. Once w and v are prescribed (the latter at two different heights
in the atmosphere), Eq. (1) can be solved numerically. With the now known velocity the fluctuations to first
order of the rest of the atmospheric parameters required for the calculation of line profiles can be derived
from the thin tube equations in a straightforward manner.

2.2, Summary of Radiative Transfer

Since we are primarily interested in basic effects and (at the moment) not in a direct comparison with the
data, we have chosen to use hypothetical lines of Fe I and II which can be selected 1o give an optimum
coverage of line strength and excitation potential ranges with a minimum number of lines. The equivalent
width W) and excitation potential y, of the chosen lines are given in Table 1. The Stokes profiles are
calculated numerically. The influence of the waves is quantified by considering specific line parameters,
like wavelengths, line widths, asymmetries.

The perturbations produced in the horizontal direction (due to the elasticity of the flux tube) by a lon-
gitudinal flux tube wave is observed to be small compared to the perturbations in the vertical direction.
Therefore, such waves are not expected to provide a sizeable signal near the limb and cannot explain the
large line widths observed there (Pantellini et al., 1988). Accordin gly, the calculations presented here are re-
stricted 1o solar disk centre, so that Stokes Q and U can be neglected. Therefore, in the present contribution
we consider Stokes  (the unpolarised spectrum) and Stokes V (the difference between right hand circularly
polarized light and left hand ciruclarly polarized light) profiles only.

3. Results

3.1. Zero-Crossing Wavelength

Figure 1 shows vy, the zero-crossing wavelength shift of Stokes V in velocity units vs. phase of the wave for
lines No. 1, 3 and 5 of Table 1. Portrayed is the influence of a propagating wave with v(z = 0) = 1 kms~!,
a wavelength of 300 km and a period of approximately 80 s. Note that the different heights of formation of
the cores of the three lines are reflected by the different times or phases at which the largest redshifts for the
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Table 1 Hypothetical Spectral Lines, Heights of Formation and Wave Amplitudes

Line Ion Wi xe zp logte  v.(zp) vy(zp) for vy(zg) for vy (zp) for

No. Aw=900km X, =300km X,=150 km
md) (V) (km) kms™') (kms!) (km s~!) (kms~!)

1 Fel 55 ¢ 150 =22 1.3 1.15 0.8 0.25

2 Fel 15 0 145 2.2 1.27 1.15 0.75 0.25

3 Fel 110 0 235 =275 15 1.55 13 0.3

4 Fel 55 4 60 145 1.1 1.0 0.65 0.1

5 Fell 55 3 75 1.6 1.13 1.05 0.8 0.35

various lines occur (arrows in Fig. 1). It should, therefore, in principle be possible to distinguish between
propagating waves and standing waves or oscillations, and possibly even 1o deduce propagation velocities
from high spatial resolution observations of purely photospheric spectral lines. Conversely, we can derive
rough heights of formation from this diagram, since we know the height of the downflowing peak of the
wave at a given phase.

Table 1 lists the heights of formation, zp, and the corresponding optical depths, log 7, of the cores of
the 5 lines, the true wave amplitudes v,(zp) at these heights and the “wave amplitudes” derived directly
from the oscillation amplitudes of the zero-crossing wavelength vy ( zz), i.e. the signal shown by simulated
observations. X, refers to the wavelengths of the waves. All three waves have amplitudes of 1 km s~
at z = 0. The numbers listed in these columns are the wave amplitudes as derived from the simulated
observations. Although they are reasonably accurate for the wave with the longest wavelength, they can
be up o 10 times too small for the ), = 150 km wave. This implies that the energy flux transported by
flux tbe waves can be underestimated by up to a factor of 100, and possibly even more for waves of even
smaller A,,, from direct observations of wavelength shifts, if no correction is made for radiative transfer
effects.

There are two main reasons for the behaviour of vy ( z¢) seen in Table 1. If A, < the order of the width
of a typical Stokes V contribution function (see Van Ballegooijen, 1985; Grossmann-Doerth et al., 1989, for
definitions of the Stokes V' contribution function) considerable velocity gradients occur over the width of the
contribution function at certain phases, leading to the reduction of the signal in the zero-Crossing wavelength.
As expected this effect is seen to increase dramatically with decreasing wavelength of the wave. For Stokes
I a similar effect has previously also been noticed for simple sine waves in the quiet photosphere (e.g. Keil
and Marmolino, 1986).

The second effect which reduces the oscillation amplitude of the zero-crossing wavelength for a propagat-
ing tube wave (or any other propagating acoustic or magneloacoustic wave) is the variation in temperature
with phase. Whereas (in the absence of radiative damping) for standing waves the phase difference be-
tween velocity and pressure, temperature elc. is 90°, for propagating waves the phase difference is close to
180°. Therefore the lemperature in the upflowing phase is lower than in the downflowing phase. Asaresult
the temperature sensitive low excitation Fe I lines weaken considerably during the downflowing phase and
strengthen during the upflowing phase, leading to a reduction of the zero-crossing oscillation amplitude and
a blueshift of the line (averaged over a fuil oscillation period).

3.2. Line Widths

Another interesting diagnostic parameter is the line width. In time averaged observations of flux tubes
strongly broadened Stokes V' profiles are seen, In the past such line widths have been modelled using either
macroturbulence or a mixture of macro- and microturbulence.

When the synthetic V profiles are considered as a function of time, or phase of the wave, then the widths
of lines 2,4 and 5 do not change appreciably with phase. Lines 2 and 3, on the other other hand, have larger
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widths during the cool phase than during the warm phase. Measurements of line widths of well chosen
lines as a function of time may, therefore, also be used to diagnose flux tube waves. Such measurements
can help to overcome the ambiguities faced when attempting to derive wave amplitudes from ZEro-Crossing
shift measurements, in particular when combined with measurements of Stokes 7 line depth or Stokes V
strength (e.g. areas of the Stokes V wings) which can also vary strongly with phase.

One interesting numerical experiment is to test the reliability of the “Gaussian micro- and macrotur-
bulence” approximation used to describe the time averaged line broadening in flux tubes in the past (e.g.
Solanki, 1986; Pantellini et al., 1988). To this end we have used isothermal propagating waves which vary
purely sinusoidally with height, thus coming closest to the generally used height independent macro- or
microturbulence velocity. We find that if the wavelengths of the waves are sufficiently large (e.g. much
larger than the width of the Stokes V contribution function) the line widths and shapes behave qualitatively
as expected from the macroturbulence approximation, i.e. the lines become broader and more “V* shaped,
while waves with small wavelengths produce strongly “U” shaped lines, a clear signature of microturbu-
lence. Also, such waves affect the width of line 3 (lying on the horizontal part of the curve of growth) more
strongly than the weaker lines, also in good agreement with classical microturbulence theory. However,
there are considerable quantitative differences between the effects of the waves and of the turbulence ve-
locities, due to the generally assumed Gaussian shape for the turbulence velocity distribution which differs
considerably from the distribution produced by a sinusoidal wave. This can give rise 10 a wrong upper limit
on the mechanical flux carried by flux tube waves if the line widths are analysed using turbulence velocities.

As long as there are no lemperature fluctuations, standing and propagating waves give rise to reasonably
similar line broadenings. In particular, the relative broadenings of the various lines are not affected. As soon
as we let the temperature vary with phase then large differences between standing and propagating waves
become evident. Due to the particular phase relationship between temperature and velocity, the widths of
lines formed in the presence of standing waves are not affected at all by temperature fluctuations. Widths of
lines formed in the presence of propagating waves may, on the other hand, chan ge strongly. Fig. 2 shows the
line width vs. v(0) for isothermal (Fig. 2a) and for moderately non-isothermal (Fig. 2b) waves (A, = 300
km, period of approximalely 80 s). Note that lines 1 and 2 differ extremely in the two cases, being much
narrower for the wave with temperature fluctuations included. The widths of these lines may even decrease
somewhat again as the wave amplitude is increased. Line 3 differs only slightly and the Fe II line (No. 5)
appears completely unaffected.

The observed behaviour is due to the aliemate weakening and strengthening of the lines in the up- and
downflowing phases, respectively. For the weak lines this implies mainly a change in line depth, while
for the strong line it means mainly a change in line width. Therefore, the weak line almost disappears
in the hot phase, and gives very little contribution to the average profile which thus remains quite narrow
corresponding to the width of the line in the upflowing phase. For the strong line, due to its increasingly
prominent wings, the increase in width during the cool phase manages to offset its decrease during the hot
phase,

It is important to note that in the presence of non-isothermal waves even the fine width of temperature sen-
sitive lines can become an vnreliable indicator of the wave amplitude. As seen in such lines non-isothermal
short period tube waves “disappear”, except for their contribution to the V asymmetry.

3.3. Stokes V Asymmetry

Finally, let us consider how the tbe waves affect the Stokes V asymmetry. Firstly, standing waves, or
isothermal propagating waves do not produce any net asymmetry in the Stokes V profile averaged over a
full period. Non-isothermal propagating waves also produce only negligible area asymmetry 6 A (defined
as (Ay — A,)/( Ay + A,)) in agreement with the much simpler calculations of Solanki (this volume). &a,
the amplitude asymmetry defined similarly, on the other hand, can be quite substantial (of the order of 10%)
in the 2-D case. Although exciting, this result is based on only a few 2-D calculations. More calculations,
in particular such which consider the combination of a wave and an external downflow whose presence is
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suggested by recent empirical investigations (cf. Solanki, this volume), are planned,

4. Conclusions

We have presented linear calculations of undamped magnetoacoustic waves using the thin tube approxima-
tion and have tested their influence on the Stokes I and V line parameters of a set of hypothetical spectral
lines of iron. The dependence of the line parameters on waves parameters has been studied, with a view
of improving the meagre observational diagnostics of flux tube waves available so far, In particular, the
importance of at least linear MHD wave calculations has been demonstrated, For exampie, propagating
magnetoacoustic waves produce an amplitude asymmetry of Stokes V', of the correct sign and approximate
magnitude for a correct reproduction of the observations of some lines (cf. Solanki, these proceedings).
MHD calculations are also needed to interpret line widths properly. Further calculations are underway and
improvements 1o the description of the waves are planned.
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Figure captions

Fig. 1 Variation of zero-crossing wavelength shift (in km s~!) of synthetic Stokes V profiles over a full
period of a propagating wave with A, = 300 km and v,{(0) = 1 kms~!, Squares: line 1, circles:
line 3, diamonds: line 4.

Fig. 2a  Line widths of all 5 lines as a function of wave amplitude at z = 0 for isothermal propagating
waves. Squares: line 1, triangles: line 2, circles: line 3, diamonds: line 4, plusses: line 5.

Fig. 2b  The same as Fig. 2a for non-isothermal waves.
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