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ABSTRACT

Radiance values in the quiet Sun follow a lognormal dis-
tribution, with shape and scaling parameters varying sig-
nificantly over the temperature range from chromosphere
to corona. We show that these distributions can be re-
produced by a simple model, which assumes that the ra-
diance is produced by a stochastic (micro-, nano-) flar-
ing process. This allows the diagnostic capabilities of
the radiance distribution to be judged, performing, e.g.,
estimates of the true damping times of the flares. Sev-
eral energy distributions are tested for the flaring process,
like a Gaussian and a power law. The resulting time se-
ries are compared with SUMER time series of equivalent
sampling, after adjustment of the parameters of the sim-
ulation. A good statistical match of the measurements is
obtained for a steep power law distribution of nanoflare
energies.

1. INTRODUCTION

The solar emission in the EUV and X-ray wavelength
ranges features transient events on all scales, e.g., flares
and micro- or nanoflares, explosive events, blinkers, see,
e.g., Solanki (2002) and references therein. The UV
emission is often decomposed into a (nearly) steady back-
ground of emission with superposed transient brighten-
ings (e.g., Harrison 1997; Brković et al. 2000; Innes et
al. 1997). In this work we start from the basic assump-
tion that all the emission at these wavelengths is pro-
duced by transient events (i.e., the apparent background
is a superposition of many such events). We model in
a very simple way time series of the radiance for a set
of parameters that is consistent with the observations.
The results are then statistically compared to observa-
tional data. We basically consider two representations
of a data set: the first are time series of radiances, the
others are probability distribution functions of radiances.
In this paper we restrict ourselves to the quiet Sun. Many
such transient brightenings are thought to have a common
cause, namely magnetic reconnection, and via dissipation
of the energy stored in the magnetic fields they provide
a strong mechanism for heating the solar chromosphere
and corona (Parker 1988).
The frequency or rate distribution of the energy of flares,
blinkers and explosive events (d N/d E) has been found

to obey a power-law for several wavelength regimes (for
flares: Datlowe et al. (1974); Lin et al. (1984), for
blinkers: Brković et al. (2000), for explosive events:
Winebarger et al. (2002)). Flares have been the subject of
a large number of studies, e.g., Krucker & Benz (1998);
Parnell & Jupp (2000); Mitra-Kraev & Benz (2001); As-
chwanden & Parnell (2002). Power laws have also been
applied for stellar flare energy distributions, see, e.g., Au-
dard et al. (2000); Güdel et al. (2003) and references
therein. Güdel et al. (2003) compared observed and sim-
ulated distributions of EUV and X-ray measurements of
the late-type active star AD Leo. They simulated light
curves from model flares distributed in energy according
to a power law and fitted the exponent according to the
statistics of the observed lightcurves. The observed ex-
ponentsα in the power-law relationd N/d E = E0E−α

range from 1.5 to 2.9 for solar as well as for stellar flares.
Exponents within this range are also obtained for blink-
ers and explosive events. The larger the exponent, the
more weight is given to small-scale events such as micro-
and nanoflares. For an exponent greater than 2, the en-
ergy content is dominated by the small-scale events and
in order to have finite total energy content, a lower cut-
off in energy has to be introduced. Events in the energy
range 1030−1033 erg (1023−1026 J) are usually referred
to as “normal” flares. Nanoflares (Parker 1988) are the
brightenings with energy below approximately 1027 erg,
although the limits vary somewhat in the literature. Lu
& Hamilton (1991) have explained the power-law depen-
dence of the solar flare occurrence rate in a model of self-
organized criticality as avalanches of many small recon-
nection events.
In an earlier paper (Pauluhn et al. 2000) we have shown
that the solar EUV radiance from quiet areas follows the
statistics of a lognormal probability density. Here we use
a stochastic model to reproduce the statistics of the quiet
Sun EUV emission. We first test whether a power law
distribution of flare energies results in a lognormal distri-
bution of radiances of the modelled lightcurves. We find
that this is generally the case and that the shape of the
lognormal is influenced by the form of the flare distribu-
tion providing the driving input, as well as by the flare
frequency and the duration or damping time of the indi-
vidual flares.
We begin with an outline of the model used for the flare
simulation and establish the theoretical reasoning for the
radiances being lognormally distributed under the as-
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sumption that they are entirely due to transient events
(Sect. 2). The results of parameter studies with our model
are presented in Sect. 3. In Section 4 we present a com-
parison with SUMER measured distributions, and the
conclusions are given in Sect. 5.

2. A SIMPLE MODEL

Using a very simplified model of transient brightenings,
we produce a synthetic time series of EUV radiances. We
presume that flaring is an intrinsically stochastic process,
and our radiance variable is a time-dependent stochastic
(or random) variable, i.e., a stochastic process. One simu-
lation thus delivers a possible realization of this process.
Our model simply consists of a time series of random
kicks (acting as “flares”), applied to an initial value
(whose exact value is not important, since it is damped
just like every brightening and the model will reach a kind
of “steady state” after a certain relaxation time). Each
kick is followed by the exponential decay of the radiance.
The final radiance is given by the sum of the radiances of
all the overlapping transient brightenings.
Depending on the choice of the temporal profile of a sin-
gle brightening event we have either 5 or 6 free param-
eters: the flare amplitude range and the power-law ex-
ponent, the e-folding or damping time of the flare, if we
assume a single kick with a sharp rise and a successive
exponential decrease. Additionally, in order to smooth
the steep increase a rise time can be introduced. Further-
more, the frequency of the excitation, i.e., the flaring rate
or flaring probabilityp f , has to be determined. We start
with some general considerations and the description of
the model setup and then present a theoretical derivation
for the most simple case of our stochastic model.

2.1. The simulation

The model produces realizations of possible radiance
time series, i.e., we get the radiance as a time-dependent
stochastic variable (stochastic process), and it describes
an example of a process which is close to being Marko-
vian. In a Markov process, the stochastic variable at one
timesteptn+1 is only dependent on the directly preced-
ing timesteptn. It has “nearly no memory” of the history,
and the probability to find a variable at positionxn+1 at
time tn+1 is calculated by an initial probability and the
two-time transition probability (which is the conditional
probability that the variable is in statexn+1 at tn+1 under
the condition that it has been in statexn at tn).

The simulation involves the following steps:

1. Generate a distribution of flare sizes, i.e. (positive)
values of flare amplitudesfn.

2. Start from an initial radiance valuer 0 > 0 (this can
be the “first kick” from the flare distribution,r 0 =
f0).

3. At random timeti another radiancer i is generated
by adding a flare kickf i ,

r i = r i−1 + fi . (1)

4. At successive time stepst j , j > i , the radiance val-
ues are

r j = r i · exp(− t j − ti
τD

), (2)

with τD the damping time, again multiplicatively
generated from the preceding values. Here we as-
sume for simplicity that all brightening events have
the same damping time and that there is no correla-
tion between, e.g., damping time and amplitude.

The probability of a transient brightening occurring,p f
with 0 < p f < 1, is simulated by drawing equally dis-
tributed random numbers between 0 and 1, and a flare
event is started atti if the random number falls within a
certain fraction of the interval (0,1), e.g., a flaring prob-
ability of 30 % or 0.3 is realized by applying the kick if
the random number is smaller than 0.3.

We assume that we can express the kick asf i = c · r i−1,
with c = fi

r i −1
a positive value, i.e., the new radiance is

r i = r i−1 + c · r i−1 = ĉ · r i−1, (3)

a multiple of the predecessor radiance. We stress, how-
ever, that we prescribe the distribution of the additive
componentsf i (given, e.g., by observation as a power
law) and not that of the multiplicative componentc.

Thus, the radiance value at thenth step is

rn = r0 · c1 · c2 · · · · · cn, (4)

with the ci being random factors if a new kick happens
at this time. Otherwiseci represents the damping as de-
scribed by the exponential in Eq. (2).

Taking the logarithm of this equation yields

log(rn) = log(r0)+log(c1)+log(c2)+· · ·+log(cn). (5)

The Central Limit Theorem (applied to the logarithms,
which are itself independent random variables, if thec i
are independent) then states that asn goes to infinity, the
distribution of the sum converges to a normal distribution.
Thus, the distribution of the sum in Eq. (5) is normal, so
that the distribution of ther n is lognormal. The next step
is the determination of the parameters of the lognormal
distribution

ρ(x) = N0

σl x
√

2π
exp(− (log(x) − µl )

2

2σ 2
l

) (6)

with µl =< log(x) >, σl =
√

V ar(log(x)) and N0 a
normalization factor.

2.2. An analytic model

Provided the assumption holds, an analytic model can
be developed, based on a stochastic differential equa-
tion (SDE) for the radiance variable and its correspond-
ing partial differential equation for the probability den-
sity, the Fokker-Planck equation (FPE, see, e.g., Risken



1989; Gardiner 1990; Honerkamp 1990).
We start with a linear SDE with only two free parame-
ters, which we will later relate to damping and excitation,
both represented by the flaring process, and determine
their values empirically, i.e., via model runs and parame-
ter scans.
Let nowr be the radiance variable, andF the stochastic
flare process, which stands for the noise, i.e., the random-
ness, in the equation. Our model computes the following:

dr = r · dF. (7)

This equation can be seen as an SDE with so-called
“multiplicative” noise (e.g., Gardiner 1990; Honerkamp
1990). Substitutingx = log(r ) (which is unproblem-
atic in our case of stochastic calculus, see, e.g., Gardiner
1990), we get:

dx = dF (8)

This is an equation of much nicer type because the diffu-
sion term is independent ofx.

The stochastic processF(t) is neither a White Noise pro-
cessξ(t) (which means that it is totally uncorrelated with
< ξ(t)ξ(t ′) >= δ(t − t ′)) nor does it have mean zero.
However, the coloured noise processF is generated from
White Noise by the following equation

dF = dx = (−kx + c)dt + bdW, (9)

with W the White Noise process andk = 1
τD

the damping
parameter.

Our free parameters in the model equation are a deter-
ministic offsetc and the effective noise strengthb.
For our model, we determined the two parameters via pa-
rameter scans as functions ofτD andp f .

An equation of the form (9) is equivalent to the FPE

∂ρ

∂ t
= ∂

∂x
(kx − c)ρ + 1

2

∂2

∂x2
b2ρ. (10)

As the first coefficient on the right-hand side is a linear
function in x and the diffusion coefficient(b2) is inde-
pendent ofx, it is solvable. The solution is given by a
Gaussian process and as such completely determined by
its mean and variance

ρ(x, t) = 1√
2π

1
√

b2

2k (1 − exp(−2kt))
·

(11)

exp(−1

2

(x − x0 exp(−kt) − c
k )2

b2

2k (1 − exp(−2kt))
)

with the boundary conditionρ(x, 0|x0, 0) = δ(x − x0).

For t → ∞ it approaches the stationary solution (∂
∂t ρ =

0)

ρstat(x) = 1√
2π

1

σg
exp(−1

2

(x − µg)2

σ 2
g

), (12)

where we have setµg = c
k andσg = b√

2k
.

The logarithm of the radiance log(r ) is thus Gaussian dis-
tributed, and consequently the radiancer follows a log-
normal distribution. The parametersµg and σg corre-
spond to theµl andσl in (6).

On the time scales under study (several hours), we can
assume stationarity of our distribution, which means that
(after a relaxation time in the model) a steady state is
reached. This does not hold for the solar radiance over
longer periods, exceeding time scales of months to years,
e.g., a dependence of the shape of distribution on the solar
cycle is expected. This would also apply for shorter time
scales when the structure of the region changes signifi-
cantly, e.g., by emergence of new flux and thus a change
in activity.

In principle, the model is, in logarithmic space, similar
to a Brownian motion model (Einstein 1905; Langevin
1908; von Smoluchowski 1915), but with smoother paths
of the realizations due to the damping. A pure Brownian
motion is represented by the diffusion equation

∂

∂ t
ρ = D

∂2

∂x2
ρ, (13)

with a diffusion coefficientD. Such a diffusion type of
model has for example also been successfully applied to
the distribution of the logarithms of file sizes on server
systems (Downey 2001). However, undamped Brownian
motion represents the Wiener process, and no stationary
solution exists.

The two characterizing parameters of the stationary solu-
tion (12),µg andσg, have been determined empirically
by parameter scans for Gaussian and for power-law noise
input.

3. RESULTS

We determined the parameters of the radiance distri-
bution via the simulation of a number of time series
(each ofn = 5 · 105 time steps) for several damping
times and flare-probabilities (i.e., kick-frequencies), re-
spectively. We ran the model using two different distri-
butions for the amplitudes of the stochastic flaring pro-
cess as input: 1. kicks with Gaussian-distributed am-
plitudes (

�
(0.09, 0.02)), 2. kick amplitudes which are

distributed according to a power-law, with the exponent
α = −2.1 and the amplitude range between 0.02 and 3.0
W m−2sr−1. The first two moments of the resulting dis-
tributions have been chosen to be equal for the Gaussian
and the power-law: a meanm f of 0.09 and a standard
deviationσ f of 0.02.

All simulated radiance time series were lognormally dis-
tributed. Figure 1 shows examples of simulated distri-
butions with damping timesτD = 10, 50, 100 and 200
time steps, and a flaring frequency ofp f = 0.2. Both
curves (for Gaussian and for power-law distributed flare
excitation) have been plotted. Clearly, the resulting distri-
butions are highly skewed towards small radiances for a



short damping time. In the limit of infinitely short damp-
ing time the most common value of the radiance is zero.
As the damping time increases, so do the average value
and the width of the radiance distribution, which also be-
comes increasingly symmetric. The same behaviour is
found as the flare frequency increases.

Figure 1. Histograms of the simulations withτD =10,
50, 100, and 200 for a fixed flaring probability of 0.2.
The thin curves show the radiance frequency distributions
for the Gaussian flare distribution as input and the thick
curves for the power-law input.

3.1. Variation of the damping time and flaring
frequency

We varied the damping time (in units of time steps) from
5 to 500 and kept the flaring probabilityp f fixed. The
two parameters characterizing the resulting lognormal
distributions are shown in Fig. 2 for a Gaussian flare dis-
tribution andp f = 0.2.

Figure 2. Variation of the lognormal parameters with
damping time for a fixed flaring probability of 0.2 and
a Gaussian flare distribution. The solid lines show the
modelled curves, the triangles show the values calculated
with Eqs. (14) and (15).

The variation of the lognormal parameters with flaring
frequency is shown in Fig. 3.

The values of the lognormal parameters which fitted the
model simulations were

µg = log(τDm f p f )+p f exp(p f ) = log(τD f (m f , p f )),
(14)

Figure 3. Variation of the lognormal parameters with
flaring probability for a fixed damping time of 200 time
steps and a Gaussian flare distribution. The solid lines
show the modelled curves, the triangles show the values
calculated with Eqs. (14) and (15).

with f (m f , p f ) = m f p f exp(p f exp(p f )), and

√
2σg = 1

√
τD p f

. (15)

We checked for an influence of the standard variation
σ f of the flare distribution on the parameters and found
that for a doubled valueσ f = 0.04, only theσg was
slightly higher by approximately 4 %. However, we
did not determine a possible weak functional dependence
f̃ (σ f ). A more general expression forσg thus might read

σg = f̃ (σ f )√
2τD p f

.

For a power-law distributed flare input theµg of the re-
sulting distribution is the same, theσg of the distribution,
however, is larger by a factor of 2 forp f < 0.5. With in-
creasing flare frequency (p f ≥ 0.5) the factor reduces to
1.2 for p f = 0.9. (Theσg approaches that of a Gaussian
noise input for increasing noise frequency.)

The Fokker-Planck equation (10) for our model is thus

∂ρ

∂ t
= ∂

∂x
(

1

τD
x− log(τD f (m f , p f ))

τD
)ρ+ 1

2τ 2
D p f

∂2

∂x2ρ.

(16)

4. COMPARISON WITH SUMER DATA

Having established a theoretical model for a very simple
case, as a next step we try to find a set of parameters for
a representation of SUMER data from the transition re-
gion. We use a power-law distributed flaring process and
additionally introduce a possible rise time of a flareτ R.
Instead of instantaneous increase and exponential decay
the flare brightness can now both, rise and fall exponen-
tially. The simulation consisted ofn = 24 000 time steps.

4.1. The SUMER data

SUMER is a stigmatic normal incidence telescope and
spectrometer, operating in the wavelength range from 465
to 1610Å, depending on the spectral order and the choice
of detector. For a general description of the SUMER in-
strument and its data we refer to Wilhelm et al. (1995).



The SUMER slit with angular dimensions of 1′′×300′′ is
imaged by the spectrograph on to the detectors with a res-
olution of about 1′′ per pixel in the spatial direction and
0.044Å per spectral pixel in first order and 0.022̊A per
spectral pixel in second order.
The SiIV line at 1393Å, which is used here, is mea-
sured in first order. Its origin lies in the transition region
(T ≈ 105 K), and thus features high variability. The mea-
surements belong to a quiet Sun explosive events study,
they have been made over 3 h and 35 min on 19 July
1998 with a cadence of 15 s and have a spatial resolution
of 2′′. The SUMER data were corrected for the flatfield,
the geometric distortion, and for detector electronics ef-
fects such as dead-time and local-gain depression.
After the instrumental corrections and the radiometric
calibration, the solar radiances were determined by in-
tegration over the line profiles, which were derived by
least-squares fits of single Gaussian functions and a lin-
ear background. The background (continuum) was sub-
tracted prior to integration.

4.2. Model lightcurves and comparisons with the data

Figure 4 shows two sample histograms from lightcurves
of the SUMER data, the first from a darker area of the
images (cells), the second from a brighter part (network).
In 4 (a) the histogram of a 1-pixel time series (from a
1′′×2′′cell area) is given, together with the result of a sim-
ulation with the parametersα = 3.0, amplitude range
of the flare-kicks 0.01− 0.3 W m−2 sr−1, damping time
τD = 28 time steps à 15 s (if compared to the SUMER
temporal sampling), rise time ofτR = 21 time steps, and
a flare probabilityp f = 0.2. In 4 (b) the respective two
histograms are given for a network area of same size. The
parameters of the simulation wereα = 3.0, amplitude
range of the flare-kicks 0.6 − 3.0 W m−2 sr−1, damping
time τD = 7 time steps, rise time ofτR = 5 time steps à
15 s, and a flare probabilityp f = 0.2. The agreement be-
tween measured and modelled histograms is quite reason-
able, although not all features of the measured histograms
are captured well, e.g., the steep increase at lower radi-
ances is not shown by the simulations. Some of the dif-
ferences, however, can be ascribed to the better statistics
of the model (24 000 data points compared to SUMER’s
821).

Figure 5 shows for comparison a time series of an area
of 1′′×2′′of the SUMER measurements and a part of
the simulated lightcurve for a network area. A Poisson
photon noise (of 5 %) has been added to the synthetic
lightcurve to simulate photon noise. Although the main
statistical properties of the SUMER data are well repre-
sented (see Fig. 4), there are significant differences visi-
ble in the two lightcurves. Especially, the lower limit or
background is not captured well by the simulation. The
opposite is the case for a cell area simulation: what is
given by the weakly damped process (compare the large
τD + τR for the simulation shown in Fig. 4 (a)) is mainly
the background. Single higher-intensity events appearing
in the tail of the distribution of Fig. 4 (a) are not covered.

(a)

(b)

Figure 4. Histograms of the simulated and SUMER mea-
sured radiances. (a): from a time series in a very quiet
area (cells). (b): from network area of the same size
(1′′×2′′). The thin histogram and dashed line give the
data and fit of the simulation, the thick histogram and the
diamonds show the corresponding values for the SUMER
measurements.

4.3. Discussion

From the multiplicative version of the central limit the-
orem it follows that the product of many independent,
identically distributed, positive random variables has ap-
proximately a lognormal distribution. (For a discussion
of the special features of the lognormal distribution func-
tion see also, e.g., Limpert et al. (2001).) For a lognormal
to form in the simulation, the input process has to be pos-
itive definite, e.g., a Gaussian with mean zero as input
distribution does not produce a lognormal. Thus, by the
positive input process, the asymmetric shape is ensured.

The shape and scale of the resulting lognormal are
strongly dependent on the damping time of the flares
and their frequency. The higher the flaring frequency
and the damping time, the more symmetric the result-
ing lognormal becomes (i.e., theσg values which deter-
mine the shape of the lognormal become smaller). With
increasing frequency and damping time, the lognormal
becomes more Gaussian-like, decreasing damping time
(i.e., stronger damping) and more frequent flares intro-
duce more asymmetry, and make the mode (i.e., the peak
or most frequent value) of the radiance distribution ap-
proach zero. The scaling of the distribution, which is its
extension in (peak-) height and width, is given byµ g. µg
increases with damping time (i.e., with decreasing damp-



Figure 5. Time series of radiances simulated with a
power-law ofα = 3, amplitude range between 0.6 and
3.0 W m−2sr−1, a damping time ofτD = 7 time steps, a
rise time ofτR = 5 time steps, pf = 0.2, and a SUMER
lightcurve from a network part of the images.

ing) and with flaring frequency.
Comparing the analytical expression forσg with Figs. 6
and 7 from Pauluhn et al. (2000), which show that the
shape parameter of the lognormal as a function of tem-
perature has a maximum at the transition region, it seems
that flaring time scales there are relatively shorter than in
chromosphere and corona, or the flare frequency is lower
there.
Our simulations show that multiplicative stochastic pro-
cesses are suitable models for solar transient brighten-
ings. From Figs. 4 and 5 it further follows that a single
flaring process is not enough to fully represent a SUMER
transition region time series. In order to cover “back-
ground flaring” as well as flaring with higher amplitude,
a superposition of two or more processes with different
time scales and amplitudes is needed. This result may be
an artifact of the fact that we assume the damping time to
be independent of the amplitude of the brightening, while
in reality there could be a connection (e.g., an inverse cor-
relation).

5. SUMMARY AND CONCLUSIONS

We have shown that a simple model of randomly gener-
ating a time series of radiances by (flare-)excitation can
approximately reproduce measured quiet Sun statistics.
An analytical background for the lognormal distribution
of quiet Sun radiances was given, and it was shown that
the probability density function of the logarithm of the ra-
diance obeys a diffusion law in the case that the radiance
process can be seen as multiplicative.
For simple sample cases, we determined the functional
dependence of the stationary radiance distribution on the
parameters of the flaring process, such as the flare fre-
quency and the flare damping time.

We have not explicitly studied the dependence on the pa-
rameterα of the power-law input distribution, although it
enters, together with the amplitude range of the input, via
the mean value. Certainly more studies are required to re-
fine the approximate equations and dependences, as well
as to include superpositions of processes. Also, compar-
isons with long time series of different temperature re-
gions should be undertaken.
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