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ABSTRACT

We consider slow magnetosonic standing waves that are
impulsively excited in a solar coronal loop. The one-
dimensional numerical model we implement includes the
effects of nonlinearity. We evaluate numerically excita-
tion and damping times of a standing wave in hot coronal
loops on the basis of a parametric study. The results of the
numerical simulations reveal that initially launched im-
pulses trigger mainly the first or second standing waves,
depending on the spatial location of these pulses. A para-
metric study shows that in the short loops considered here
these standing waves are for most loop and pulse param-
eter values excited in 3 − 6 wave periods and they are
strongly damped over a similar time-scale.
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1. INTRODUCTION

Coronal loop oscillations have become a subject of con-
siderable recent observational and theoretical interest.
Impulsively generated, standing slow waves in hot (T >
6 MK) loops have been detected with SOHO/SUMER
(Wang et al. 2003a). It is interesting that these stand-
ing waves are strongly attenuated while they cool down
(Curdt et al. 2003). Observations with Yohkoh, SUMER
SOHO/EIT and TRACE/EUV have revealed that these
loop oscillations seem to be often triggered by micro- or
sub-flares near a loop foot-point (Wang et al. 2003b). In
such cases the trigger may be hot plasma flow injected
into the loop from one foot-point.

Several attenuation mechanisms have been proposed:
wave leakage into the chromosphere (Ofman 2002),
lateral wave leakage due to curvature of loops
(Roberts 2000), phase mixing (Nakariakov 1999, Of-
man, Aschwanden 2002), resonant absorption (Ruder-
man, Roberts 2002), non-ideal MHD effects (Roberts
2000). In particular, Ofman and Wang (2002) have found
that thermal conduction leads to rapid damping of slow
standing waves, with a less significant contribution from
compressive viscosity (Ofman et al. 2002a). Ofman et al.
(2002b) have shown that a nonlinear steepening of slow
waves leads to their enhanced dissipation. Nakariakov et
al. (2000a) have found that dissipation and stratification
are the main factors influencing the slow wave evolution.
De Moortel et al. (2002a) have deduced that thermal con-
duction can be important.

In another study, Nakariakov et al. (2004) and Tsiklauri
et al. (2004) have demonstrated that in a coronal loop

an impulsive energy release excites efficiently the sec-
ond spatial harmonic. The considered model included
the effects of gravitational stratification, heat conduction,
radiative losses, external heat input and Braginskii bulk
viscosity.

Our work is aimed at studying the excitation mechanism
of slow standing waves. We discuss impulsively gener-
ated waves which are described by fully nonlinear one-
dimensional ideal MHD equations. As a consequence of
the one-dimensional assumption the Alfvén and fast mag-
netosonic waves are removed from the physical system
which contains the slow waves only.

2. A NUMERICAL MODEL

We consider the coronal loop to lie along the x-direction.
Additionally we assume that the velocity V = [V, 0, 0],
magnetic field B = [B, 0, 0], and the plasma quan-
tities depend on time t and coordinate x only. As a
consequence of these assumptions we adopt the one-
dimensional ideal MHD equations.

2.1 The loop equilibrium

We consider the equilibrium at which pressure
p0 = const. and plasma is at rest, V0 = 0. We
choose the equilibrium density profile %0 which varies
with x in a way that %0 attains large values at loop
foot-points which are settled at x = 0 and x = L, where
L = 50 · 108 cm is the loop length which corresponds
to a loop radius of 13 − 16 Mm. The loop is relatively
short because short loops are easier to simulate. In
Sect. 3.1.4 we also consider loops with other lengths.
The mass density profile %0(x) is similar to the profile
that is implemented by Ofman (2002), i.e. %0(x) =
%c

{

d
2 [tanh (s (x− xtr) · (x− L+ xtr)) + 1] + 1

}

.
Here d is the ratio of the photospheric mass density %ph

to the coronal mass density %c = 10−15 g cm−3. We
allow this parameter to vary in the range 104 ≤ d ≤ 108.
The quantity s = 0.5 · 10−17 cm−1 denotes the slope of
%0(x) at the loop foot-points, and xtr = 0.2842 · 108

cm corresponds to the position of the transition region.
As T0(x) ∼ p0/%0(x), the plasma temperature T0 is
higher at the solar corona than at the foot-points. We
also choose and hold fixed the sound speed in the solar
corona cs =

√

γp0/%0(x = L/2) = 0.35 · 108 cm s−1.

2.2 Perturbations

Consider a coronal loop that is described by the ideal
one-dimensional MHD equations. Perturbations can be
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excited in such a loop in numerous ways. Here we focus
our attention on impulsively excited waves. We launch a
hot pulse in the mass density, pressure and velocity. This
pulse has the following form:

δ%(x, t = 0) = A% exp
[

(x − x0)
2/w2

]

, (1)

δp(x, t = 0) = Ap exp
[

(x− x0)
2/w2

]

, (2)

δV (x, t = 0) = AV exp
[

(x − x0)
2/w2

]

, (3)

where A%, Ap andAV are initial amplitudes of the pulse,
x0 its initial position and w its initial width.

3. NUMERICAL RESULTS

In this part of the paper we present numerically obtained
results for various run parameters. The plasma equations
are solved numerically with the FLASH code (Fryxell et
al. 2000). For most numerical runs 300 blocks are cho-
sen. Each block contains 8 grid cells. Free boundary
conditions are used at the boundaries of the simulation
region. All physical quantities are measured in cgs units.

We discuss first and second standing waves which are
triggered by temperature perturbations and pay partic-
ular attention to excitation and damping times of these
modes. Our simulations show that these lowest modes
are the dominantly excited ones for the pulse parameters
employed.

3.1 Excitation by temperature perturbation

We consider now the case of ideal plasma for which
there is no velocity perturbation. In this case slow waves
are excited solely by temperature perturbations which
are given by Eqs. (1)-(3), with A% = 0.125 %0(x0) and
Ap = 0.25 p0 and AV = 0. We launch the pulses of
Eqs. (1)-(2) with a width of w = L/40, which is a typ-
ical value that is determined from observations (Nakari-
akov et al. 2004). We also carry out a parameter study in
which parameters are allowed to vary around the adopted
fiducial values. We consider first in some detail three
cases which correspond to different positions of the initial
pulses: (a) x0 = L/4, (b) x0 = L/2, (c) x0 = 0.

3.1.1 Pulses at a quarter of the loop length and at the
apex of the loop

If the initial pulse x0 = L/4 (x0 = L/2) the first (sec-
ond) standing wave is excited. Fig. 1 displays spatial pro-
files of these waves at given moments of time. As the
first standing wave is twice as long as the second wave
(Fig. 1), the first wave is less sensitive to the inhomoge-
neous medium and essentially it occupies the cavity over
all its length L. The second standing wave is more sensi-
tive to the inhomogeneity than the first wave, resulting in
enhanced energy leakage into the photosphere.

Time-signatures of the perturbed mass density δ% and ve-
locity V which are detected at the spatial point x = L/4
are shown in Fig. 2 for a time interval after the initial high
frequency power has died away.

Figure 1. Spatial profiles of the velocity V (x, t = 18.842 T1)
(left top panel), V (x, t = 19.274 T1) (left bottom panel),
V (x, t = 37.841 T2) (right top panel), V (x, t = 38.281 T2)
(right bottom panel) for the mass density contrast d = 108,
the pulse width w = L/40, the pulse position x0 = L/4 (left
panels), and x0 = L/2 (right panels). Left (right) profiles cor-
respond to the first (second) standing wave.

Figure 2. Time-signatures of the perturbed mass density
δ%(x = L/4, t) (solid line) and velocity V (x = L/4, t)
(dashed line) for d = 108, w = L/40, x0 = L/4 (left panel)
and x0 = L/2 (right panel).

Oscillation amplitudes decrease with time as a conse-
quence of wave damping due to energy leakage into the
photosphere.

In all considered cases the presence of the standing wave
in the system is evaluated on the basis of the normalized
phase shift δφ, for the first (n = 1) or second (n = 2)
standing waves. We establish an excitation criterion ac-
cording to which a standing wave is present in the system
if δφ departs by 20% from 1/4, since the quarter period
lag is a signature of the analytical solution, viz.

1

4
· 80% ≤ δφ ≤ 1

4
· 120%. (4)

This criterion is fulfilled for t > tmin. As the standing
wave excitation time we assume tmin. According to this
criterion the first (second) standing wave is excited at t ≈
6 T1 (t ≈ 3.5T2), where T1 and T2 are the analytically
evaluated periods that are expressed by

Tn =
2Leff

ncs
. (5)
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Figure 3. Spectra of the velocity V (x = L/4, t) of Fig. 2. The
Fourier spectra are displayed in the top panels and the corre-
sponding wavelet spectra are presented in the bottom panels.
Note, that both the Fourier and wavelet analysis lead to the
wave periods T1 ≈ 254 s, T2 ≈ 125 s, where Tn is the n-
th standing wave period. The hatched area in the lower frames
indicates regions where the wavelet transform is less accurate.

Here n denotes the standing wave number, cs is the sound
speed, and Leff is the effective loop length. From Fig. 1
we estimate that Leff ≈ 45 · 108 cm and then T1 ≈ 257
s and T2 ≈ 128 s. These values are close to the results
of the fast Fourier transform (FFT) and wavelet analyses
(Fig. 3). Small differences result from the fact that the
effective length of the cavity is lower than L and it differs
for the case of n = 1 nad n = 2. Moreover, cs is an
inhomogeneous function of x in our simulations, but is
assumed to be x-independent when evaluating Eq. (5).

We have restricted the Fourier analysis to t > 3 T1 in
order to remove the transient signal at the initial stage
of temporal evolution. This signal is discernible in the
wavelet power spectrum (Fig. 3) which has been obtained
using a Morlet mother function (Torrence and Compo
1998)

ψ(η) = π−1/4eimηe−η2/2

with m = 6. The wavelet transform was applied to the
full time series. The solid contour represents 95% confi-
dence.

3.1.2 A pulse at a foot-point

We discuss now the case of the initial pulse of Eqs. (1)-
(2). This pulse is launched at the loop foot-point located
at x = 0. Fig. 4 displays the corresponding results. As
a result of a hot initial pulse, plasma is heated locally at
the loop foot-point. Just warmed up and dense photo-
spheric plasma leaves the excitation region and fills up
the coronal loop. As a consequence of that δ% grows with
time (top right panels). The mean flow is directed to the
loop center and its efficiency declines both spatially in
the region x > x0 (left top panel) and with time (right
top panel). Velocity power spectra (bottom panels) reveal
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Figure 4. A spatial velocity profile at t ≈ 20 T1 (left top
panel), time-signatures (right top panel) of the perturbed mass
density δ%(x = L/4, t) (solid line) and velocity V (x = L/4, t)
(dotted line) for d = 108, w = L/40 and x0 = 0. The cor-
responding Fourier and wavelet power spectra are displayed in
the bottom panels.

the wave period of the first standing wave, T1. The back-
ground in the Fourier power spectrum is introduced by
the velocity drift. The wave excitation time tex ≈ 3 T1

and the damping time τ ≈ 5 T1. Qualitatively similar
results have been obtained in the case of the initial pulse
launched in the photosphere at x0 = −L/50, i.e. outside
the loop, corresponding to subsurface layers of the Sun
(not shown) and recently by Tsiklauri et al. (2004) who
have discussed the case of heat deposition at a loop-foot
point.

3.1.3 Excitation of a packet of standing waves

Setting the initial pulses in different parts of the loop
leads to the excitation of different waves.. In some cases
we do not observe a single standing mode but a packet of
modes in which the first and the second standing mode
have the highest contribution. Fourier spectra show that
an almost pure second standing wave is excited when the
initial pulse is launched at the loop apex. Moving the ex-
citation point from the loop apex to the foot-points results
in an excitation of the first mode. For excitation points
that are close to, but not exactly at x0 = L/2 we ob-
serve that the Fourier power in the second standing mode
is much higher than in the first standing mode, while for
x0 = 3L/8 the first mode dominates (Fig. 5). The third
and higher modes are also initially present in the system.
However, their Fourier power is much lower and they are
damped more rapidly, so that we can distinguish them
only by analysing the initial stage of the simulation time.

3.1.4 Parametric studies of wave excitation and
damping times

In this part of the paper we present results of parametric
studies. We vary several parameters such as the pulse po-
sition x0, density contrast d, pulse width w, temperature
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Figure 5. Fourier spectra of the velocity V (x = L/4, t) for
d = 108, w = L/40 and x0 = 0.475L (left panel) and x0 =
0.375L (right panel). First (right panel) and second (left panel)
standing modes dominate.

of initial pulses, and perturbations in velocity AV . We
analyze how the standing wave excitation time tex and
damping time τ depend on these parameters.

We first filter out non-oscillatory components from the
time-signatures %(x0 = L/4, t) and V (x0 = L/4, t) to
remove trends, such as seen in the upper right panel of
Fig. 4, and to get a pure signal which corresponds solely
to oscillations. The filtering is done by the code that
was originally developed by Ofman (2002). We estimate
the excitation time tex using the criterion described by
Eq. (4), while for the damping time τ we fit an envelope
of a velocity profile into the following formula:

V (x = xd, t) = V0 exp

[

− (t− tex)

τ

]

, t ≥ tmin ,

where xd denotes the detection point, V0 is the amplitude
of the velocity V at time tex.

Figure 6. The normalized standing wave excitation time
tex/Tn (left panel) and the normalized damping time τ/Tn

(right panel) vs. the normalized pulse position x0/L for d =
108 and w = L/40. The crosses (squares) correspond to the
first (second) standing waves.

We first consider the dependence of tex and τ on the loca-
tion x0 of the initial pulse. Fig. 6 shows that the first (sec-
ond) standing wave excitation time tex generally grows
(declines) as the pulse position x0 moves from the loop
footpoint (x0 = 0) to its apex (x0 = L/2). In the case of
the first standing wave, the damping time depends weakly
on x0, with a slight tendency to decrease with x0 (right
panel of Fig. 6). The second standing wave damping time
decreases as x0 approaches L/2.

These results support evidence that excitation and damp-
ing times are not constant but depend on the location of

the initial pulse. Excitation time varies from its lowest
value of 3 T1 for x0 = 0 to its highest value of 16 T1

for x0 = 0.45 L for the first standing wave (and from
3 T2 for x0 = L/2 to 8 T2 for x0 = 0.45 L in the case
of the second standing wave). The obtained values of
damping time are in the range 4.7 T1 < τ < 5.2 T1

for the first standing wave and 5 T2 < τ < 6.1 T2 for
the second standing wave for which the lowest (highest)
value is obtained for x0 = L/2 (for x0 = 0.44 L). Note
that T1 ≈ 2T2, so that in absolute terms the 2nd wave is
damped more rapidly than the first wave.

We conclude from the above results that the first (sec-
ond) standing wave is excited most efficiently by an ini-
tial pulse that is located in the neighborhood of a loop
foot-point (of the loop apex). At these points the exci-
tation (damping) time of these waves is equal to 3 (5)
periods, corresponding roughly to 13 min (11 min).

The standing wave excitation time varies with the density
contrast d (Fig. 7). For high values of d the first standing
wave is excited less efficiently than for low values, for
which tex attains its minimum; the excitation time is dou-
bled as the density contrast is changed by four orders of
magnitude. At the smallest (largest) considered value of
d = 102 (d = 108) the damping time is 2.5 T1 (6.2 T1).
From these results we draw the conclusion that the first
standing wave is excited faster in low density contrast re-
gions, as such a structure is more susceptible to energy
leakage at the foot-points. As a consequence of that it is
easier for a perturbation to adjust to standing waves pro-
files. Obviously, damping of the wave is enhanced and
the damping time is of the order of a few wave periods.
About twice weaker damping occurs at d = 108 than at
d = 102, although the dependence of τ on d is complex.

Figure 7. The normalized first standing wave excitation time
(left panel) and the normalized damping time (right panel) vs.
log d for w = L/40 and x0 = L/4.

The standing wave excitation time depends on the pulse
width w (Fig. 8). For a sufficiently wide pulse the first
standing wave is excited faster by wider pulses although
there is significant scatter (left panel). The damping time
oscillates around a value of about 4.8 T1, within a rel-
atively narrow range implying that it is almost indepen-
dent of w. These results are a consequence of the fact
that wider pulses are closer to the sine function of x of
the analytical standing wave spatial profile; sufficiently
wide pulses adjust faster to the standing waves.

In the case of the second standing mode, its excitation
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Figure 8. The normalized first standing wave (n = 1) excita-
tion time tex/Tn (left panel) and the damping time τ/Tn (right
panel) vs. the pulse width w for d = 108 and x0 = L/4.

and damping times vary with the pulse width (Tab. 1).
For a very wide pulse the second standing wave is excited
slower than by narrower pulses, but its damping time is
slightly shorter. Note, that even forw = 3 ·109 cm, when
the initial pulse is close to the sine function of x, corre-
sponding to the shape of the first wave, it is the second,
not the first mode which is excited for the pulse position
x0 = L/2.

Table 1. The excitation time tex, and damping time τ for two
different widths of the pulse in the case of the second (n = 2)
standing wave for d = 108 and x0 = L/2.

w/L tex [s] τ [s]
0.025 463 603
0.6 1050 565

So far, we have discussed the initial pulses of constant
relative temperature Tr = Tp/Tc = 0.1, where Tp is
the temperature of the initial pulse and Tc is the temper-
ature of the corona. This temperature is realized through
the choice of the pulse amplitudes A% = 0.125%0(x0),
Ap = 0.25p0. It is worth quantifying the influence of
Tr on the mode excitation time tex and the damping time
τ . To do so, we consider three values of the tempera-
ture ratio: Tr = 2 (A% = 0.125%0(x0), Ap = 1.25p0),
Tr = 4 (A% = 0.125%0(x0), Ap = 3.5p0), Tr = 8
(A% = 0.125%0(x0), Ap = 8.0p0). Fig. 9 summarizes
results of the corresponding numerical experiments. A
warmer pulse leads to more efficient standing wave exci-
tation as the excitation time declines with Tr. The stand-
ing wave is more rapidly damped for higher values of
Tr. Given that Tr changes by a factor of 80, the induced
changes in tex and τ are relatively small (factor of 2).

We compare now four cases which correspond to the fol-
lowing loop lengths L0: (a) L0 = L = 50 · 108 cm, (b)
L0 = 2L, (c) L0 = 3L, and (d) L0 = 6L. The pulse po-
sition was chosen as x0 = L0/4. The excitation time de-
creases with the loop length for narrow pulses (Fig. 10).
The normalized damping time τ/τn generally grows with
the loop length L0 (right panel). Note that since Tn ∼ L0

the results must be considered carefully. E.g. tex actually
grows somewhat with L0 (in secs).

Figure 9. The normalized first standing wave excitation time
(left panel) and damping factor (right panel) vs. the normalized
pulse temperature Tr for d = 108, w = L/40 and x0 = L/4.

Figure 10. The normalized first standing wave excitation time
(left panel) and damping time (right panel) vs. the normalized
loop length L0, for d = 108, x0 = L0/4 and w = L/40.
Note that Tn now corresponds to the expected period for the
appropriate loop length.

3.2 Velocity pulses

We consider now a case that is similar to the cases dis-
cussed above. The only difference is that to the mass den-
sity and pressure perturbations we add a non-zero pulse in
velocity. We choose and hold fixed AV = 0.125cs(x0).
In the case of x0 = L/4 the first standing wave is gen-
erated at tex ≈ 7 T1 which is a little larger than in the
case of AV = 0 (Fig. 11). The damping time attains a
value of τ ≈ 5.5 T1 which is 10% higher than without
the velocity pulse. From this result we conclude that the
first mode is weakly affected by the presence or absence
of velocity perturbations.

In the case of x0 = L/2 and the second standing wave
(squares) the excitation time is larger than in the case of
AV = 0 while the damping time becomes very slightly
smaller than without the velocity pulse.

Figure 11. The normalized first standing wave excitation time
(left panel) and damping time (right panel) vs. the velocity
amplitude of the initial pulse, AV , for d = 108, w = L/40,
x0 = L/4 (crosses) and x0 = L/2 (squares).
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4. SUMMARY

In this paper we have considered the excitation and damp-
ing of slow standing waves in a solar coronal loop that is
approximated by a one-dimensional plasma. Our model
implements nonlinearities and impulses in plasma quan-
tities. A Fast Fourier transform and wavelet analysis of
temporal wave profiles have shown that in a loop the first
or second standing slow waves are excited depending on
the location of the trigger. We have worked out a simple
criterion for the presence of a standing wave. This crite-
rion is based on a phase shift between the perturbed mass
density δ% and velocity V . The time which is required for
a standing wave to be set up in a loop from a hot initial
pulse is of the order of 3 − 6 wave periods and it varies,
depending on parameters of the plasma such as an ini-
tial location of the pulse, the density contrast or a pulse
width. In the case of a wide and strong pulse as well as
of heated plasma this time-scale is shorter.

ACKNOWLEDGMENTS

The authors express their cordial thanks to Leon Of-
man for providing his code for the evaluation of damp-
ing time. MS expresses her thanks to the conference
organisers for their partial financial support. MS’s &
KM’s work was financially supported by the grant from
the State Committee for Scientific Research Republic of
Poland, with KBN grant No. 2 PO3D 016 25. The
FLASH code is provided by ASCI (Alliances Center
for Astrophysical Thermonuclear Flashes) at the Uni-
versity of Chicago. Wavelet software is disseminated
by C. Torrence and G. Compo, and is available at URL
http://paos.colorado.edu/research/wavelets.

REFERENCES

Aschwanden M., Fletcher L., Schrijver C., Alexander D.,
1999, ApJ 520, 880

Curdt W., Wang T.J., Dammasch T.E., Solanki S.K.,
2003, Hvar Obs. Bull. 27, 83

De Moortel I., Hood A.W., 2003, A&A 408, 755
De Moortel I., Hood A.W., Ireland J., 2002a, A&A 381,

311
De Moortel T., Hood A.W., Ireland J., Walsh R.W.,

2002b, Solar Phys. 209, 89
Fryxell B., Olson K., Ricker P., et al., 2000, ApJS 131,

273
Nakariakov V.M., Ofman L., DeLuca E.E., et al., 1999,

Science 285, 862
Nakariakov V.M., Verwichte E., Berghmans D., Rob-

brecht E., 2000, A&A 362, 1151
Nakariakov V.M., Tsiklauri D., Kelly A., et al., 2004,

A&A 414, L25
Ofman L., 2002, ApJ 568, L135
Ofman L., Wang T.J., 2002, ApJ 580, L85
Ofman L., Aschwanden M., 2002, ApJ 576, L153

Ofman L., Nakariakov V. M., Sehgal N., 2000, ApJ 533,
1071

Roberts B., 2000, Solar Phys. 193, 139
Ruderman M.S., Roberts B., 2002, ApJ 577, 475
Torrence C., Compo G.P., 1998, Bull. Amer. Meteor. Soc.

79, 61
Tsiklauri D., Nakariakov V.M., Arber T.D., Aschwanden

M.J., 2004, A&A 422, 351
Wang T.J., Solanki S.K., Curdt W., et al., 2002, ApJ 574,

L101
Wang T.J., Solanki S.K., Innes D.E., et al., 2003a, A&A

402, L17
Wang T.J., Solanki S.K., Curdt W., et al., 2003b, A&A

406, 1105
Zingale M., Dursi L.J., ZuHone J., et al., 2002, ApJS 143,

539

96


