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ABSTRACT

We consider impulsively generated oscillations of a solar
coronal arcade loop. The two-dimensional ideal MHD
numerical model we implement includes the effects of
field line curvature and nonlinearity on the excitation and
attenuation of standing fast magnetosonic waves. The
results of the numerical simulations reveal wave signa-
tures which are reminiscent of recent TRACE observa-
tional data. From our parametric studies we deduce that
wave periods and attenuation times of the excited waves
depend upon the position of the pulse below the loop
summit, as well as its width and strength; wider pulses
launched closer to a foot-point and to the loop apex trig-
ger wave packets dominated by longer periods which are
more strongly attenuated. We consider two kinds of at-
tenuation mechanisms: wave leakage and geometric loop
restructuring due to the initial pulse.
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1. INTRODUCTION

Magnetic loops are the main ingredients of the solar
corona that sustain oscillations (e.g., Aschwanden et al.
1999, Wang et al. 2002, Wang & Solanki 2004). In one
of the most recent observations Wang and Solanki (2004)
reported on vertical oscillations of a 300− 400 Mm long
solar coronal loop which expanded and shrank with an
oscillation period of ≈ 230 s, thus adding another mode
of oscillation to those discovered earlier. Here we con-
centrate on modeling this mode of oscillation.

Recently, emphasis has been placed on the excitation of
transverse waves. Transverse oscillations in solar coronal
loops induced by propagating Alfvénic pulses were dis-
cussed by del Zanna et al. (2005). Fast standing waves
were numerically simulated by Murawski et al. (2005a)
who found high-order standing fast kink mode oscilla-
tions in a weakly magnetized coronal loop. In another
context Murawski et al. (2005b) showed that impulsively

triggered fast magnetosonic waves in a cool loop (1 − 2
MK) have periods which are compatible with the obser-
vational data provided by TRACE which may be inter-
preted as the fast kink mode in the arcade. Selwa et al.
(2005b) extended this model for a strongly magnetized
coronal loop but they discussed only the case of a pulse
launched centrally below the loop at the photospheric
level while parametric studies are required to understand
the complex scenario of loop oscillations.

A main goal of this paper is to perform parametric studies
and extend the models of Murawski et al. (2005a,b) and
Selwa et al. (2005b).

The paper is organized as follows: the numerical model is
described in Sect. 2. The numerical results are presented
in Sect. 3. This paper is concluded by a short summary
of the main results in Sect. 4.

2. NUMERICAL MODEL

We describe coronal plasma by the ideal magnetohydro-
dynamic (MHD) equations:
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+ ∇ · (%V) = 0 , (1)
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∇ · B = 0 . (5)

Here µ is the magnetic permeability, % is mass density, V
is flow velocity, p is gas pressure, B is magnetic field, the
symbol pT denotes the total pressure that represents the
sum of the gas and magnetic pressures:

pT = p +
B2

2µ
(6)
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and plasma energy density is expressed as
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%V 2

2
+
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γ − 1
+

B2

2µ
, (7)

where γ is the adiabatic index.

2.1. Equilibrium configuration

We adopt and modify the coronal arcade model that was
described recently by Selwa et al. (2005b). In this
model the coronal arcade is settled in a two-dimensional,
gravity-free and motionless environment. The equilib-
rium magnetic field Be = [Bex, 0, Bez] has two non-zero
components which are specified with the help of the vec-
tor magnetic potential A = Aŷ as

Be = ∇A × ŷ, (8)

where ŷ is a unit vector along the y-direction and A sat-
isfies Laplace’s equation, ∇2A = 0, whose solution is

A(x, z) = B0ΛB cos (x/ΛB)e−z/ΛB . (9)

From Eq. (8) we obtain then

Bex = B0 cos (x/ΛB)e−z/ΛB , (10)

Bez = −B0 sin (x/ΛB)e−z/ΛB , (11)

where B0 is the magnetic field at the level z = 0 and ΛB

is the magnetic scale height such that

ΛB =
2L

π
. (12)

Here L is the horizontal half-width of the arcade, chosen
as L = 100 Mm.

We consider one choice of background Alfvén speed
VA = |Be|/

√
µ%e, where %e is a background mass den-

sity. In this case VA decays exponentially with height z
and the background temperature Te ∼ pe/%e is constant.
Here pe = const is the background pressure.

Next we embed a loop in the arcade in such a way that
its edges follow two specific magnetic field lines. We
prescribe that the inner and outer field lines cross the base
of the arcade at |x| = Lf−2af and |x| = Lf , respectively.
Inside the loop we use the following density profile:

%(x, z) = d%e(z)

[

H

(

A − A2

B0ΛB

)

− H

(

A − A1

B0ΛB

)]

,

(13)
where A1 = A(Lf , 0) < A2 = A(Lf − 2af , 0) and H is
Heaviside’s function. The mass density in this loop varies
abruptly at its sides, leading to a density enhancement of
the loop compared to the ambient medium. We choose
the mass density contrast d = %i/%e = 10 with %i and
%e corresponding to mass density respectively within the
loop and in the ambient medium. As a reference we set
Lf = 0.7 L and af = 0.0125 L: they uniquely specify the

Figure 1. Initial configuration in the case of the pulse at
x0 = z0 = 0. Mass density contours (colour scale, arbitrary
units %e = 10

−12 kg/m3) represent a loop denser than corona.
Magnetic field lines are shown as solid white lines. Note that
loop apex is denser than foot-points due to hot dense pulse.

loop’s length l, height h and its width 2a at the summit.
This loop does not have a perfect circular shape, but its
average radius and length can be estimated as 70 Mm and
190 Mm, respectively (Fig. 1).

Due to the enhanced density, the Alfvén speed within the
loop is smaller than its value in the ambient medium. As
a result of this depression in the Alfvén speed the loop be-
comes a cavity for fast magnetosonic waves. We denote
the Alfvén speed within the loop by vAi = vAe/

√
d.

Magnetic field at the photospheric level, B0, is connected
to the reference mass density %e(0) through the reference
Alfvén speed VA0 = B0/

√

µ%e(0), where we assume
%e(0) = 10−15 kg m−3 and VA0 = 1 Mm s−1 for the
mass density and the Alfvén speed, respectively at the
level z = 0.

For a potential magnetic arcade the equilibrium pressure
pe has to be constant. This pressure can be evaluated from
the definition of the plasma β = 2µpe/B2

e . In this model
in the ambient plasma, β grows from 0.012 at the loop
foot-points to 0.054 at the loop apex. This growth is not
quite realistic but the value of β remains below unity.

2.2. Perturbations

Perturbations in Eqs. (1)-(3) can be excited in such a loop
in numerous ways. As we are interested in impulsively
excited waves, we launch a hot pulse in the pressure and
mass density, i.e.

δ%(x, z, t = 0) = A%%0 e−((x−x0)
2+(z−z0)

2)/w2

,

δp(x, z, t = 0) = App0 e−((x−x0)
2+(z−z0)

2)/w2

, (14)



where w is the initial pulse width and (x0, z0) denotes
its initial position. We choose initial relative amplitudes
of the pulse A% = Ap/10 which corresponds to a pulse
that is 6.4 times hotter than the corona. It is notewor-
thy that the vertical oscillations seen by TRACE (Wang
& Solanki 2004) are identified in gas at around 1 MK.
We have no information of the temperature of the pulse
causing this oscillation, although the gas in the oscillat-
ing loop does not appear to get heated by the pulse. In the
absence of further information we adopt the above values
of the amplitudes, which had been successfully employed
by Selwa et al. (2005b), as reference values.

3. NUMERICAL RESULTS

The numerical code EMILY we adopt was developed by
Jones et al. (1997). This code employs an explicit-
implicit algorithm for solving the time-dependent, non-
ideal magnetohydrodynamic equations. The algorithm
is a finite-volume scheme that uses an approximate Rie-
mann solver for the hyperbolic fluxes and central dif-
ferencing applied on nested control volumes for the
parabolic fluxes that arise from the non-ideal terms (i.e.,
resistivity and viscosity). This scheme is second-order
accurate in space and time. In our studies we used the ex-
plicit option of the code for ideal magnetohydrodynamic
equations.

Equations (1)-(5) are solved numerically in an Eulerian
box with the x− and z−dimensions (−L, L) × (0, 2 L).
This box is covered by a uniform grid of 300 × 400 or
600 × 800 numerical cells. Grid convergence studies,
which are based on grid refinement, are performed to
show that the numerical results are not affected by in-
sufficient spatial resolution. We apply open boundary
conditions, with zero-gradient extrapolation of all plasma
variables, at the right, left and top sides of the simula-
tion region, thus allowing a wave signal to leave freely
the simulation region. We set line-tying boundary con-
ditions at the bottom of the simulation region. These
boundaries model the interaction between the denser pho-
tosphere and the overlying plasma layers.

3.1. Pulses of various amplitudes

We begin our parametric studies with the pulse launched
at x0 = z0 = 0. The pulse width w = 35 Mm and its
ampiltude Ap = 15 pe are fixed. Fig. 2 displays time-
signatures of the mass density These signatures are made
by collecting the signal in time at the loop apex on the
line x = 0. The moment t = 0 corresponds to the time
at which the pulse is released at z = 0. The loop apex
is initially displaced upward by ∼ 0.06 L, which for the
chosen value of L = 102 Mm corresponds to ∼ 6 Mm,
which is close to the observed displacement of 7.9 Mm
(Wang & Solanki 2004). Except for the amplitude of the
displacement the strength of the pulse does not have a sig-
nificant effect on the properties of the oscillations. Note

Figure 2. Time-signatures of the mass density at the loop apex
for Ap = 15 pe, x0 = z0 = 0. Spatial coordinates and time
are measured in units of L and in seconds, respectively.

that the loop displays a reduction in density at the apex.
It is noteworthy that the apex position along the z axis
and density at the apex are anticorrelated (with correla-
tion ratio −0.71). Note also the smaller amplitude, more
rapid oscillations, which are also partly visible in the den-
sity. These were identified as sausage mode oscillations
by Selwa et al. (2005b).

It is noteworthy that the loop does not return to its ini-
tial position, displaying an offset. This offset is a con-
sequence of the loop in the simulations reaching a final
equilibrium that is different from the initial one due to
the non-potential shape component added by the pulse
- while the initial magnetic field shape does not signifi-
cantly change (there is no initial perturbation in the mag-
netic field), the density profile is slightly modified (the
apex goes up and foot-points draw together as the density
follows the Gaussian shape of the pulse), so the density
does not exactly follow field lines. A similar behaviour is
also seen in some TRACE data (Wang & Solanki 2004).

The oscillations seen in Fig. 2 represent the response of
the loop summit to the initial perturbation. They cor-
respond to a packet of waves among which kink waves
exhibit the main contribution (Murawski et al. 2005a,b,
Selwa et al. 2005b). As the signal in Fig. 2 decays with
attenuation time τ , the wave period also evolves with
time. From our simulation we get the values of the ra-
tio τ/P ∼ 0.5. These periods and attenuation times are
obtained by fitting the simulation time-signatures with at-
tenuated sine functions (Selwa et al. 2005b).

3.2. Pulses along horizontal line z0 = 0

In this part of the paper we discuss the case of pulses
launched along a horizontal line that joins the two foot-
points of the loop. Fig. 3 shows the time-signature of the



loop apex in response to a pulse launched in the neighbor-
hood of the left foot-point. Fig. 3 shows some similari-
ties but also considerable differences compared to Fig. 2.
A kink oscillation, corresponding basically to a single
pulse, is visible at 250 s < t < 600 s. This pulse results
from fast magnetosonic waves which reached the detec-
tion region while initially propagating outside the loop in
the ambient medium. This corresponds to the same exci-
tation mechanism as acted in Fig. 2.

The density enhancement marked by the red-yellow spot
in Fig. 3 between t = 700 s and t = 900 s corresponds
to the slow wave that propagates within the loop from the
left foot-point towards the loop summit. This time lag is
associated with the period l/2cs ≈ 950 s, where l is the
loop length, which would be obtained if the pulse was
launched exactly at the foot-point. Whereas for a pulse
launched at x0 = 0, z0 = 0 the main force exerted on the
loop is perpendicular to the field lines, a pulse launched
close to one footpoint also accelerates gas along the field
lines, giving rise to a slow-mode pulse traveling along
the loop from the footpoint nearest to the initial location
of the pulse. As shown by Selwa et al. (2005a) an ini-
tial pulse launched asymmetrically and closer to one foot-
point efficiently generates the fundamental mode of slow
standing waves, while a pulse launched symmetrically or
almost symmetrically generates mainly the first harmonic
slow standing wave.

It is noteworthy that mass is redistributed due to the slow
wave from the location where the pulse hits the loop to
the other end of the loop, i.e. from one foot-point to the
other for asymmetric excitations, and from the apex to
the foot-points for symmetric excitations. Such redistri-
butions for symmetric and asymmetric pulses are shown
in Fig. 4. As was shown the speed of such a redistribution
is the slow mode speed. It is noteworthy that a pulse is
more clearly identified for the larger values of |x0|, where
the slow mode propagates along the loop from one foot-
point to another, rarifying one part of the loop and com-
pressing another. For symmetric excitations (x0 = 0)
the slow mode looks basically like mass sliding from the
apex to footpoints. Another interesting feature is the den-
sity antinode (depression) position along x0 = 0 only for
the case of a symmetric excitation (which is clearly visi-
ble as a lower density region in the top panel of Fig. 4).
In the case of asymmetric excitation such antinodes are
located in the foot-points and we observe them as a rar-
ified region at one foot-point and an enhanced region at
another.

Wave period P and ratio P/τ vs normalized pulse posi-
tion |x0/Lf | are shown in Fig. 5. It is noteworthy that
P grows and τ/P decreases with |x0|. Consequently, an
initial pulse that is launched on the line z0 = 0 farther
out from the symmetrical position x0 = 0 excites longer
period waves which are more strongly attenuated.

Figure 3. Time-signature of the mass density triggered by the
initial pulse launched at x0 = −42 Mm, z0 = 0. Compare with
Fig. 2 for which x0 = 0.

3.3. Energy leakage as attenuation mechanism

We expect that larger period waves are more weakly at-
tenuated by a classical attenuation phenomenon like vis-
cosity. As the applied MHD equations are ideal and nu-
merical diffusion is small, viscosity is not present here.
We infer that the mechanism of wave attenuation act-
ing in these simulations differs from viscous attenuation.
Here we explore and test the conjecture that attenuation
is due to energy leakage. Longer wavelength waves ex-
perience more difficulties in fitting into a curved loop
structure and as a result they leak energy into the ambient
medium (Wentzel 1974). This process leads to a decrease
of the wave amplitude - a process which is characteristic
of wave attenuation. These findings are in general agree-
ment with the results of Murawski & Roberts (1993), who
studied energy leakage of normal modes in coronal struc-
tures.

Evidence of energy leakage from the loop is provided by
perturbed energy density profiles (Fig. 6). The position of
the loop corresponds to the white contour at the bottom of
the figures. The first maximum from the top, represented
by a pink-white patch, results from the initial pulse, but
other maxima are a consequence of the energy leakage
(red areas outside the loop). Additional evidence that en-
ergy leaks from the loop via fast magnetosonic waves is
provided by the perturbations in the thermal and magnetic
pressures are in-phase out of the loop.

4. SUMMARY AND DISCUSSION

The results we obtained in this paper can be summarized
as follows. Broadly speaking three main classes of results
arise from the simulations: those concerning the excita-
tion of different wave modes in a curved loop by an exter-
nal pulse, those related to the attenuation and those con-



Figure 4. Distribution of the mass along the loop for a pulse
launched at x0 = z0 = 0 (top panel) and x0 = −0.42 L,
z0 = 0 (bottom panel).

cerning the asymptotic net displacement of the plasma
column. From what we presented, the former two appear
more prominent, convincing and, in our opinion, original.
The last-named results are due to nonlinearity: the col-
umn is not only displaced, but it is dissolved in time. The
column is displaced as the whole loop structure attains
a different equilibrium. Foot-points move apart and as a
consequence the structure expands. We have presented
evidence that within the confines of a 2-D model the dif-
ferent observed loop modes (kink, longitudinal, sausage)
are all excited by the same external pulse, but their rel-
ative strengths/amplitudes depend on the pulse location.
We have verified that numerical diffusion is small and
have conjectured that wave leakage is the physical pro-
cess which is responsible for this feature.

There are also further conclusions: τ/P remains smaller
than observed, irrespective of the chosen parameters.
This suggests that there are still some significant differ-
ences between observed and modeled loops (e.g. grav-
ity). The fact that τ/P decreases rapidly as the location
of the pulse moves from x0 = 0 to larger |x0|, associ-
ated with a decrease in kink amplitude, suggests that a

Figure 5. Period P (top panel) and the ratio of attenuation
time τ to period, τ/P (bottom panel), vs normalized pulse po-
sition |x0|/Lf .

pulse near x0 = 0 is needed to produce vertical loop
oscillations that can be clearly observed. Note that for
τ/P < 0.2 the oscillation appears basically like a single
kink and will not be identified as an oscillation in the ob-
servational data. Since the pulse must be launched below
the loop itself (in 3-D geometry) for a vertical oscillation,
the choice of location of the pulse is quite limited. This
may well be one reason why vertical oscillations of loops
were not discovered earlier: they may be rare.

We also conclude that energy leakage from the loop into
the ambient medium may be the main mechanism respon-
sible for attenuation of vertical kink oscillations.
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