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ABSTRACT   

In this paper we present a novel FPGA implementation of the Consultative Committee for Space Data Systems Image 
Data Compression (CCSDS-IDC 122.0-B-1) for performing image compression aboard the Polarimetric and 
Helioseismic Imager instrument of the ESA’s Solar Orbiter mission. This is a System-On-Chip solution based on a light 
multicore architecture combined with an efficient ad-hoc Bit Plane Encoder core. This hardware architecture performs an 
acceleration of ~30 times with respect to a software implementation running into space-qualified processors, like 
LEON3. The system stands out over other FPGA implementations because of the low resource usage, which does not use 
any external memory, and of its configurability.  

Keywords: Image compression, CCSDS-IDC 122.0 

1. INTRODUCTION 
The Solar Orbiter (SO) spacecraft of the European Space Agency will orbit the Sun with a perihelion radius of 0.28 
astronomical units. The Polarimetric and Helioseismic Imager instrument (SO/PHI), aboard the SO spacecraft, will make 
full-disk and high-resolution magnetic field and velocity measurements of the Sun. One of the major challenges of the 
instrument is to maximize the scientific return with the very limited telemetry allocated. To comply with this constraint, 
a great deal of data reduction and analysis must be made on board. 

The onboard data processing pipeline is sketched in Figure 1. Each observation involves the acquisition of 24 images (a 
combination of six wavelengths and four states of light), with a sensor of 2048x2048 pixels. This set of images goes 
through a fairly involved pre-processing task, which gives the images the necessary quality to allow performing the 
calibration and scientific analysis. By means of the Radiative Transfer Equation (RTE) inversion, maps of the three 
components of the magnetic field vector (strength, inclination, and azimuth) and the plasma velocity along the line-of-
sight are obtained. These four maps, along with a continuum image compose a nominal observation. Eventually, these 
images are bit-truncated to 16 bits per pixel and compressed. Thanks to this strategy, the final amount of data is reduced 
by more than 30 times.  

 
Figure 1. SO/PHI data processing pipeline. 

Images in the range of 128x128 to 2048x2048 pixels have to be compressed while fulfilling a set of requirements 
depending on the different observing modes.. In nominal mode, a lossless compression scheme with an expected 
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compression ratio (cr) of 2 shall be applied to the RTE inversion outputs. On the other hand, for particular purposes, a 
lossy compression with a cr of up to 10 shall be applied to either the pre-processed data or the raw data directly. The 
compression stage is always performed offline in pre-established processing windows along the orbits. Due to the 
stringent electromagnetic compatibility requirements of the mission, such processing windows are very short for all the 
PHI data-processing tasks. Specifically, the compression time is expected to take around 10 seconds per image in 
average. 

To perform the SO/PHI compression stage the Consultative Committee for Space Data System – Image Data 
Compression recommendation 122.0-B-1 [1] (CCSDS-IDC) has been selected. This algorithm is ideal in our case 
because it is able to perform both lossless and lossy compression with an effectiveness close to that of JPEG2000, which 
is considered the state of the art [2]. However, the standard relies on the Discrete Wavelet Transform (DWT), which 
makes its computational complexity significant higher than other lossless algorithms as the JPEG-LS or the CCSDS-
LDC [3]. The DWT is not very suitable for running into general purpose processors. For example, the reference software 
implementation TER [4] takes near 2 seconds for compressing a SO/PHI image when running in a current cutting-edge 
computer (Intel Xenon Octa-core). In addition, in a space instrument context, the qualified computing devices do not 
provide comparable performance capabilities. This is due to their design for harsh environments, with reduced mass and 
power consumption. These are the main reasons to address an ad-hoc compression architecture in this work.  

The SO/PHI instrument has been endowed with a Data Processing Unit (DPU) that  utilizes a smart combination of a 
LEON3-FT-based main processor (System Controller) together with a pair of in-flight reconfigurable SRAM FPGAs 
Xilinx Virtex-4 (XQR4VSX55) [5]. A software implementation running into the LEON-3-FT main processor takes more 
than a minute per image. In such a scenario, we propose a hardware CCSDS-IDC compression core that accelerates the 
compression time respect to the LEON3-FT taking advantage of one of the Virtex 4 FPGAs. 

There are already existing CCSDS-IDC FPGA implementations in space contexts. However, they use either more 
powerful devices than the ones available for SO/PHI or make use of additional external memory. For example,  the 
FORMAT-5/RSI implementation employs three Virtex-5 devices with external memory [6]. On the other hand, in the 
proposal by [7], the authors also make use of external memory. In contrast, our proposal consists of a System-On-Chip 
(SoC) implementation that does not require any external memory. Furthermore, it implements other features of the 
standard that are not available in the existing implementations.  

This contribution is organized as follows. Section 2 addresses the most important features of the compression standard 
algorithm. In Section 3, our proposed hardware implementation is explained. The strategy to exploit the FPGA resources 
for generating an optimal architecture is described as well. In Section 3, we show different compression tests using both 
dummy and real images. We conclude with some remarks about the most important contribution of this paper.  

2. CCSDS-IDC ALGORITHM DESCRIPTION  
The CCSDS-IDC compressor consists of two functional parts, depicted in Figure 2: the Discrete Wavelet Transform 
(DWT) module, which performs a two-dimensional decorrelation of the image, and a Bit Plane Encoder (BPE) module, 
which encodes the decorrelated data forming a bitstream.  

 
Figure 2. CCSDS-IDC block diagram [1]. 

The DWT module relies on carrying out iteratively the one-dimensional DWT (1D-DWT) in order to perform a 3-level 
2-dimensional DWT (3-level 2D-DWT) decomposition of the input image. The 1D-DWT can be interpreted as a pair of 
FIR filters, a low-pass and a high-pass. The standard recommends two kinds of DWT filter kernels: an integer (IDWT) 
and a floating point DWT (FDWT). The IDWT involves only integer arithmetic operations and is able to produce 
lossless and lossy compression. On the other hand, the FDWT requires floating point arithmetic operations and is able to 
produce just lossy compression but outperforming the image quality of the IDWT in low bit rate lossy mode. 
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Figure 3. DWT decomposition of an image [1]. 

As shown in Figure 3 a), the 2D-DWT is obtained by performing the 1D-DWT to each row of the input image, and then, 
performing the 1D-DWT in column order to the resulting image. As a result, the 2D transformed image consists of four 
sub-images that are referred to as LL, LH, HL and HH subbands. The three-level decomposition consists on applying the 
2D-DWT to the previous LL subband as shown in Figure 3 b). The sub-index included now to each subband name 
corresponds to the 2D-DWT iterations, so LL1 is the LL subband after being 2D-transformed once, LL2 two and LL3 
three times. Eventually, the DWT decomposition results in ten subbands, each representing the original image in a given 
frequency domain. 

Before being encoded, the image in the wavelet domain is arranged in blocks. Each block contains a single pixel – 
coefficient – of the LL3 subband referred to as DC coefficient, and 63 coefficients from the other subbands referred to as 
AC coefficients. Therefore, each block represents a spatial-slice of the image in every DWT subband.  

These blocks are then grouped into segments and processed independently by the BPE. The size of the segments, S, is 
user-configurable but has to be carefully selected because it has implications in the protection against errors, 
compression effectiveness and needed memory resources of the BPE implementation. The Informational Report [2] 
defines a smart selection of the S value as one eighth of the of the input image width. When an image is compressed with 
this segment size, which is called strip compression, a minimum of memory resources is needed and a good balance with 
the other above mentioned factors is achieved.  

The dynamic range of each segment must  be calculated before being encoded by the BPE. This dynamic range is 
defined by four parameters so that each one determines the number of bits needed to represent, in binary representation, 
a group of coefficients within the segment: BitDepthDC, referred to the group of DC coefficient in the segment; 
BitDepthAC_blockm m = [0 ... S-1], referred to the group of AC coefficients belonging to each block; and the 
BitDepthAC, defined as the maximum between every BitDepthAC_blockm’s. 
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The BPE encodes each segment in several stages, as is shown in Figure 4. First, a Segment header is included with the 
necessary information for the decoding process such as image dimensions, dynamic range parameters and compression 
parameters. Then, a quantized version of all DC coefficients in the segment is encoded with a predictor scheme and a 
Variable Length Coding (VLC). Afterward, with the same compression method, BitDepthAC_block_m parameters of 
every block are encoded. Finally, the AC coefficients are progressively encoded in bitplane flavor: all bth most 
significant bits of the binary representation of each AC coefficients make up a given bitplane b, which is encoded 
independently. The number of bitplanes in a segment depends on the BitDepthAC parameter. Each bitplane is further 
composed of five stages. The first one includes non-coded data relative to the DC coefficients. Stages from 1 to 3 
perform a codification based on creating words that collect information relative to a group of coefficients, and coding 
them by means of VLC. Finally, Stage 4 adds non-coded data that performs the refinement of the reconstructed image.  

 

 
Figure 4. Coded segment structure. 

A given segment is losslessly compressed when the IDWT is used and all sections of the segments are included. 
Otherwise, the segment can be truncated to provide lossy compression. The standard offers four user configurable 
parameters to this purpose: SegByeLimit, which defines the maximum number of bytes in the segment; DCStop, 
BitplaneStop and StageStop, where each of them defines the stop point after which the following sections will be not 
included [1]. 

3. CCSDS-IDC FPGA IMPLEMENTATION 
In this work, we propose a CCSDS-IDC FPGA Coder that implements the whole algorithm within one of the SO/PHI 
DPU’s Xilinx Virtex-4 device. Figure 5 shows the block diagram of this FPGA configuration. This device includes a 
SocWire driver [8], which interconnects the Coder within the DPU network, and the CCSDS-IDC Coder itself. Through 
the SocWire driver, the DPU System Controller operates the compression Coder sending images and receiving the 
compressed ones, configuring and monitoring the device.  

The Coder itself counts with three main blocks, namely, the DWT, the BPE and a Configuration and Control module. 
The DWT module efficiently performs the 3-Level 2D-DWT by means of a light multi-processor architecture combined 
with a smart structure of buffers, so that all DWT levels are calculated in parallel. On the other hand, the BPE core has 
been carefully designed ad-hoc to this machine, in a manner in which it processes the segments sufficiently fast to 
prevent the halting of the DWT execution. On top of that, the Configuration and Control module is responsible for 
managing the data flow, reporting the system status to the DPU and configuring the DWT and BPE blocks. From the 
DPU System Controller side, the configuration relies on a set of Read/Write registers through which parameters such as 
image shape (width and height), input data format (signed/unsigned), and lossless or lossy compression mode 
(SegByeLimit, DCStop, BitplaneStop, StageStop) can be configured. 

The following subsections describe the DWT and the BPE in detail. 
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Figure 5. CCSDS-IDC FPGA Coder block diagram. 

 

3.1 Discrete Wavelet Transform – SIMD architecture 

In this work, and inspired by [9], we propose to use a SIMD -Single Instruction, Multiple Data- multiprocessor 
architecture to carry out the 3-level 2D-DWT algorithm defined in the standard. The SIMD multiprocessor topology used 
in this work is proposed by [10] and involves multiple processing elements -nProcessors- that perform the same 
operation on multiple data simultaneously. This topology exploits the data level parallelism in those algorithms that are 
susceptible of being parallelized. This is clearly the case of study here since it consists of performing iteratively the 1D-
DWT.  

As Figure 6 shows, our proposal counts with nine nProcessors connected between them by means of buffers (xxx_buff in 
the Figure), creating a peculiar structure. Such a structure follows the buffer assembly recommended in [2] for Memory 
Efficient DWT Calculation. Thanks to this approach, the system saves memory resources based on the fact that a single 
DWT coefficient depends only on a relatively small cluster of the input image, therefore it prevents from storing the 
whole image. 

Each nProcessor performs the 1D-DWT on a different input data set. The unique instruction set, corresponding to the 
1D-DWT program, is broadcast by the nProcessor net Control Unit (nPCU) to every nProcessor throughout a unique 
instruction bus. The nProcessor’s Arithmetic Logic Unit (ALU) can be configured in synthesis time to implement either 
a 32-bit single Floating-point, compliant with both the IDWT and the FDWT, or 20.4 fixed-point arithmetic logic, only 
IDWT compliant. Hence, the architecture can be configured for the maximum versatility with the Float-Point version, or 
in saving-resources mode.  

At a given DWT-level, the 2D-DWT is calculated with three processors. The first one performs the 1D-DWT in row 
order with the help of a row buffer (LLx in the Figure). The others two processors perform the 1D-DWT in column order, 
thanks to the row-to-columns buffers that precede them, where the row-to-column transposition takes place. This 2D-
DWT structure is replicated three times, where the input to the second and the third DWT levels are the LL output of the 
previous 2D-DWT level. As a result, the ten DWT subbands are calculated in parallel. 
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Figure 6. DWT – SIMD multiprocessor block diagram. 

 

The row-to-column buffers are designed with a smart structure of line buffers connected between them as proposed in 
[11], so they perform the row-to-column transposition with a minor logic resources usage. In this application, eight line 
buffers plus a register compose the buffer structure, as Figure 7 shows. Each line buffer works as a pixel shift-register 
delay with N positions, N being the width of a given DWT subband. Hence, after a filling stage of 8*N + 1 pixels, the 
buffer provides at the output multiplexer the necessary pixels to perform an iteration of the 1D-DWT in column order. It 
should be highlighted that the line buffers are entirely implemented using internal Block RAM (BRAM) resources 
configured as double-port RAM. Table 1 summarizes the BRAMs usage for input image width up to 2048. 

 

Table 1. DWT internal buffer BRAM usage. 

Buffer Buffer size (32 bit words) BRAM usage 

P 8x1024 = 8192 16 

Q 8x1024 = 8192 16 

R 8x512 = 4096 8 

S 8x512 = 4096 8 

T 8x256 = 2048 8 

U 8x256 = 2048 8 

 

The row buffers just hold the necessary number of pixels of a horizontal filtering mask. Therefore, its internal structure is 
implemented with 32-bit registers as Figure 7 shows. 
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Figure 7. DWT Internal buffer structure. 

3.2 Bit Plane Encoder  

The Bit Plane Encoder module (BPE) was designed to perform the maximum throughput with the minimum resources. It 
combines pipeline and parallel execution techniques. Its internal architecture is depicted in Figure 8. The different 
segment sections are generated by three main blocks that work in parallel: the Header generator, the DC Coder, and the 
AC Coder. All  parts of the segment are properly merged in the BitStream Organizer module, which generates a coded 
segment stream of 16-bit words. Finally, the Bitrate Control block is in charge of truncating the segment depending on 
the SegByteLimit parameter.  

 
Figure 8. BPE block diagram. 

As explained in the previous section, the segment codification depends on the dynamic range of different groups of 
coefficients that belong to it. In our proposal, the Dynamic Range block performs such a calculus seamlessly, generating 
the set of dynamic range parameters as soon as the DWT module produces the necessary coefficients. It means that, 
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without halting the DWT core, it processes coefficients from the DWT module, groups it internally for creating blocks 
and segments structures, and calculates these parameters.  

In parallel with the Dynamic Range block, the DWT Coefficient Buffer performs a double-buffering of the incoming 
segments, allowing the BPE to perform the codification of the previous segment at the same time that the next one is 
being generated by the DWT core. The DWT Coefficient buffer is able to store up to two segments of 256 blocks each. 
Internally, the buffer is implemented with internal BRAMs organized in ten double-port RAMs, one per subband. Its 
capacity is actually greater than two segments due to the order in which the DWT generates a segment, where there is 
some delay between the initial storage of subbands and the arrival of associated DC coefficients. Table 2 summarizes the 
BRAMs utilization for each subband for a maximum segment size of S = 256 blocks.  

 

Table 2. DWT Coefficient buffer BRAM usage. 

Subband Word width (bits) Depth (number of words) BRAM usage 

HL1 18 17x1024 17 

LH1 18 17x1024 17 

HH1 19 17x1024 19 

HL2 19 7x512 5 

LH2 19 7x512 5 

HH2 19 7x512 5 

HL3 20 2x256 1 

LH3 20 2x256 1 

HH3 20 2x256 1 

LL3 21 2x256 1 

 

The BPE Control Unit is responsible for configuring and managing the BPE data flow. It triggers the compression 
process whenever a new segment is available in the DWT Coefficient Buffer. From that time on, the Header Generator, 
the DC Coder and the AC Coder run in parallel. These three blocks are synchronized so that they add its segment part in 
the proper time. First, the Header Generator adds the segment header to the output bitstream. Then, a unique instance of 
the DC Coder block performs both the Initial coding of DC coefficients, and then, the codification of the 
BitDepthAC_block_m parameters. The DC Coder implements the Optimum code Option scheme, that performs the better 
compression effectiveness in each group of coefficients (gaggle) [1].  

The AC Coder block carries out the most complex task within the segment encoding process. In contrast with the DC 
Coder, it has to process all coefficients of the segment in a peculiar block order. In addition, the whole segment has to be 
processed BitDepthAC times in order to generate all the bitplanes. The proposed architecture, depicted in Figure 9, is 
designed to performing the bitplane coding sequentially, from bitplane BitDepthAC-1 to 0. Within each bitplane, the AC 
Coder reads all blocks of the segment, generates the coded stages 0-4 and merges them into the coded bitplane. It counts 
with two different parts: the stage 0 block, and the block that performs the coding of stages 1-4. Every block in the AC 
Coder are commanded by the Bitplane control, which indicates the index of the bitplane that it is being coded.  
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Figure 9. AC Coder block diagram. 

The Stage 0 block generates the coded stage 0 stream. For each bitplane, it reads the DC’s coefficients of each block in 
the segment from the LL3 coefficient buffer, takes the bth bit of each coefficient and stores them in the Stage 0 segment 
buffer.  

The coded stages 1-3 are produced by the blocks enclosed by the dash-line in Figure 9. Here the coding process is 
executed sequentially, from block 0 to block S-1. The block fetcher generates the proper addresses to read the 63 AC’s 
coefficients of each block from the DWT coefficient buffers. These coefficients are converted into 38 words in the Word 
generator module. In order to be coded, these words pass through several steps. First, they are translated into symbols, 
and buffered in the gaggle buffer. This buffer is used to gather the words belonging to 16 blocks, referred to a gaggle, 
meanwhile the optimum code option for encoding the gaggle is calculated by the Optimum Code Option selector block. 
Finally, the words of the gaggle are VLC coded using this code option and buffered in its respective segment buffer. 
Once every block in the segment has been processed, the stages 1-3 segment buffers contain each coded stage. The stage 
4 bits are also generated in the Word generator module. As these bits are included without coding, they are stored 
directly in the Stage 4 segment buffer. 

At the end of a bitplane cycle, all stages of a given bitplane are calculated and stored in their respective segment buffers. 
Therefore, the Bitplane Sorter and Quality Controller block reads out these buffers in order, from stages 0 to 4, and 
multiplexes the five inputs into a unique output, generating in this way the stream of coded words that compose a coded 
bitplane. The generated segment can be truncated as a function of the user configurable parameters DCStop, 
BitPlaneStop and StageStop. 

The pipelined architecture of the AC Coder allows it to process one coefficient per clock cycle, which implies 63 clock 
cycles per block and bitplane. 

3.3 Work flow 

The DWT – SIMD multiprocessor machine joined to the BPE module performs a pipeline execution. Figure 10 shows a 
timeline of the compression at the beginning of the process. Each rectangle at the input image represents the time the 
Coder takes to process an image row of 2N pixels. On the other hand, the rectangles in each DWT level output represents 
the time it takes to generate every subband belonging to a DWT level, so as their coefficients are generated in parallel. 
The DWT outputs are marked with different patterns depending on the segment they belong to, taking into account that 
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they are arranged for performing strip compression. The BPE output shows the time it takes to perform the different 
processes that take place in parallel: the header generation, the DC coding and AC coding. 

 

DWT Level 1 output
(HL1,LH1, HH1)

DWT Level 2 output
(HL2, LH2, HH2)

DWT Level 3 output
(LL3, HL3, LH3, HH3)

Input
image

AC codingBPE output

117*(8N) tclks

117*N tclks

63*2N/4*23 tclks

Header & DC coding

Time between 
two generated 

DWT Segments

 
Figure 10. Compression timeline. 

 

The DWT core takes 117 clock cycles (tclk) on executing the 1D-DWT program that processes 2 pixels at a time, so it 
takes 117*N tclk on processing an image row. After a filling stage, DWT level 1, 2 and 3 start to produce their 
coefficients. Due to the data dependency, there is a delay between the generated coefficients of the level 3 subband for a 
given segment. Once the level 3 subband is generated, the whole segment is available for coding within the BPE and, 
thanks to the Dynamic Range module, it is already characterized.  

Within the BPE coding, the AC coding is the critical path because it has to process the AC coefficients at every bitplane. 
Thanks to its pipeline structure, it processes one coefficient per tclk, so it takes 63 tclk to processa block. Hence, the 
number of blocks in a segment, S, and number of bitplanes that are to be coded, BitDepthAC, define the required number 
of tclk to process a whole segment. In strip compression, the segment size is S = 2N/8. On the other hand, the maximum 
number of bitplanes due to the dynamic range expansion of the DWT coefficients is BitDepthAC = 23 [2]. Therefore, it 
takes 63*2N/4*23 tclk to process a segment in the worst case. 

From the performance of the DWT and BPE modules, it can be inferred that the BPE performs the segment encoding 
faster than the DWT coefficients generation. Therefore, the DWT actually defines the maximum data rate of the device 
with the following expression: 

 Maximum Pixel Rate = 2/117/tclk (1) 

4. RESULTS 
The CCSDS-IDC Coder with the SocWire communication driver was implemented with the Xilinx ISE Project 
Navigator tools for the target Xilinx Virtex 4 XQR4VSX55 device. Table 3 lists the resource utilization, which stands 
out for its low occupancy in spite of being implemented in a medium-capacity FPGA. The occupied slices are near 50%, 
but looking at its actual usage, Flip-Flops and LUTs, it is about the 30%. The BRAM usage is the most critical resource, 
so that DWT internal buffers and the DWT Coefficient buffer make intensive usage of them. However, the whole system 
fits within the device using less than 60% of the BRAMs. Is also remarkable the low usage of DSP due to the light layout 
of nProcessor ALUs, that use less resources than specific hardware DWT kernels. 
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The power consumption has been measured within the development board, so it might have deviations due to other 
devices in the board (led diodes, power regulator efficiency, etc). For that reason, Table 3 presents the overall 
consumption as the sum of the static consumption, when the FPGA is not programmed, and the dynamic consumption, 
when the device is programmed and running. The total power consumption of just 2.6 Watt reflects the advantage of 
using a single chip without external memory with respect to other implementations such a [6], with  5 Watt  and [7], with 
4 Watt of total consumption. 

Table 3. XQR4VSX55 implementation statistics. 

Number of occupied Slices 12,220 (49%) 

- Number of Slice Flip Flops 12,761 (25%) 

- Total Number of 4 input LUTs 15,182 (30%) 

Number of used BRAMs 186 (58%) 

Number of DSP48s 53 (10%) 

Maximum frequency 150 MHz 

Throughput @ 100 MHz 27.3 Mbps 

Power consumption @ 100 MHz 2.58 Watt RMS 

- Static power consumption 1.54 Watt RMS 

- Dynamic power consumption 1.04 Watt RMS 

The implementation in the target device reports a maximum frequency of 150 MHz. Nevertheless, the Flight Model 
implementation will run at 100 MHz. This means that it carries out the compression of a SO/PHI image, 2048x2048 
pixel 16 bits per pixel, in 2.45 seconds. Hence, as Table 4 shows, our FPGA implementation compresses a whole 
SO/PHI observation of five images in just 12.25 seconds, around 28 times faster than the same operation carried out in 
the SO/PHI System Controller (GR712 - LEON3-FT), which takes more than 5 minutes. 

Table 4. Compression times for a nominal SO/PHI observation of 5 images. 

Device Time (seconds)

GR712 - LEON 3-FT ~340 

FPGA – proposal implementation 12.25 

5. COMPRESSION CORE VALIDATION
The system has been validated by means of simulations and functional tests. The setup to perform the test is depicted in 
Figure 11. A set of real and synthetic images are used as input data set. These images are encoded by both, the reference 
software TER and the proposed FPGA coder under the same compression parameters. The resulted compressed files are 
compared and the test is considered passed if the compared files are equal, bit-to-bit. 

The carried out tests involve most of the possible conditions based on a wide combination of images and compression 
parameter, including edge conditions as defined in [12]. Table 4 describes the functional test performed and its results.  
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Figure 11. Core validation setup. 

 

Table 5. List of validation test. 

Test 
number 

Description Result 

1 Lossless compression on all possible image sizes: 512 images with different 
shape resulted of the combination of the image width from 128:128:2048 
and image height from 64:64:2048 

Passed 

2 Lossless compression on CCSDS image library: 21 images from different 
instruments collected in [13] 

Passed 

3 Lossless compression on image with all-zero data Passed 

4 Lossless compression on image with random data Passed 

5 Lossless compression on uniform intensity image Passed 

6 Lossless compression on image which produces maximum dynamic range 
after integer DWT 

Passed 

7 Lossless compression on image which produces data in section 4.3.3 of 
compressed bitstream 

Passed 

8 Lossless compression on Integer 16 bits image with negative values 
(signedPixels = ‘1’) 

Passed 

9 Lossy compression at different image quality parameters: 40 lossy 
compression resulted of different combination of the DCStop, BitplaneStop 
and StageStop 

Passed 

10 Lossy compression at different coding rates: 6 lossy compression resulted of 
different values the SegByteLimit parameter 

Passed 

 

6. CONCLUSIONS 
In this paper we present a System-On-Chip implementation of the CCSDS-IDC 122.0-B.1 standard for the SO/PHI space 
instrument. The hardware compression coder is in-flight reconfigured within one of the Xilinx Virtex-4 FPGA available 
on the SO/PHI DPU. It fulfills all SO/PHI requirements regarding the image compression stage, performing lossless and 
lossy compression over different image shapes in a very short time and within a very small power budget.  
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The proposed FPGA architecture performs lossless compression of 2048x2048 pixel images with full dynamic range of 
16 bit/pixel in less than 3 seconds, which represents an acceleration of ~30 times with respect to a software 
implementation running on the LEON3-FT based processor also included into the SO/PHI’s DPU.  

The architecture stands out because of its low FPGA resource utilization. Thanks to the lightweight layout of the DWT 
core, based on SIMD multiprocessor architecture, and the optimized BPE core, the whole system fits into an average 
FPGA using less than 50% of the logic and 60% of BRAM memory elements. This is an advantage over other FPGA 
implementations because it does not use any external memory, hence saving mass, power consumption, and possible 
effects due to radiation.  

Our implementation is also remarkable because of its configurability. In contrast with other implementations, it can 
perform both the Integer and the Float DWT. It is completely compliant with a wide range for image sizes, from 
128x128 to 2048x2048 pixels, and a maximum dynamic range of 16 bit per pixel. Furthermore, it is able to manage large 
segments of up to S=256 blocks. 

The lightness and modularity of the proposed architecture makes it extensible for future uses in different instruments 
with more demanding data rate. Using newer and more powerful FPGA devices would enable the possibility of 
increasing the number of nProcessors in the DWT core and including several instantiations of BPE cores, enhancing in 
this way the overall performance.  
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