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Abstract. The evolution of solar granules is investigated on the
basis of two dimensional numerical solutions of the hydrody-
namic equations describing a compressible, radiatively coupled
and gravitationally stratified medium representative of the so-
lar surface layers. The simulation covers 17 Mm on the solar
surface and was run for over 5 h of solar time, hence allowing
the evolution of over 400 granules to be followed. A statisti-
cal investigation of the temporal evolution of granules therefore
becomes feasible.

Two types of granules can be distinguished by their means
of death: fragmenting and dissolving granules. Properties and
average evolutionary histories of these two types of granules are
considered. It is found that fragmenting granules are in general
large at birth and expand further with time. It is confirmed that
fragmentation into two (or more) parts is produced by buoyancy
braking, which in turn is initiated by the stronger horizontal
flows in larger granules. This last property, finally, is due to
mass conservation. The expansion, however, is due to a pressure
excess relative to neighbouring granules. The pressure excess is
particularly marked if the neighbours are dissolving granules.

In contrast, dissolving granules are born small and shrink be-
fore finally disappearing. The shrinkage is caused by their neigh-
bours which generally posses excess gas pressure and larger
horizontal flows. In summary, according our findings the fate of
a granule is decided by its properties at birth and the company
it keeps.

Evidence is presented suggesting that the evolution of both
types of granules is driven by events near the solar surface.
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1. Introduction

The outer convection zones of the sun and many other cool stars
reach up to the solar, respectively stellar surface, rendering their
upper boundaries accessible to observations. High resolution
images of the solar surface show a pattern of bright granular
cells surrounded by dark intergranular lanes. This pattern keeps
evolving and granules constantly appear and vanish. The main
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route to granule death is fragmentation of larger granules into
two or more smaller ones (the average number of fragments
is 2.8 according to Mehltretter 1978). Less frequent are gran-
ules which merge with a neighbour and granules which fade
away. The exploding granules are a particularly prominent kind
of fragmenting granules (e.g. Title et al. 1989, cf. Rast 1995).
They develop a dark centre surrounded by a rapidly expanding
bright ring. This route to death is relatively common among large
granules and has consequently been well studied observation-
ally. Kawaguchi (1980) found that granules with sizes below 1′′

predominantly dissipate and granules larger than 2′′ fragment.
Recently, Karpinsky & Pravdjuk (1998) detected three differ-
ent size ranges of granules with different fragmentation rates:
granules less than 713 km in diameter rarely fragment whereas
granules larger than 1200 km show a very high fragmentation
rate.

Observations, however, suffer from limited spatial resolu-
tion, which adversely affects the study of, in particular, small
granules. The fact that time series of homogeneously high reso-
lution images are needed make the observational study of gran-
ule evolution especially demanding. In addition, observations
only sample the atmospheric layers, whereas the convectively
unstable layers are situated below the surface, so that it is un-
clear from observation alone whether the drivers of granule evo-
lution are situated in atmospheric or deeper layers. Finally, the
observed radiation samples physical variables of interest of-
ten only indirectly, in many cases non-linearly and always with
some averaging along the line-of-sight.

Theory and, in particular, numerical solutions of the fully
compressible, radiation-hydrodynamic equations have therefore
significantly advanced the understanding of both solar and solar-
like convection (see Spruit 1997 for a review). One major result
is that granulation is a surface-driven phenomenon. Instead of
the older picture of a fluid heated from below the newer view
emphasizes the role of the upper boundary which cools the gas
and gives rise to strong downdrafts (Stein & Nordlund 1989,
1994, 1998, Nordlund et al. 1997, cf. Rast 1999).

Three dimensional simulations of solar convection have
been particularly successful in reproducing observations of
spectral line shifts and asymmetries, line widths and granule
morphology. (e.g. Dravins et al. 1981, 1986, Nordlund 1985,
Wöhl & Nordlund 1985, Lites et al. 1989). Due to their large
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demand on computational resources, however, they have gener-
ally focussed on the behaviour of one or at most a few granules
(but see Ẅohl & Nordlund 1985), so that the physical properties
of granulation have had to be deduced from just a few examples.
This makes the results of at least the published 3–D simulations,
susceptible to variations from one granule to the next.

Our approach is different. We reduce the spatial dimensions
to 2 but simulate instead a part of the solar surface that is suf-
ficiently large to contain approximately 10 granules and follow
the evolution of the convection for 5 h of solar time. Hence a
large number of granules can be investigated and the statisti-
cally significant aspects of their behaviour can be identified and
extracted. Although a 2–D model certainly cannot reflect all of
the 3–D physics of convection, 2–D simulations are nevertheless
able to reproduce many properties of granulation (e.g. Freytag
et al. 1996, Gadun et al. 1997, 1998a,b). One advantage of car-
rying out a statistical study like ours in 2–D instead of 3–D is
that many of the quantities (identification of granules and loca-
tion of fragmentation, averages, etc.) are more straightforward
to define in 2–D.

We concentrate on obtaining a better understanding of the
physics underlying the evolution of granules. Our investigation
differs from the strongly idealized modeling of, e.g., Massaguer
et al. (1980) and Hurlburt et al. (1984), who pinpointed the im-
portance of the density stratification (which distinguishes solar
convection from laboratory convection) and described buoy-
ancy braking, the mechanism which finally gives rise to new
downdrafts inside fragmenting and exploding granules. In sim-
ulations including more realistic physics the evolution has been
investigated by several authors. Wöhl & Nordlund (1985) cal-
culated the evolution of 65 3–D granules over a time of 138 min,
and compared them with observed granules. Stein & Nordlund
(1989, 1994) followed the evolution of test particles (corks) over
18 minutes and found that the upflowing gas is smooth whereas
the rapid downdrafts are rather inhomogeneous and frequently
change the spatial location. Based on idealized numerical exper-
iments Rast (1995) proposed an additional mechanism (besides
buoyancy braking) for the creation of downflows. He finds that
both in the observations and model calculations the strongest
upflows are located close to downflows. While a granule ex-
pands the maximum upflows get larger and remain close to the
downdrafts. The central part of the granule, however, suffers
from an ever weakening upflow, thus providing the condition
for a new downdraft. The frequency with which this process
occurs remains open.

The structure of this paper is as follows: Sect. 2 introduces
the numerical methods, while in Sect. 3 the output of the com-
putations is described and the techniques used to analyze the
results are introduced. In Sect. 4 we discuss the evolution of
granules and, finally, in Sect. 5 the results and our conclusions
are summarized.

2. The Model

We restrict ourselves here to a brief summary of the main fea-
tures of the numerical modeling. A comprehensive description

of the model and computational technique has been given by
Gadun et al. (1998a) and the interested reader is referred to
that paper. The present numerical code is similar to that used
by Atroshchenko & Gadun (1994), Gadun (1995), Gadun &
Vorob’yov (1995), Gadun & Pikalov (1996) and Gadun et al.
(1997, 1998a,b). The computational domain covers 17.85 Mm
in the horizontal direction (510 grid points with a spacing of
δx = 35 km) and 2.03 Mm in the vertical (58 grid points with
the same spacing). The temporal step isδt = 0.3 s and the sim-
ulation is run for 301 solar minutes (after an initial relaxation
period of 24 min). A total of 602 models separated by 30 s each
have been stored and analyzed.

Thesystem of hydrodynamic equationsis written in conser-
vative form and describes a compressible, radiatively coupled
and gravitationally stratified medium under solar conditions.
The equation of energy conservation includes radiative heating
and cooling, effects of molecular viscosity and of the viscos-
ity described by the Reynolds stress tensor (with contributions
from the velocity stress tensor and sub-grid turbulence). The
equation of state is given by the ideal gas law. The ionization
equilibrium of 15 elements is taken into account in LTE and
the influence of H2 and H+

2 is included for temperature below
6000 K.

Thesolution of the hydrodynamic equationsuses the method
of large particles (Belocerkovskij & Davydov 1982) which is
derived from the particle-in-cell method (see Amsden 1966 for
a review). In order to quantify energy changes due toradiative
cooling and heatingthe equation of radiative transfer must be
solved. This is done in LTE with the method of moments (i.e. all
radiative quantities are averaged over solid angles) using vari-
able Eddington factors. The transfer equation is solved in 97
frequency intervals with the opacity distribution functions of
Kurucz (1979) being employed to describe the wavelength de-
pendence. To save computing time the diffusion approximation
is used in optically thick layers (photon mean free path below
0.1 km). Periodicboundary conditionsare imposed on the sides
of the computational domain. The top and bottom boundaries
are basically open. In addition to the condition that∂v/∂z van-
ishes at the lower and upper boundary, the average of the internal
energy and density is kept constant at the mean value imposed
on the very first input model.

The complete data set may now be described byQ(T , x, z),
whereT , x andz describe solar time, horizontal position and
height, respectively, whileQ stands for any physical quantity
(such as temperature, horizontal velocity, etc.). We often in-
vestigate this data set at a constant height,z0. In atmospheric
layers images ofQ(T , x, z0) are strongly perturbed or even
dominated by p-mode oscillations and waves. They can be iden-
tified by their location in the frequency–wavenumber (ω–k)
plane in the spatio-temporal Fourier transform̂Q(ω, k, z0). Us-
ing the method of Title et al. (1986) we applied a spatio-temporal
Fourier filter to remove most of the power in the strong 5 and
3 min oscillations. For details we refer to Ploner et al. (1998).
Some oscillatory power remains, due mainly to high frequency
propagating waves. This cannot be suppressed without unduly
influencing the granular pattern. Also, at greater heights the rel-



S.R.O. Ploner et al.: The evolution of solar granules deduced from 2-D simulations 681

ative power in the oscillations increases relative to that in the
granulation, in accordance with observations (e.g. Deubner et al.
1990). Hence we limit our investigation toz ≤ −26 km (which
is slightly below unit average optical depth at 5000Å).

3. Simulated granules:
fragmenting and dissolving granules

3.1. General Description

Fig. 1a shows the emergent continuum intensityI calculated
for λ = 5000 Å. In this and the following images in Figs. 1 and
2 thex–direction corresponds to the horizontal coordinate of
the simulations and they–direction corresponds to solar time.
The intensity image shows a distinct pattern consisting of dark
intergranular lanes and bright granules embraced by the lanes.
The dark lanes are connected in the sense that a lane once formed
does not generally end at a later time, except by merging with
another lane. The image hence shows a clear sense of time. A
few interruptions can, however, be identified (e.g. atT = 2 h
10′,x = 14 Mm). All such gaps appear to be artifacts introduced
by the Fourier filtering since no gaps are present at those times
and locations in the original unfiltered image.

The start of a new lane within a bright region and the merging
of two lanes are events of particular relevance for our analysis,
since they are the clearest signs of granule death and in the
former case also of granule birth. This offers a classification of
granules into two sets according to the signature and mechanism
of its death. One set is characterized by the formation of a new
lane within the granule. The “old” or parent granule splits into
two “new” granules (children) and the parent is usually called a
fragmentinggranule1 (e.g. Muller 1989, Title et al. 1989). The
other type of granule disappears when the lanes enclosing it
merge together, and is called adissolvinggranule (Mehltretter
1978, Muller 1989). The disappearance of a lane at a given time
maypossibly constitute a third type of granule death, namely
the merging of two granules. Such merging granules have been
reported on the basis of observations (Mehltretter 1978, Dialetis
1986). In our simulations such cases are very rare and short lived
(13 cases out of a total of 462; see Table 1). Due to the poor
statistics and because no gaps are present before the Fourier
filtering this class has not been studied separately.

The previously given classification of granules by their
mode to death implies that granules are only born by fragmenta-
tion, whereas observations suggest that some granules grow out
of bright points in lanes (Dialetis 1986). We find such splitting
lanes in only 5 cases, all of which remain small and vanish within
3 min. This small number may be peculiar to two dimensions.

Figs. 1b to d display the space-time images of the tempera-
tureT , pressurep and density%, respectively, all sampled at a
fixed heightz = −131 km (z = 0 corresponds to the average
height withτ = 1, 〈z(τ = 1)〉). The grey scale is chosen such
that larger values are brighter. This layer was chosen, since it
shows the granular pattern most clearly. Note thatz(τ = 1)

1 In the present analysis we do not distinguish between exploding
granules and other fragmenting granules.

is a function of time and space. As a consequence, in layers
significantly abovez = −131 km parts of the image already
show a different pattern from granulation, partly reflecting the
importance of wave and oscillatory phenomena in layers above
the surface.

The temperature in Fig. 1b shows basically the same pattern
as the intensity. The intergranular lanes inT , however, are very
thin compared to the lanes inI. This is partly caused by the
height difference to the surface layer, since at higherz the lanes
get somewhat broader, and by the fact thatI samples different
heights, i.e. bright parts are formed higher whereas dark parts
lower in the atmosphere. Consequently,T and I images are
expected to be similar but not identical. Also note the dark “dots”
often associated with freshly formed lanes in theT -image.

The pressure image in Fig. 1c, in contrast, shows the gran-
ulation rather indistinctly, although a careful inspection reveals
many, but not all intergranular lanes as areas of enhanced pres-
sure. The regions of large pressure deficit and those of pres-
sure excess often lie close together and are correlated with the
lanes. As discussed later, one does not expect the pressure pat-
tern to match for example the granulation pattern reflected in
the intensity since pressure excesses are expected both in the
interiors of granules (acceleration of horizontal flows) and at
their boundaries (downward deflection of the horizontal flow).
Another reason for the low correlation between granules and
pressure is that the influence of oscillations relative to granu-
lation is largest in the pressure, so that the influence of high
frequency waves is also largest in this quantity. Finally, Fig. 1d
displays the density, which reflects a pattern, very similar to the
temperature (it appears like a negative of Fig. 1b).

3.2. Temporal and spatial boundaries of granules

One aim of the current investigation is to find signatures that
are common to many granules and to distinguish these from
properties specific to individual granules. This can only be done
in a statistical sense. In a first step, we need to identify single
granules, i.e we must define the boundaries and moments of
birth and death of each granule.

We adopt here the definition that all downflowing gas resides
in intergranular lanesand that agranuleis the upflowing gas be-
tween two intergranular lanes. This definition makes use of the
vertical velocityvz displayed (atz = −131 km) in Fig. 2a. The
basic pattern seen in Fig. 1 is also present in thevz–image. The
identification of the granules usingvz is documented by Fig. 2b.
Intergranular lanes (vz ≤ 0) are plotted dark grey. Among the
granules (vz > 0) we distinguish between dissolving granules
(light grey) and fragmenting granules (white). This definition
of a granule using the vertical velocity component roots in the
underlying theoretical interpretation of a granule as a convec-
tion cell. The alternative, more observer oriented, definition that
granules are locations above a certain intensity threshold, is, we
feel, more arbitrary than ours. Nevertheless, we have also iso-
lated granules by intensity and did not find them to deviate sig-
nificantly from granules defined viavz for reasonable choices
of the intensity threshold, although the isolation of individual
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Fig. 1. Frame a: emergent continuum atλ = 5000 Å as a function of position on the solar surface (i.e. along the computational box) and time.
Frames bto d display the evolution of the temperature, pressure and density, respectively, along horizontal sections through the computational
domain. The three physical quantities are displayed for a fixed heightz = −131 km. The levelz = 0 corresponds to the average height of
continuum formation,〈z(τ = 1)〉. The grey scale for all frames is such, that brighter corresponds to larger values.
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Fig. 2. Frame a: the same as Fig. 1b but now for the vertical velocity.Frame b: skeleton of the downflow lanes and of granules. The granule
boundaries are marked by theskeleton(black solid lines) which corresponds to locations of maximum downflow. The dark grey shaded areas
mark downflows (vz < 0), i.e. intergranular lanes. The upflows (vz > 0) are separated according to the form of granule death intofragmenting
granules(white areas) anddissolving granules(light grey areas).

Table 1.Number of granules before and after various corrections

#Di #Fr Total

no correction 231 231 462
τ ≥ 2 min 218 (−13) 199 (−32) 417

granules by intensity is more cumbersome. The boundaries be-
tween granules and lanes found byvz are later used to extract
other physical quantities, e.g. temperature,T , and density,%,
for granules and lanes separately.

The spatial boundary between two neighbouring granules
(including parts of the intergranular lanes) is given by the “skele-
ton” of the downflows. Points of the skeleton coincide with the
maximum downflow within each lane at each point in time and
are displayed by the black lines in Fig. 2b. Fig. 3 illustrates typ-
ical evolutions of two granules and may be considered to be
the magnification of a typical portion of Fig. 2b. The birth of a
granule is best identified by the start of a new intergranular lane
(at solar timesT1 andT3 in Fig. 3). At least in our simulations
granules are always born through the fragmentation of their par-
ent granule (neglecting now the few candidates for formation
through the merging of new granules or through splitting lanes).
The death of a fragmenting granule is marked by the start of a
new lane (atT1 andT3) whereas the death of a dissolving granule
coincides with the merging of two lanes (T2). According to our
definition a dissolving granule dies when no upflow is present
anymore. Hence the time of death of the dissolving granule usu-

ally does not coincide with the time at which two lanes merge
in the skeleton. We often describe the granular evolution by the
normalized time,t, which is determined individually for each
granule and runs fromt = 0 at the time of birth tot = 1 at its
time of death (see Fig. 3).

Due to the finite temporal resolution and the applied Fourier
filtering several corrections of the raw skeleton are necessary.
As mentioned in Sect. 3.1 a few temporal gaps of the lanes oc-
cur which are also present in the wave-filteredvz-image. None
of these gaps is present in the original (unfiltered) image, how-
ever, indicating that the gaps are artifacts of the wave-cleaning
process. Consequently, the lanes have been connected across
the gaps following the uncorrected velocity image. Also, we re-
stricted the lowest lifetime of a granule to be 2 min (4 grid points)
for further analysis. This minimum resolution is somewhat ar-
bitrary but considerably facilitates our subsequent analysis. Ob-
viously, such a lower lifetime boundary affects the number of
identified granules, as documented by the decrease of the num-
ber of granules in the second line of Table 1 relative to those prior
to this correction (first line). The number in brackets signify the
number of granules affected by this correction.

Another problem has to do with the possibility of single
and multiple fragmentation of a granule. Suppose that a granule
dies by fragmentation. Suppose further that one of the resulting
children itself fragments a short while later. The question then
arises whether this second fragmentation is to be attributed to
a second (possibly very short-lived) granule, or if it is instead
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Fig. 3. Illustration of spatial averaging and temporal normalization.
The thick solid lines drawn from top to bottom symbolize the skele-
ton and the shaded areas the corresponding downflows. The dissolving
granule on the right is born at timeT1 and lives untilT2, the fragment-
ing granule lives betweenT1 andT3. The temporal scale is normalized
separately for each granule to its lifetime, witht = 0 corresponding
to the time of birth, andt = 1 to the time of death. Spatial averages
are formed separately at a fixed time over the upflowing region (indi-
cated by∆xu for the fragmenting granule) and downflowing region
(∆xd,l and∆xd,r, indicated at a different time). The thick dots mark
an extrapolation to earlier times of the new lanes formed by granule
fragmentation. See the text for more details.

Table 2.Granule statistics

type Di Fr Di+Fr

lifetime 〈τg〉 8.55 ± 5.60 7.86 ± 5.75 8.22 ± 5.67
(min) 1/e 8.71 6.12 7.33
size 〈s〉u 0.48 ± 0.25 1.70 ± 0.55 1.06 ± 0.74
(Mm) 〈s〉d 0.81 ± 0.23 0.99 ± 0.27 0.90 ± 0.26

better to say that the original granule underwent multiple frag-
mentation. For these cases our restriction to lifetimes larger than
2 min may be interpreted as saying that successive fragmenta-
tions lying 1.5 min or less apart are to be attributed to the same
multiply fragmenting granule.

The number of granules is the same at the end and the be-
ginning of the simulation. Since fragmentation increases the
number of granules by one (counting each step of fragmenta-
tion separately) and dissolution removes one, it is obvious that
there must be the same number of fragmenting and dissolving
granules in the simulation. The difference in the number of dis-
solving and fragmenting granules in the second row of Table 1
is therefore an indication of the number of multiple fragmenta-
tions. We mention that a similar conservation of the number of
granules must hold also in 3–D because the average size of gran-
ules and hence their sum does not depend on time (neglecting
variations due to solar activity and solar evolution).

Interestingly, the simulation of Ẅohl & Nordlund (1985)
showed 15% fragmenting, 79% dissolving and 6% merging
granules. In their simulation merging granules are the least fre-
quent mode to death suggesting that their rarity in our simu-

Fig. 4a and b.Histogram of the number of granules versus lifetime,
τg (frame a), and average size of the upflowing region,su (frame b).
Thick solid lines mark the number of fragmenting granules and thin
sold lines the number of dissolving granules. The dotted lines display
the distributions of all granules. Note that only granules with lifetimes
longer than 1.5 min are included.

lations is not entirely because of the restriction to two spatial
dimensions. The reason for their large relative number of dis-
solving granules remains unclear since they do not give details
about their granule classification.

3.3. Basic statistics

In Table 2 we list the average and1/e lifetime of dissolving,
fragmenting and all granules. The1/e lifetime is the time after
which only the fraction1/e survives. Also listed are the average
sizes of the upflows,〈s〉u, and downflows,〈s〉d. These are av-
eraged oversu andsd values of all granules of a certain type at
all times (the definitions ofsu andsd are illustrated in Fig. 3).2

According to Table 2 the mean lifetime is lower for frag-
menting granules. This is mostly due to rapid successive frag-
mentation, which gives rise to very short-lived granules (be-
tween 2 such splittings). From observations Mehltretter (1978)
derives 16 min for the average lifetime of a granule, while Di-
aletis et al. (1986) obtains 12 min. Finally, Title et al. (1989) find
1/e lifetimes in the range of 5 min from SOUP data (degradation
of the spatial resolution increases this lifetime up to 10 min). The
numbers obtained from our simulations lie between the results
of Title et al. (1989) and Dialetis et al. (1986), but are closer to
the former. If we keep in mind that the values derived by Title
et al. (1989) correspond to larger granules, which live less long,
and the fact that we have not counted the shorted-lived granules
(Sect. 3.2), then the agreement with their result is expected to
be even better.

Fig. 4 shows histograms of the fraction of granules possess-
ing a given lifetime,τg (Fig. 4a), and a given average size,su

(size of the upflow region, Fig. 4b). All in all, the two granule
types show very similar lifetime distributions. Together with
the fact that both types have the same number of granules the
agreement in lifetime distribution indicates that the evolution of
dissolving and fragmenting granules is closely related to each
other. In the following sections we present strong evidence sup-
porting this hypothesis.

2 Note the difference to Ploner et al. (1998), who estimated inter-
granular distances.
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The difference in size between the two types of granules
is clear from Fig. 4b. The peak of the size distribution of frag-
menting granules lies at three times the size of that of dissolving
granules and the distribution of sizes of fragmenters is also three
times as broad as that of dissolving granules. Between the peaks
of the distributions lies a small region of coexistence of frag-
menting and dissolving granules. The significantly smaller size
of dissolvers compared to fragmenters probably explains why
they have been far less studied. The plotted sizes are averaged
over the granule lifetimes.

4. Granule evolution

In the previous sections we described qualitatively the occur-
rence of two types of granules according to the mode of their
death. In this section we investigate their evolution in detail and
attempt to uncover the physical processes driving it. We begin
by considering selected examples each of the evolution of the
two types of granules.

4.1. Examples of dissolving and fragmenting granules

In Fig. 5 we discuss, as an example, the profiles of the vertical
and horizontal velocity,vz andvx, and%, p andT (from top
to bottom, respectively) of a dissolving (frame a) and two frag-
menting granules (frames b and c). The snapshots are taken at
t = 0.3 (solid lines) and shortly before death att = 1.0 (dotted
line), where normalized time units have been used fort (see
Fig. 3 and Sect. 4.2). The granules, defined as upflow regions,
lie between the thick dots. Note the different scales on the hori-
zontal axes of Figs. 5a to c, which indicate the difference in size
between the three granules.

The dissolving granule viewed at time 0.3 is easily recogniz-
able in all quantities. In addition to the clear up- and downflows
seen invz it clearly exhibits the signature of an outflow from
the centre of the granule invx. A low % and relatively highp
andT are found in the granule. Note that a pressure maximum
in the granule centre and the centre of both lanes is present. The
former stops upflowing material and accelerates it to the lateral
boundaries of the granules, whereas the latter pushes the hori-
zontally flowing gas downwards along the lanes. By the time of
its death (t = 1.0) vz has decreased significantly, the region with
vz > 0 has shrunk dramatically and% has increased. The gran-
ule is hardly recognizable anymore invx, T andp. In particular,
the horizontal outflow within the granule has now disappeared
and the intergranular lanes on both sides of the dying granule
are being fed dominantly by the neighbouring granules (as can
be seen fromvz andvx).

The fragmenting granule in Fig. 5b exhibits an almost oppo-
site temporal evolution, i.e. it expands and more than doubles
its size betweent = 0.3 and t = 1.0. As we shall see the
large initial pressure drives the expansion. Note the large cen-
tral pressure excess relative to the dissolving granule (Fig. 5a).
Interestingly, as the granule expands andvx increases in timevz

decreases. Att = 1.0, two locations of beginning fragmentation

are seen at 14.4 and 15.5 Mm wherevz is about to change sign.
The one at 15.5 Mm also reveals a localp and% excess.

Note, that in this examplevz is not largest at the granule
boundaries att = 1 and thus does not reflect the behaviour
described by Rast (1995) based on a idealized numerical exper-
iment. However, examples agreeing with the findings of Rast
are also present in our data set, one of which is given in Fig. 5c.
A count indicates that in approximately 30 % of the fragmenting
granulesvx exhibits a strong maximum close to the downflow
at least at one side of the granule. In approximately50% no
such behaviour could be recognized, while it was not possible
to attribute the remaining 20% to either class.

We emphasize that the examples shown in Fig. 5 are selected
to reflect the more well-behaved granules. Some granules move
horizontally as a whole while others possess a highly distorted
horizontal structure such as avx that is entirely positive or neg-
ative (after subtracting the shift of the whole granule).

4.2. Extraction of the temporal evolution of a mean granule

Due to the comparatively long simulation time and the sufficient
horizontal extent of the computational domain the complete evo-
lution of over 400 granules can be followed. Consequently, by
averaging over granules at a particular stage of their evolution it
is possible to extract the evolution of a typical or mean granule,
uncontaminated by the fluctuations due to the details of the his-
tory and environment of a particular granule. In order to extract
the mean granular evolution the following steps are carried out:

1. Thespatial averageof the physical quantity under consid-
eration is taken at a fixed time for each granule. Averages
over the upflowing gas (i.e. over the region marked by∆xu

in the case of the fragmenting granule in Fig. 3) and over
the downflow lanes which enclose the considered granule
(marked by∆xd,l and∆xd,r) are calculated separately.

2. The (solar) timeT is normalizedby the lifetimeτg of the
studied granule. Hence birth corresponds tot = 0 and death
to t = 1 (cf. Fig. 3).3 Then, the physical quantities are inter-
polated onto a new grid of a total of 100 time steps covering
the interval between 0 and 1.

3. The spatially averaged parameters at a given normalized
timet areaveraged over all granulesbelonging to the same
species and separately over the corresponding intergranular
lanes.

Strictly speaking the resulting evolutionary profile must be
called the spatially averaged, temporally normalized mean gran-
ular evolution profile, but we refer to it simply as thegranular
evolution profileor even asgranular evolution.

In order to detect changes in physical quantities directly
associated with the formation of new lanes (such as the two lanes
starting at timesT1 andT3 in Fig. 3), but happening prior to their

3 The time of death,t = 1, corresponds to the first time step at which
no upflow is present anymore. For simplicity we identify the last time
step, where an upflow is present, with death. Strictly speaking, the
granules dies somewhat later.
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Fig. 5a–c.An example each of the hor-
izontal structure atz = −131 km of a
dissolving (framea) and two fragment-
ing granules (framesb andc). Displayed
are from top to bottom the vertical,vz,
and horizontal,vx, velocity, the density,
%, pressure,p, and temperature,T . Solid
curves correspond tot = 0.3, dotted
lines tot = 1.0 (t = 0 marks the birth
and t = 1 the death of each granule).
Bullets mark the boundaries of the con-
sidered granules, i.e. they enclose the
upflow (vz > 0). All curves are ex-
tended horizontally up to the middle of
the two adjacent granules. The absolute
values of time of birth,T , and the gran-
ule’s lifetime,τg, are given at the top of
each frame in minutes.

birth, the lanes have been extended backward in time for half
of the fragmenting granule’s lifetime (marked by the thick dots
in Fig. 3). In normalized time units the extension corresponds
to time 0.5 to 1.0 of the fragmenting granule. The horizontal
location of the extension is prescribed by keeping the ratio of
the distance to the two neighbouring downflow lanes constant
over the whole extension (indicated by the double arrows at
deathT3 and two time steps earlier). The data in the freshly
born lane is followed up tot = 1.2 beyond death. To obtain the
mean evolution along these extended lanes we follow No. 2 and
3 of the points listed above. Instead of averaging according to
point 1, we take the data along the extended lanes. We refer to
this normalized mean evolution along an extended lane in short
by theevolution along a pre-lane.

4.3. Evolution of fragmenting granules

Fig. 6 displays the granular evolution ofT (frame a), normalized
p (frame b), normalized% (frame c) andvz (frame d) of the mean
fragmenting granule as defined in Sect. 4.2. From bottom to top
the subframes of Figs. 6a to d refer to data taken at height lev-
elsz = −341, −201, −131 and−26 km, respectively. Consider
first the evolution of the upflowing region (〈.〉u, thin solid lines).
No significant change is seen either over the lifetime of a granule
or over height. For comparison, the corresponding evolution for

the averages taken over the adjacent lanes (〈.〉d) are displayed by
the dotted curves. Although the changes with time are somewhat
larger for the lanes, they are again not significant. This general
picture is in agreement with the results reported for large gran-
ules by Hirzberger et al. (1997) in the sense that all quantities
show significant differences between granules and lanes, with
the possible exception of the pressure. Even in the case of the
pressure the difference is actually significant, particularly in the
highest displayed layer ofz = −26 km. The plotted error bars
are standard deviations and mark the likelihood that any given
granule or intergranular lane lies within the plotted error bars.
However, the uncertainties of the plotted averages are a factor
of roughly

√
NFr ≈ 14 smaller. Hence fragmenting granules

have a distinctly larger average pressure than the neighbouring
lanes particularly at and above the surface. Note, however, that
the maximum pressure in the lane (not shown) is practically the
same as in the granule. This agrees completely with the findings
of Hurlburt et al. (1984). They find that a (central) pressure ex-
cess in the granule accelerates the vertically rising gas sideway
to the boundaries where another pressure excess propels the gas
downwards.

In agreement with this the expected temporal transition from
the characteristics of a granules (vz > 0) to that of a lane (vz <
0) is clearly seen. Since it is caused by a local instability, little
sign of the impending fragmentation of the granule is seen in
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Fig. 6a–d. Evolution of the
mean fragmenting granule and
associated mean downflows at
four heights. The physical quan-
tities are the temperatureT
(frame a), pressurep (frame
b), density % (frame c), and
vertical velocityvz (frame d).
p and % have been normal-
ized by dividing them by their
global averages at the samez.
The subframes ina to d cor-
respond toz = −341, −201,
−131 and −26 km from bot-
tom to top, respectively. Thin
solid lines display the mean evo-
lution of fragmenting granules
(denoted by〈.〉u, see the def-
inition in Sect. 4.2), while dot-
ted lines correspond to the mean
evolution of the adjacent down-
flows (〈.〉d). The thick curves
show the evolution along the
pre-lane and the lane formed
through the fragmentation. The
error bars indicate the scatter in
values from one granule to the
next (standard deviation).

these averages. Along the pre-lane (thick lines in Fig. 6), the
changes inT , vz and% first start at the levelz = −26 km and at
increasingly later times with increasing depth. The behaviour of
the pressure is interesting. The local pressure in the pre-lanes is
already above average att = 0.5. The pressure then increases,
most strongly betweenz = −201 andz = −131 km, i.e. below
the layerz = −26 km whereT , p and% reveal the largest and
earliest variation. At this layer the pressure does not increase
at all. Hence, Fig. 6 is telling us that a pressure increase just
below the surface is accompanied by a density increase and a

temperature and vertical velocity decrease at the surface. The
excess pressure begins to slow the rising hot material down.
This material manages to overshoot the layers exhibiting the
enhanced pressure but only with a greatly reducedvz. The lower
vz allows the material to cool down (as we shall see in Fig. 7,
vx also decreases with time in the pre-lane), which then leads
to the enhanced density and finally to a reduced buoyancy. The
evolution of all these quantities is in good agreement with the
well known buoyancy-braking mechanism, which leads to the
formation of new downflows (Massaguer & Zahn 1980, Latour
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Fig. 7.Evolution of different horizontal velocities. The subframes cor-
respond toz = −201, −131 and−26 km from bottom to top, respec-
tively. The thin solid line refers to〈|vx − vs|〉u, wherevs is the shift
of the whole convection cell. The dotted line displays the evolution of
〈|vx − vs|〉d, while the evolution of the shift|vs| is displayed by the
dashed line. The thick lines trace the evolution of|vx − vs| along the
pre-lanes.

et al. 1983), which has previously been recognized in 3–D (e.g.
Nordlund 1985, Steffen et al. 1989) as well as in 2–D simulations
(e.g. Freytag et al. 1996). Note that in Fig. 6T , p, % andvz in
the newly born lanes (thick curves fort > 1) overshoot the
corresponding average values of the previously existing lanes
because only the location of maximum downflows contribute to
the thick curves.

The evolution of the horizontal velocity is displayed in Fig. 7
for levelsz = −201, −131 and−26 km (bottom to top). The
thin solid lines represent〈|vx − vs|〉u, which is the horizon-
tal velocity corrected for the shift of the whole granule,vs. The
shiftvs is determined from the average motion of the neighbour-
ing intergranular lanes. When determining〈|vx − vs|〉u we first
take the absolute value of the difference and only then do we
average horizontally over the granule (i.e. upflowing region).
This quantity does not show significant change over time al-
though itunsurprisingly increases with increasing height. The
same quantity averaged over downflows,〈|vx − vs|〉d (dotted
lines) shows a certain tendency to increase with time. But the
most striking feature is that〈|vx −vs|〉d > 〈|vx −vs|〉u, i.e. the
largest horizontal velocities are located at the granule bound-
ary. Along the pre-lanes (thick line)|vx − vs| is smaller than
〈|vx − vs|〉u and decreases with time until fragmentation. This

Fig. 8a-c.Evolution of a the size,s, b continuum intensity,I andc
height of continuum formation,z(τ = 1), of dissolving and frag-
menting granules. Averages over granules (〈.〉u) are displayed by solid
lines, averages over lanes (〈.〉d) by dotted lines. Thick lines: quantities
referring to fragmenting granules, thin lines: dissolving granules.

fits in with the buoyancy braking scenario presented above. Af-
ter the formation of the new lane|vx − vs| starts to increase
again, in accordance with the other intergranular lanes.

4.4. Evolution of dissolving granules

The evolution of dissolving granules is best studied in direct
comparison with the much better understood fragmenting gran-
ules. Frames a to c of Fig. 8 show the evolution of the size,
s, intensity,I, and the height〈z(τ = 1)〉 of dissolving gran-
ules (thin lines) and fragmenting granules (thick lines). The
dissolving granules (thin solid curve in Fig. 8a) are consider-
ably smaller than the fragmenting granules (thick solid curve)
already at birth. This discrepancy in size mounts rapidly, clearly
illustrating the opposite evolution of the size of fragmenting and
dissolving granules. The size of the former increases steadily,
almost doubling in the course of their lifetime, whereas the size
of the latter decreases until they disappear.4 In addition to the
granules themselves the average size of the adjacent downflows
to each type of granule is displayed in Fig. 8a (dotted curves).
Obviously, the downflows embracing the fragmenting and dis-
solving granules are of similar size.

4 Since the true time of death is shortly aftert = 1, the size of
dissolving granules remains positive (thin solid line in Fig. 8a).
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Fig. 9a–d.Evolution of dissolv-
ing and fragmenting granules.
The same as Fig. 6 but now
for dissolving (thin lines) and
fragmenting (thick lines) gran-
ules and without the evolution
along the pre-lane. Averages
over granules (〈.〉u) are dis-
played by solid, averages over
lanes (〈.〉d) by dotted lines.

A difference in brightness between fragmenting and dis-
solving granules is visible in Fig. 8b (solid lines). The lanes
(dotted lines) do not differ in brightness between the two types
of granules.

Fig. 8c reveals that the visible surface of fragmenting gran-
ules lies higher than that of dissolvers. Note that this figure
justifies that the chosen uppermost displayed layer isz = −26
because at higher layers the granular pattern of dissolvers be-
comes indistinct.

Fig. 9 compares the evolution of fragmenting (thick lines)
and dissolving (thin lines) granules inT , normalizedp, normal-
ized % andvz (frames a to d, respectively). The difference in
T (Fig. 9a) between the two types of granules is almost time
independent atz = −26 km. At greater depth the fragmenting
granule shows no change over time while dissolving granules
cool significantly. This temperature decrease accelerates as the
granules becomes smaller. We expect that this decrease inT ,
which is most pronounced in the upper layers, could be partly
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Fig. 10a and b.Evolution of the horizontal velocity and normalized
pressure difference of fragmenting (thick lines) and dissolving (thin
lines) granules. Framea corresponds tomaxu(|vx − vs|) (solid line)
and〈|vx − vs|〉u (dashed lines). Frameb displays∆p̃ = maxu(p̃) −
minu(p̃), i.e. the largest pressure difference within a granule, where
p̃ = p/〈p〉.

due to radiative cooling. Steffen et al. (1989) demonstrated that
small convection cells, such as dissolving granules, radiate very
efficiently in the horizontal direction, leading to a drop in tem-
perature.

The average pressure (Fig. 9b) of dissolvers lies below that
of fragmenters at all times and decreases right from the start of
their evolution. This pressure decrease is partly driven by the
enhanced radiative cooling and partly by the decreasing size of
the granule (see the discussion on mass conservation below).
Note that the average pressure hardly differs between dissolv-
ing granules and their neighbouring downflowing lanes. Up to
t ≈ 0.7 the density and vertical velocity (Figs. 9c and d) of the
dissolving granules does not deviate significantly from the re-
spective quantities of the fragmenting granules at all considered
heights. Shortly before dissolution the physical parameters ex-
hibit a behaviour that is very reminiscent of buoyancy braking:
the density and pressure of the dissolver increase and brake the
upflow after a short time lag. Note that as in the case of frag-
menting granules the final pressure enhancement is not visible
in the topmost layer. Note also that the downflow lanes remain
practically unchanged.

Although Fig. 9 suggests that the final death of dissolving
granules is caused by buoyancy braking, it gives few clues to
the mechanisms driving the earlier evolution. As Fig. 8a shows,
dissolvers start shrinking soon after birth. Uncovering the cause
of this is the aim of Sect. 4.5.

Let us now discuss the horizontal velocities. These are dis-
played in Fig. 10a. The evolution of〈|vx − vs|〉u (dashed lines)
remains constant over time for both fragmenting (thick lines)
and dissolving (thin lines) granules. In contrast,maxu(|vx−vs|)
(solid lines) decreases for dissolving and increases somewhat
for fragmenting granules. Both〈|vx−vs|〉u andmaxu(|vx−vs|)
exhibit the same evolution at all depths but decrease in magni-
tude asz decreases. Note thatvx is expected to scale with size
s due to mass conservation (e.g., Steffen et al. 1989, Spruit et
al. 1990, Scḧussler 1992, Stein & Nordlund 1998). It demands
that the overshooting mass passing vertically through the area
covered by the 2-D granule (= %vz(2r), wherer is the gran-
ule radius) must leave the granule through its lateral boundary
within a density scale height (= %vx(2H), whereH is the den-

sity scale height). As a result the horizontal velocity scales with
the granule’s size,

vx ∼ r. (1)

This scaling can only be recognized in maximum horizontal
velocity and not in the average velocity. Even in the maximum
velocity it is not followed rigorously, since real granules are
neither in a steady state, nor do they possess an upflow that
is uniform over the granule (see Sect. 4.5.2).vx is related to
the dynamical pressure via% v2

x. Consequently, an increaseδvx

causes a pressure excessδp which can be expressed using Eq. (1)
as

δp ∼ r2 (2)

In Fig. 10b we test this by plotting as a measure forδp the
difference between maximum and minimum pressure,∆p =
maxu(p) − minu(p). The relation betweenmaxu(|vx − vs|)
and maxu(p) is basically in accordance with Eq. (2) for the
dissolving granules. Note that this suggests the rapid decrease in
pressure of the dissolving granules is at least partially caused by
the shrinking size via mass conservation. Fragmenting granules
show a more leisurely increase in pressure excess than expected
from the velocity.

4.5. Interaction between granules

4.5.1. Relation between granules and their neighbours

In this section we investigate the temporal evolution of granules
relative to their neighbours. At each time step, in addition to the
granule under consideration, the adjacent halves of the neigh-
bouring granules are also studied. The averages of the physical
quantities over these halves are computed and subtracted from
the corresponding average of the intervening granule. The tem-
poral evolution of the relative differences of various quantities,
formed as described above, is plotted in Fig. 11.

The most remarkable feature of this figure is that whereas
fragmenting granules possess aT andp excess relative to their
neighbours dissolving granules suffer from aT andp deficit.
From birth dissolvers start with a deficit inT andp that is par-
ticularly pronounced at the highest plotted level,z = −26 km.
These deficits further increase with time. Dissolving granules
are, however, relatively neutral relative to their neighbours in%
andvz, except towards the ends of their lives, when they ob-
tain a strong% excess andvz deficit. The time dependence of
all differences is much larger for dissolving granules than for
fragmenters. Nevertheless, even for the fragmenting granules
changes in the differences to neighbours are larger than in the
absolute values of the physical quantities.

Fig. 11 emphasizes that the evolution of a granule cannot be
separated from that of its surroundings. It is always in competi-
tion with its neighbours for more space. The pressure difference
between neighbouring granules gives rise to a force pointing
from higher to lower pressure, i.e. away from fragmenting and
towards dissolving granules. The following comparison of the
horizontal velocities indicates the close relation to such pressure
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Fig. 11a–d. Properties of granules relative to
their neighbours. The percentage of the aver-
ages of the normalized difference of temperature
∆T/〈T 〉, pressure∆p/〈p〉, density∆%/〈%〉 (a
to c, respectively) and the difference in the verti-
cal velocity∆vz d are plotted vs.t. The average
of each quantity over half of each of the two ad-
jacent granules is subtracted from the average
over the granule in between. Thick lines refer to
fragmenting, thin lines to dissolving granules.
Bottom and top frames refer toz = −201 and
−26 km, respectively.

Fig. 12. Difference between the horizontal velocity of granules and
their neighbours,∆vx (solid, see in the text for a definition), and the
average rate of change in size of granulesve = ds/dt (dashed lines).
Both quantities are plotted at the levelz = −26 km versus normalized
time t. Fragmenting granules correspond to thick lines, dissolvers to
thin lines.

gradients. Letxu1 andxu2 be the left and right boundaries of the
granule (i.e. of the upflowing gas). Let furtherxul (xur) be the
closest upflowing point of the adjacent granule on the left (right).
Then2∆vx = {vx(xu2)− vx(xur)}−{vx(xu1)− vx(xul)} is
a measure of whether the outflow in the granule being studied
is larger (∆vx > 0) or smaller than in its neighbour (∆vx < 0).
∆vx is plotted in Fig. 12 for fragmenting (thick solid lines) and
dissolving granules (thin solid lines). The fragmenting gran-
ules reveal a constant excess outflow. In contrast, the dissolv-
ing granules rapidly loose the competition with their stronger
neighbours, with their outflows becoming ever weaker relative

to those of the adjacent granules. The same qualitative picture
is also seen at other heights.

Also plotted in Fig. 12 is the rate of change in granule size,
∂s/∂t, displayed by the dashed lines. The agreement between
∆vx and∂s/∂t is remarkable and strongly supports the idea
that the rapid outflows are responsible for the rapid expansion
of fragmenters. In order to brake these outflows a consider-
able pressure excess builds up over the surrounding downflows
in order to break them. If this pressure is larger than over the
neighbouring granule then the lane moves outward, allowing the
granule to expand. The opposite effect causes the contraction of
dissolvers.

4.5.2. Horizontal structure of granules

In an ideal, symmetric convection cell at rest positive diver-
gence is expected, i.e. plasma flows from the central part of the
cell towards its boundary. For such an ideal granule|〈vx − vs〉|
obviously vanishes whereas〈|vx − vs|〉 > 0. For an extremely
asymmetric granule with a purely unidirectionalvx, however,
the quantities|〈vx − vs〉| and〈|vx − vs|〉u are the same. Note
that|〈vx − vs〉| ≤ 〈|vx − vs|〉 must always hold. Fig. 13 shows
the temporal evolution of〈|vx −vs|〉 (solid line) and|〈vx −vs〉|
(dashed) for fragmenting (thick lines) and dissolving (thin lines)
granules. Fragmenting granules start with a highly asymmet-
ric horizontal velocity, i.e.|〈vx − vs〉| is on average close to
〈|vx − vs|〉. This is not surprising since new-born granules are
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Fig. 13.Absolute horizontal velocity,〈|vx − vs|〉 (solid lines), and ab-
solute value of the net horizontal velocities,|〈vx −vs〉| (dashed lines),
averaged over granules at height levelz = −26 km. A comparison
between these quantities provides a measure of the asymmetry of the
horizontal velocity flow. Plotted is the height levelz = −26 km Frag-
menting granules correspond to thick lines, dissolvers to thin lines.

fragments of the parent granule. During the course of their evo-
lution the cells seem to reorganize themselves and establish a
fairly symmetric flow (|〈vx − vs〉| decreases, but compare with
later). The dissolving granules posses a highly distorted velocity
structure not just at birth, but throughout their lifetime. Unlike
fragmenters the smaller dissolving granules are not able to build
up a strong symmetric flow. Although, initially there is also a
tendency for the flow to become more symmetric,|〈vx − vs〉|
and〈|vx − vs|〉 are practically equal again shortly before the
death of the mean dissolving granule.

In view of the surprising asymmetry of dissolving granules
we now check how frequent granules with a completely unidi-
rectional horizontal velocity are, i.e. we check if at a given time
a granule possesses positive divergence (i.e.,vx − vs changes
sign within the granule and corresponds to an outflow), neg-
ative divergence (vx − vs corresponds to an inflow into the
granule), or a horizontal flow in one direction (vx − vs does not
change sign anywhere in the granule; zero divergence). Note that
this terminology of “divergence” is not strictly correct since the
density has not been taken into account. The fractions of gran-
ules with positive divergence (solid curve), negative divergence
(dashed curve) and zero divergence (dotted curve) are displayed
in Fig. 14 as a function of normalized time. The counts have been
normalized such that the sum over all three classes is unity. For
both fragmenting and dissolving granules the number of cases
of negative divergence is negligible, although a few such dis-
solvers are present. Most of the fragmenting granules start with
positive divergence, but a surprising number lose this property
towards the end of their lives. The number of fragmenting gran-
ules having a unidirectional horizontal velocity increases cor-
respondingly. This emphasizes that an asymmetry of the con-
vection cell with respect to its centre is built up and one side of
the fragmenting granule becomes more powerful than the other.
Note the seeming contradiction to Fig. 13 (thick lines) which
suggests the opposite evolution in time, namely that on average
the velocity structure becomes more symmetric with time. But
note that|〈vx−vs〉| is dominated by large velocity contributions
and does not take into account the sign of the velocity. In par-
ticular, a purely unidirectional velocity cannot be distinguished

Fig. 14.Fraction of granules with different horizontal flow structures
vs. normalized time. The solid lines display the fraction of granules
with positive divergence (i.e.vx − vs points outwards on both sides of
the granules), while dashed curves corresponds to negative divergence.
The dotted lines indicate the fraction of granules for whichvx −vs has
only one sign everywhere within the granule, i.e. the horizontal flow
is purely unidirectional over the whole granule. Thick curves mark
fragmenting and thin dissolving granules.

from a granule having one strong and one weak outflow. It fails
therefore to reflect the true granular flow structure.

The young dissolving granules have one persisting horizon-
tal velocity in 95% of the cases. This number decreases before
the final increase to 60%. One cause of the unidirectional ve-
locity is given by the situation at birth, where the fragment basi-
cally inherits thevx from its parent granule. We investigate next
whether the maxima of temperature, upflow velocity and pres-
sure and minimum density are closer to the geometrical centre
of a granule or to its edges. To study this statistically a granule
is divided into 4 sections of equal horizontal extent at a given
height. The granules with maxima, respectively minima of the
studied quantity located in either of the two central sections
are binned together, as are those with maxima in the two outer
sections. The evolution of the fraction of granules with these
maxima, respectively minima lying closer to the centre (solid
lines) or the edges (dashed) is displayed in Fig. 15.

Let us first consider fragmenting granules. The tempera-
ture maximum exhibits no preferred location (thick lines in
Fig. 15a) below the surface. Atz = −26 km, however, the
granules appear to reorganize themselves so as to produce a
centralT maximum. The maximum pressure (Fig. 15b) tends
to be more centrally located at both displayed heights, except
close to death. The largest upflows (Fig. 15d) preferentially oc-
cur near the boundary at birth which is probably a result of the
preceding fragmentation of the parent granule. Closer to granule
death a central upflow becomes more prominent and dominates
in the majority of fragmenters. The remaining 30% of fragment-
ing granules having maximum upflow closer to a lane indicate
the behaviour found by Rast (1995) and agree with the estimate
given in Sect. 4.1.

Remarkably, the locations of the corresponding maxima and
minima of the dissolving granules (thin lines in Fig. 15) often
show the opposite tendency, i.e. maxima or minima lying in the
inner part of the fragmenting granules are in most cases found
in the outer part of dissolving granules and vice versa. The only
exception is the temperature. Note in particular that the pressure
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Fig. 15a–d.Fractions of granules with different horizontal structures in four physical quantities are plotted vs.t at height levelsz = −201
(bottom) and−26 km (top). The fraction of granules in which maximum temperature (framea), maximum pressure (frameb), minimum density
(framec) and maximum vertical velocity (framed) are reached in the central half of the granule is represented by solid lines, while those with
the respective extrema of these quantities near the granule boundaries are indicated by dashed lines. As usual, thick and thin lines distinguish
between fragmenters and dissolvers.

Fig. 16.Scatter plot of the spatially averaged properties of newly born
granules (children) vs. the parent granule just prior to fragmentation.
Only those fragmenters are shown of which both offspring either dis-
solve (marked by open circles) or fragment again (marked by dots).
Each child is considered separately. Displayed is the granule’s size.
Points on the solid line mark granules that split into two equal halves.

shows a clear tendency to be largest near the boundary of dis-
solvers, whereas the largest upflow velocity is rather dominantly
located in the central part. In particular the location of the pres-
sure excess near the granule boundary agrees with the finding
that a large fraction, even the majority, of dissolvers harbours a
unidirectional horizontal flow.

4.6. Granule twins: are they marked for life?

Finally, we consider the question of how decisive the conditions
at birth are for the future fate of a newborn granule. The spatial
average of the physical quantities (cf. Fig. 8) showed that dis-
solving granules are cooler, have lower pressure and are much

smaller in size than the fragmenting granules already at birth.
This difference then increases as the granule evolves.

The birth of a granule (as studied here) is only possible when
its parent granule fragments. We now compare the situation
before fragmentation with the properties of the fragments in
order to learn if parents pass on some of their traits to their
children and how strongly the situation at birth (so to say the
genetic material) of each of the two granule twins decides their
evolution. We only consider the cases when two fragments are
formed, so that all granules analyzed in the following are born
as twins.

Fragmenting granules can be classified according to the
types of their children. The three possible groups consist of

(1) those fragmenting granules both of whose children dissolve:
Fr→(Di,Di). Approximately 25% of the fragmenting gran-
ules are of this type;

(2) both children fragment: Fr→(Fr,Fr), also approximately
25% of fragmenters;

(3) of fragmenting granules of which one offspring dissolves
while the other fragments: Fr→(Di,Fr).Roughly 50% of the
fragmenting granules.

Figs. 16 and 17 shows scatter plots of physical parameters of
both children of a granule just after birth (y-axis) versus the
same parameters of the parent granule just before fragmentation
(x-axis). Consequently, for each fragmenting granule on thex-
axis two corresponding entries on they-axis are found. Fig. 16
shows the two families in which both fragments either dissolve
(marked by open circles) or fragment again (marked by dots),
Fig. 17 shows those cases when one of the offspring dissolves
and the other fragments. Points on the solid line in frame a of
Figs. 16 and 17a correspond to granules which split into two
equal halves. Points on the solid line in the remaining frames
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Fig. 17a–c.Frame a shows
the same as Fig. 16a, but
now for those fragmenting
granules of which one
offspring dissolves and
(marked by open circles)
and one fragments marked
by open dotted). Frame
b shows the maximum
pressure and framec vx.

correspond to cases in which the average of the parameter under
consideration is the same before and after fragmentation.

The comparison between the granule size before and after
fragmentation (Fig. 16) shows that larger granules (size above
3 Mm) tend to split into granules which fragment again. If the
parent is less than≈ 2 Mm across, however, at least one of
the offspring will dissolve (compare also with Figs. 17a). There
is considerable overlap between the thermodynamic quantities
(not shown) of the two families, although those with fragment-
ing offspring tend to have somewhat higher temperature and
lower density.

Properties of the remaining fragmenters and their offspring,
of which one dissolves and one fragments, are compared
in Fig. 17. This family is particularly interesting because it
promises the clearest signs of those differences at birth, which
could lead to the different subsequent evolutions of the off-
spring. The comparison of the sizes of the newborn twins clearly
shows that with very few exceptions the larger of these frag-
ments again fragments whereas the smaller one dissolves. Ob-
viously, the subsequent evolution is characterized by intense
sibling rivalry, with the larger of these winning. It generates
larger horizontal flows, which in turn can only be produced by
larger pressure, which pushes the smaller sibling away or forces
it to contract. Fragmenting and dissolving siblings have other-
wise similar physical parameters, including the thermodynamic
quantities, with the exception of maximum pressure (Fig. 17b).
Fragmenting children possess higher pressure on average. Com-
pare now the〈vx〉u of the parent with that of the child (Fig. 17c).
The children with the same sign of〈vx〉u as their parents are
themselves likely to fragment. If, however, the child has the op-
posite sign of〈vx〉u to that of the parent the child most likely
dissolves. Thus the offspring inheriting the main features of the
velocity field of the parent are more likely to fragment. Note
that the fragmenters in Fig. 17c lie closer to the solid line than
the dissolvers.

5. Discussion and conclusions

We have presented the results of a 2-D, fully compressible
radiation-hydrodynamic simulation. The computational domain
(with a horizontal extent of over 17 Mm) harbours more than a
dozen granules at any given time. In addition, the simulation has
been run for approximately 5 solar hours. As result the evolution

of over 400 granules could be followed allowing us to carry out
a statistical analysis, giving new insight into the temporal evo-
lution averaged over many granules. We acknowledge that the
limitation to two spatial dimensions may restrict the generality
of the conclusions somewhat, but we expect that the main con-
clusions regarding the physical processes controlling granule
evolution should remain valid in 3–D, although the number and
relative importance of various physical processes will probably
be different. Also, additional aspects may need to be considered
in 3-D.

This simulation suggests a simple characterization into two
types of granules (cf. Fig. 1):fragmentinggranules end when a
new downflowing lane forms in their interior, whereasdissolv-
ing granules contract until two embracing lanes merge together
and the intervening granule disappears. In our simulation an
equal number of granules die through fragmentation as through
dissolution. A few examples of a third type of granule, namely
merging granules, which end when two granules merge to form
a new and larger granule, may be present, but due to ambigu-
ity in identifying them we have not studied them in detail (cf.
Sect. 3.2). The number of possible merging granules is negligi-
ble.

In order to investigate the temporal evolution averaged over
many granules we average physical quantities (at fixed height
and at a fixed stage of the granule’s evolution) over the gran-
ule and over all granules of the same type at the same stage
of the evolution. In the case of fragmenters, we additionally
determine the evolution of different physical parameters along
the locations at which the new downflow lane is formed during
fragmentation.

We are well aware that by dividing granules strictly into two
groups and considering only averaged quantities we have con-
siderably simplified the often complex evolution of individual
granules. For example, in a number of cases a young granule
initially expands just like a normal fragmenter. At some point,
however, its expansion is stopped by even stronger neighbouring
granules. Eventually, the boundaries of this granule are pushed
back again until it dies as a dissolver (into which category it
also enters in this analysis). Such an example is found, e.g., in
Fig. 1b at timeT = 3 h 10′ and position 2 Mm.

The physical quantities averaged over a fragmenting granule
give little warning of the impending fragmentation. However,
at the location at which the fragmentation occurs and the new
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lane is formed the signature of buoyancy braking is clearly seen.
A local pressure excess compresses upflowing gas and deceler-
ates it. Mass conservation then forces the horizontal flow speed
at a greater height to be reduced. This in turn allows the gas
to cool through radiative losses, thus increasing its density fur-
ther, which finally reduces its buoyancy. The process leading
to fragmentation first starts in the highest considered layers at
the solar surface and later propagates down Hence the death
of fragmenters (and the birth of new granules) is (statistically
significantly) driven by surface phenomena.

In contrast to fragmenting granules, the spatially aver-
aged pressure and temperature of dissolving granules decrease
throughout their evolution, starting soon after birth. A decrease
in vertical velocity and an increase in density is only seen much
later, near dissolution. This behaviour can partly be understood
by the decrease in size of granules and mass conservation, which
leads to a proportional decrease of the horizontal velocity. The
pressure excess that is built up during the temporal evolution,
as required by the need to accelerate the matter to the maxi-
mum horizontal velocity, is proportional to the square of the
granule’s size. This makes the shrinking dissolving granules
rapidly weaker relative to its neighbours in the sense that it
has increasingly smaller relative pressure. This pressure differ-
ence between neighbouring granules is crucial and relates the
evolution of both types of granules to each other. In fact, the
combined evolution of a neighbouring pair of granules, a dis-
solver and a fragmenter, i.e. one granule that contracts and one
that expands, can be considered to be a form of instability: As
the dissolver contracts mass conservation requires less strong
horizontal flows. Consequently, its pressure, required to accel-
erate such flows, decreases, which makes the pressure excess
of the fragmenter relative to the dissolver even larger. This in
turn causes the dissolver to contract even more rapidly and the
fragmenter to expand similarly, and so on.

The evolution of granules is hence determined by the hori-
zontal forces exerted by the granules on their neighbours. This
behaviour had been predicted by Stein & Nordlund (1998). Note
that the relative pressure difference between neighbouring gran-
ules is largest in the highest layer that we consider. Hence, for
both fragmenters and dissolvers the surface layers are decisive
for their evolution.

The dissolving granules are statistically born “weaker”, i.e.
they are cooler, denser and have lower pressure excess compared
to the fragmenting granules. However, it is the size at birth that
allows the most precise prediction of the fate of a granule. In our
simulations granules are born almost exclusively by fragmenta-
tion, i.e. in general as twins. If one of the twins later dissolves
and the other fragments, then in almost all cases it is the smaller
one that dissolves. None of the other physical quantities predicts
the later fate of a granule with the same accuracy, although frag-
menting granules are on average also born hotter and with higher
pressure then their dissolving counterparts.

A striking feature is that many dissolving granules have a
horizontal velocity pointing in only one direction. Such dis-
solvers generally also do not possess a central pressure excess.
Instead, a large pressure excess builds up over the intergranu-

lar lane lying between the increasingly weaker dissolver and a
powerful neighbouring granule.

Let us briefly consider some of the differences that we ex-
pect between our 2–D simulation and three dimensional real-
ity. For one, intergranular lanes are spatially unconnected in
2–D, whereas they form a network in 3–D. This also means that
whereas in 2–D a small, weak granule caught between two large
powerful granules cannot escape and is finally crushed between
them (i.e. it dissolves), in 3–D it may escape by squeezing out
to the side. If this is the case dissolution as a means of death
would be less common in 3–D. On the other hand, it may be
easier to make a intergranular lane disappear in 3–D than in
2–D. If, e.g. in 2–D a strong upwelling starts below an inter-
granular lane, then it will probably push the lane to one side,
but not destroy it, and the lane will in most cases survive intact.
The reason is that since lanes are isolated in 2-D, unless the
horizontal flows in the immediate vicinity of a lane change sign
a downflow there will be needed to return that material to the
solar interior upon disappearance of the lane. In 3–D, however,
such an upwelling can part a downflow lane from below like a
pair of curtains, effectively producing a new granule by merg-
ing two neighbours. Such effects could explain why the ratio of
dissolving to merging granules is so much larger in 2–D than
observed by Mehltretter (1978).

Finally, we point out that in 2-D the horizontal velocities in
granules are larger than in 3-D. Hence the pressure difference
between large and small granules may be smaller in 3-D than
we find here. This effect may also help to reduce the number of
dissolving granules relative to merging granules.
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