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Abstract. Using the model by Keppens (1997), we investigate
the angular momentum (AM) evolution in asymmetric binary
star systems from Zero-Age Main Sequence times until at least
one component has ascended the giant branch. We concentrate
on stars ranging in mass from 0.9M� – 1.7M�, in almost syn-
chronous, short period systems (Porb < 9 days). We address
synchronization and circularization by tidal interaction, allow-
ing for structural evolution and stellar winds. A Weber-Davis
prescription is used to quantify the wind influence, thereby ac-
counting for changes in its acceleration mechanism from the
interplay of the evolving thermal-magneto-centrifugal effects.
We identify a scenario for fast in-spiraling components with
d lnPorb/dt ' −O(10−8) which is primarily driven by fast
structural evolution as the heaviest component ascends the gi-
ant branch. This leads to the formation of contact systems, which
ultimately coalesce and form FK Comae-like objects on rela-
tively short timescales due to the continuing expansion of the
primary.

The obtained mass loss rates and orbital period variations
d lnPorb/dt are confronted with their observed ranges. The
predicted mass loss rates agree with the solar value on the main
sequence and with the Reimers relation in the giant phase. Ob-
servations of period evolution in close, active binaries suggest,
however, that other influences than those considered here must
play an important role. Finally, we point out how the mass
asymmetry of the binary system can be a crucial ingredient
in the angular momentum evolution: while the primary dic-
tates the spin-orbital AM exchange in the system, the slowly
evolving lighter component can develop an efficient magneto-
centrifugally driven wind and thereby drain the AM from the
system.

Key words: stars: binaries: close – stars: evolution – stars: mass-
loss – stars: rotation – stars: winds, outflows

1. Introduction

We continue the study of angular momentum (AM) exchange
in binary star systems initiated by Keppens (1997, hereafter
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Paper I). Paper I introduced a straightforward extension of the
MacGregor & Brenner (1991) model, used to study the AM
evolution ofsinglestars (Keppens et al. 1995), such that the AM
balance in tidally coupledbinariescould be investigated. With
the structural evolution obtained from calculated evolutionary
tracks as input, we use the model to quantify tidal interaction and
wind driven angular momentum loss. Since Paper I concentrated
on the model itself, along with illustrative calculations for two
symmetric 1M� – 1 M� systems from Pre-Main Sequence
(PMS) times to the start of the ascent of the giant branch, we
focus in this paper on asymmetric binaries from Zero-Age Main
Sequence (ZAMS) times up to the giant phase.

As we intend to address issues related to synchronization,
circularization, and wind effects, various earlier studies are of
direct relevance in this context. Habets & Zwaan (1989) have
investigated the puzzling question of asynchronous rotation in
circularized binaries. One typically expects the components to
synchronize before the orbit becomes circular. They identified
periods of asynchronism in model calculations incorporating
physical mechanisms much like the ones we account for. Schri-
jver & Zwaan (1991) used observations of close binary systems
to compare the activity-rotation relation of single stars with oth-
erwise identical component stars in binaries. They found evi-
dence for enhanced magnetic activity. Since this is relevant for
the stellar wind and the associated mass and angular momentum
loss, it is our goal to quantify the wind effects accurately. Typi-
cally, a Skumanich relation (Skumanich 1972) or extrapolation
thereoff is used in quantifying the braking role of stellar winds.
Since this relation does not allow for characterisations of the
type of wind acceleration (thermal, magnetic, centrifugal), we
adopt a Weber-Davis (Weber & Davis 1967) wind model. On top
of quantifying the AM losses, this model predicts mass loss rates
and wind types as the stellar structure adjusts to the prevailing
circumstances. We will compare the predicted mass loss rates
with the Reimers relation derived from observations of super-
giants (cf. the review by Dupree & Reimers 1987) as well as with
the known mass loss rate of our sun, of order10−14M�yr−1.
The obtained period changes will be confronted with those cat-
aloged for chromospherically active binary stars (Strassmeier et
al. 1993). The role of the stellar winds in late-type close binaries
has also been stressed in studies by van ’t Veer and Maceroni



R. Keppens et al.: Spin and orbital angular momentum exchange in binary star systems. II 553

(van ’t Veer 1993; van ’t Veer & Maceroni 1992; Maceroni
1993). It is well known how in synchronous systems, AM loss
leads to counterintuitive spin up as the orbital AM is tapped most
efficiently. Here we stress how, similarly, the changing structure
can also become important for spin-orbital AM exchange.

The tidal coupling is ultimately responsible for synchroniz-
ing and circularizing the system. We actually consider almost
synchronous systems in this paper. Paper I explained how our
model could be used to evaluate different tidal theories against
each other. Which kind of tidal interaction is at play in late-type
main sequence stars is still a topic of active research: the equi-
librium tide in stars with a convective envelope as studied by
Zahn (1977; 1989) has been challenged by the hydrodynamical
mechanism proposed by Tassoul & Tassoul (1992); and recently
by Zahn’s own dynamical tide as invoked for circularizing solar-
type binaries (Goodman & Dickson 1998). A review of these
three mechanisms is found in Tassoul & Tassoul (1996). Studies
by Claret et al. (1995) and Claret & Cunha (1997) have com-
pared their validity based on stellar data sets. Both Zahn’s and
Tassoul’s formalism had several points of agreement with the
observations. We defer from analysing the influence of the dif-
ferent mechanisms here and rather set forth to further elucidate
the role of the different ingredients controlling the rotational
evolution in binaries.

In Sect. 2, we repeat the model equations of Paper I to make
this paper self-contained. A brief discussion of the most im-
portant parameters is given, along with all details on the wind
calculation, in an appendix. The results are presented in Sect. 3,
were three asymmetric systems are evolved from ZAMS to gi-
ant times. Sect. 4 confronts the period changes with observations
and discusses the implications and shortcomings of the model
from that viewpoint.

2. Model equations

For completeness, the full set of equations derived and
presented by Keppens (1997) is repeated here. Each star
(i = 1, 2 of massMi) can consist of an envelope and core
region with respective angular momentaJ

(i)
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(i)
envΩi,env
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(i)
corΩi,cor. Here,I is the moment of inertia and

the inherent assumption is that both regions rotate rigidly with
angular velocityΩ. The orbital parameters are the eccentricity
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The torque exerted by star2 on star1 is modeled as
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and similarly forS21. For a discussion of the assumptions en-
tering this formalism, we refer to Paper I. We repeat that the
expression for the torque Eq. (2) and the corresponding evo-
lutionary equation for the orbital eccentricity follows from an
ad hoc description for the deformation of each component in
the binary system. Tidal effects over one orbital revolution are
modeled as deformations and misalignment angles that are con-
stant over the orbit. This working hypothesis connects well to
standard approaches for quantifying tidal effects, as explained in
Paper I (Sect. 2.3). In particular, the equation for the eccentricity
in Eqs. (1) captures in lowest order the essential dependence

− 1
e

de

dt
∝ 1

τV

(
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)8 [
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18
Ωenv

Ωorb

]
. (3)

This can be compared directly with fully self-consistent calcu-
lations as found e.g. in Eggleton et al. 1998, their Eq. (78).

The time integration requires as additional input an indepen-
dent evolutionary calculation for each component, in the form
of the evolving moments of inertiaI(i)

env(t), I
(i)
cor(t), stellar radius

Ri(t), core radiusRi,cor(t) and massMi,cor(t). Mi,env(t) can
then be expressed asMi − Mi,cor(t). Instantaneous values for
the orbital parameters are obtained from the set(Jorb, e). The
evolutionary timescale of each component enters through the
evolving stellar parameters, while an additional six timescales
τ

(i)
c , τ (i)

W , andτi,V appear explicitly in the set of Eqs. (1). In the
following we provide a more detailed discussion of these time
scales.

Firstly, the model equations allow for differentially rotat-
ing core and envelope regions, coupled through visco-magnetic
mechanisms parametrized by their timescaleτc (see Charbon-
neau & MacGregor 1992a, 1992b for a simulation of the phys-
ical processes involved). It was shown in Paper I that espe-
cially during Pre-Main Sequence phases, differential rotation
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Fig. 1. Case I: two1M� stars. Plotted as a function of time are pa-
rameters of the structural evolution that serve as input, as well as the
semi-major axis evolution: Top panel shows the moments of inertia of
the stellar envelopeIenv (solid) and coreIcor (dotted) in1055 cgs units;
Middle panel contains the input radiusR∗ (dotted) and the resulting
values of the semi-major axis of the systema (solid); Bottom panel
plots the stellar luminosityL∗.

can occur. It is influenced byτc and the buildup of a radia-
tive core. Here, we concentrate on stages following the ZAMS
where differential rotation is not too relevant and simply set
τ

(1)
c = τ

(2)
c = 10 Myr, essentially yielding rigid rotation. This

is further motivated by the more recent finding that AM stud-
ies for single stars using solid-body rotation throughout their
PMS and Main Sequence (MS) evolution can account for the
observed fast rotators around ZAMS times equally well as dif-
ferential rotation (Bouvier et al. 1997). Also, mass transfer from
envelope to core regions (or vice-versa) is insignificant on the
MS and we in fact ignored the terms proportional todMi,cor/dt
for the calculations presented here.

Secondly, each component can be accompanied by a stellar
wind characterized by its timescaleτ (i)

W (t). The wind exerts a
braking torque on the stellar envelope region and is, in general,
driven by a combination of thermal, magnetic, and centrifugal
acceleration mechanisms. As it represents the only AM loss
terms present in the system (1), we need a satisfactory quanti-
tative prescription. We use an exact solution of the ideal mag-
netohydrodynamic equations from Weber & Davis (1967) to
obtain instantaneous mass loss rates and wind braking torques.
Since we make several observations related to the evolving stel-
lar winds in what follows, we provide all further details about
the wind solutions in the appendix. Note that we treat the wind
of each star as if it were a single star of the relevant mass, radius
and rotation rate, neglecting the enhanced magnetic activity in
binaries proposed by Schrijver & Zwaan (1991).

Thirdly, a viscous timescaleτV is used to parameterize the
tidal interaction. It was pointed out in Paper I how different
prescriptions forτV can recover the synchronization and circu-
larization timescales known from standard tidal theories (Zahn
1977; Tassoul & Tassoul 1992). We will mostly deal with almost
synchronous systems and use in practiceτV = (MR2/L)1/3,
which is typical for the equilibrium tide raised on stars pos-
sessing convective envelopes. This means that the evolutionary
calculation must also provide the changing luminositiesLi(t).

For this paper, the evolutionary tracks were constructed with
the Geneva-Toulouse evolutionary code which accounts for the
following input physics. The initial helium content is deter-
mined by Y=0.24+(∆Y/∆Z)Z, with a value of 3 for the average
relative ratio of helium to metal enrichment (∆Y/∆Z) during
galactic evolution. The relative ratios for the heavy elements
correspond to the mixture by Grevesse & Noels (1993) used in
the opacity computations by Iglesias & Rogers (1996). Nuclear
reaction rates are due to Caughlan & Fowler (1988). We use
the OPAL radiative opacities from Iglesias & Rogers (1996),
including the spin-orbit interactions in Fe and relative metal
abundances based on Grevesse & Noels (1993). These tables
are completed at temperatures below 10000 K with the atomic
and molecular opacities by Alexander & Fergusson (1994). The
mixing length parameter that enters the models is set to a value
of 1.6. A grey atmosphere in the Eddington approximation is
adopted as boundary condition. Below optical depthτ = 2/3,
full integration of the structure equations is performed.

3. Results

We simulate three different scenarios, in decreasing order of
their initial orbital periodPorb = 2π/Ωorb. All systems start
with a non-zero orbital eccentricity and an asymmetry between
the rotation rates of the two stars. The last two cases, in addition,
consider mass-asymmetric binaries.

3.1. Pseudo-synchronized 1M� – 1M� system

Case I starts from two ZAMS solar mass stars with orbital pe-
riod Porb = 9 days ande = 0.05. The symmetry is deliberately
broken by setting the equatorial rotational velocities equal to
30 km s−1 and1 km s−1, which is roughly 15 times and half the
present solar rotation rate, respectively. One component thereby
rotates faster than the orbital rotation rate, the other slower. The
system of Eqs. (1) is then integrated using the evolving moments
of inertiaIenv andIcor, radiusR∗, and luminosityL∗ (used in
the tidal timescale only) as shown in Fig. 1. As is well-known,
the giant branch ascension is marked by rapid structural evo-
lution, where the moment of inertia of the expanding envelope
becomes much larger thanIcor. Due to the collapsing core, the
situation quickly reverses from the prevailing conditions dur-
ing the MS, whereIcor dominatedIenv. The time integration
is halted when the size of at least one star, and in this case
both component stars, becomes comparable to the semi-major
axis. We then typically have an order of magnitude increase in
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Fig. 2.Case I: the calculated evolution of (top) orbital period, (middle)
the revolution rates (each component as a solid line; orbitalΩorb dash-
dotted) and (bottom) the eccentricity.

stellar radius and luminosity from the ZAMS to the end of the
integration.

The resulting AM evolution of the binary system is seen
in Fig. 1, where the semi-major axisa is plotted, and in Fig. 2
where essentially the same information is shown in terms of
Porb, Ωorb, along with the eccentricitye(t). The middle panel
of Fig. 2 clearly shows how both component stars are rapidly
forced to (pseudo-) synchronization: they all end up rotating
close to, but slightly slower, than the orbital revolution rate. In
effect, the initial asymmetry of the system disappears and we end
with symmetric solar mass binaries as presented in Paper I. As
pointed out there, a small degree of asynchronism is maintained
during most of the MS evolution. Also, during the MS evolution
the wind driven angular momentum loss is still very solar-like
(mostly thermally driven wind, with magneto-centrifugal effects
that are only a factor of' 2.5 stronger than solar) – hence weak.
As a result, a rather modest period decrease withd lnPorb/dt '
−2.5 × 10−12yr−1 takes place. Note that unlike the spin down
expected for a star in isolation when AM is lost due to its wind,
the almost synchronous binary system ends up rotating faster
when winds are present. AM is preferentially taken out of the
orbit instead, while the component stars are forced to spin up
due to the synchronization. Note also that during the entire stay
of the stars on the MS, circularization is not achieved.

The evolution of the orbit changes drastically when both
components ascend the giant branch.d lnPorb/dt then increases
and reaches values up to' −2.6 × 10−8yr−1, so that the
two stars approach each other rapidly, accompanied by strict
synchronization and circularization. The strong tidal coupling
keeps the system synchronous: although the torque terms given
in Eq. (2) vanish forexactsynchronisation, the slightest dif-

Fig. 3.Case I: the mass loss rate of each component in solar masses per
year as predicted by the Weber-Davis wind model (solid) and by the
Reimers relation (dashed). Approximate agreement is reached in the
giant phase, where the Reimers relation is expected to represent stellar
mass loss rates most accurately.

ference between the orbitalΩorb and envelope revolution rate
Ωi,env is sufficient to drive them back to isorotation.

The fast expansion of both envelope regions again acts oppo-
sitely to what is expected for stars in isolation1: while a single
star would react by rotating slower, the synchronized system
in fact redistributes spin with orbital angular momentum very
effectively, thereby conserving the total AM (except for some
modest wind AM loss). Both stars spin up quickly and their
winds acquire a strong centrifugal component. This also accel-
erates the approach, but turns out to be of marginal interest for
the case shown here. The rapid approach is very suggestive of
the formation of contact systems. We note that Ste¸pień (1995)
stressed the wind associated AM loss to form contact systems
from synchronized, detached binaries. In that study, the loss
formula was calibrated using spin down rates of single stars. In
contrast, we find scenarios for which the wind has little effect
on the approach of the two stars, while their structural evolution
plays the dominant role.

This conclusion depends on whether the wind associated
mass loss predicted by the model is adequate. This can be de-
duced from Fig. 3. As expected, it is close to solar values dur-
ing much of the MS, namelyO(10−14)M�yr−1, but reaches
Ṁ ' 5 × 10−11M�yr−1 at the end. For comparison, the

1 We hereby correct an interpretation error present in Paper I, where
the initial ascent on the giant branch led to similar effects. Kep-
pens (1997) wrongly suggested that this was due to core collapse, but
the vanishingIcor rules out that interpretation.
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Fig. 4. Case I: the various timescales that influence the AM balance
within the binary on a logarithmic scale, withτ in years. Plotted are the
evolution timescaleτevol (solid), circularization timescaleτcirc (dot-
ted), wind timescaleτW (dashed), coupling timescaleτc (dash-dotted),
and synchronization timescaleτsync (– · · · –).

Reimers relation deduced observationally for red supergiants
(M∗ > 4M� andR∗ > 40R�) in binary systems,

Ṁ = 4 × 10−13 (L∗/L�)(R∗/R�)
M∗/M�

[
M�yr−1] , (4)

is plotted as a dashed line in Fig. 3. At the later giant phases,
which is where the Reimers relation is expected to be a good
indication of the actual mass-loss rate, we reach a satisfac-
tory quantitative agreement (i.e., the difference between the two
mass-loss rates is only a factor of 2.5 at the end of the calcula-
tion). Note that the time-integrated mass loss is still negligible
relative to the ZAMS mass, so we did not require the stellar
massM∗ to change in the course of the evolution.

Finally, Fig. 4 plots the evolving timescales that are present
in the system of equations: the coupling timescaleτc (kept
fixed), the wind timescaleτW , and the evolutionary timescale
derived as

τevol ≡ min
[
(d lnR∗/dt)−1, (d ln Ienv/dt)−1,

(d ln Icor/dt)−1] . (5)

The irregularities inτevol in Fig. 4 reflect minor remaining inac-
curacies in the evolutionary tracks at our disposal. However, as
can be seen in Fig. 1, the tracks are sufficiently smooth for do-
ing meaningful calculations.τevol, being a differential quantity,
blows up such irregularities disproportionately.

The plotted circularization time is (see Paper I)

τcirc ≡ 11
42

[
τ1,V

(
a

R1

)8

+ τ2,V

(
a

R2

)8
]

, (6)

Fig. 5.Case II: a 1.7M� – 0.9M� system. As in Fig. 2, orbital period
(top) and eccentricity (bottom) are plotted; with the semi-major axis
a (solid) and input radiiR1.7M� (dotted) andR0.9M� (dashed) being
displayed in the middle panel.

while the synchronization timescale is taken to be

τ1,sync ≡ 5
3

I1,env

M1R2
1

M1

M2

M1 + M2

M2

(
a

R1

)6

τ1,V . (7)

The evolution of these timescales supports the AM evolution
scenario as outlined above: the system is essentially synchro-
nized, with only modest wind driven AM loss during the MS. At
the giant branch ascension, the lowest energy state of a circular
orbit with synchronous rotation is enforced, with the evolution-
ary timescale dominating the process asτevol < τW . Only at the
very end of our integration do the two time scales become com-
parable again. Therefore, during the period of rapid structural
evolution, the wind AM loss remains fairly low, even though the
associated mass loss continues to increase quickly (cfr. Fig. 3).
This is possible due to the different dependencies of the mass
loss rate and the wind time scale on particularly the stellar radius
(see appendix).

3.2. Synchronized 1.7M� – 0.9M� system

Case II introduces a mass asymmetry and places the components
such that the orbital period is equal to 5 days, with an eccen-
tricity of 0.11. Although we start in a state of non-synchronous
rotation, with equatorial velocities set to10 and14 kms−1, the
very effective tidal torques and associated short synchroniza-
tion timescales lead to almost immediate synchronization. Note
in Fig. 5 how circularization now occurs within several108 yrs,
while both stars are still on their MS. The faster rotation (about
5 times solar) also involves a more effective wind-driven AM
loss, but it still leads to onlyd lnPorb/dt ' −3.3×10−11 yr−1

before the heavy component ascends the giant branch. Essen-
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Fig. 6. Case II: The entire AM balance as a function of time – note
the logarithmic scale. The thick solid line at the top is the total AM
JTOT, with the orbital AMJorb multiplied by 2/3 as a dashed line
underneath. The thin solid lines at bottom are the total spin AM in each
component star, with their individual contributions from envelope and
core regions as dotted and –· · · – lines, respectively.

tially the same observations as in Case I hold when this primary
expands suddenly: the stars approach each other at a rapidly
increasing rate that reachesd lnPorb/dt ' −5 × 10−8yr−1.
Now, the lighter secondary is simply enforced to corotate at the
same rotation rate, with spin-orbital AM exchange induced by
the primary. The entire angular momentum balance is shown in
Fig. 6 (note the logarithmic scale). The total AM can decrease
only due to the stellar winds. As Fig. 6 shows it decreases only
slightly (2% decrease between the beginning and the end of our
integration). Except at the very end, almost all the AM resides in
the orbit. Note that the orbital AM curve has been multiplied by
2/3 in Fig. 6 to help distinguish it from the total AM. In the giant
evolutionary stage of the1.7M� star, a non-negligible fraction
of the total AM resides in that star’s envelope – the core col-
lapses and no longer plays a significant role in the AM balance.
In response to the growingI(1)

env, spin AM is exchanged with
the orbit: the increase inJ (1)

env is balanced with aJorb decrease,
keeping the total AM equal. TheJorb decrease lowersa, and
due to the synchronization, both stars are forced to spin up. This
again favours spin-orbital AM exchange, as the faster rotation
also increasesJ (1)

env.
The wind character of the stars is such that most AM is

lost from the primary, with an important centrifugal component
in its driving mechanism, especially at the giant stage spin up.
The secondary has a modest magneto-centrifugal wind which
simply results from the enforced corotation at about 5 times the
solar rate. Mass loss rates for the0.9M� star stay atO(10−14)
solar masses per year throughout, while the heavier star begins

Fig. 7. Case III: a 1.5M� – 1.25M� system. Note the rapid circular-
ization (as in Fig. 5) and noticeable orbital period change already on
the main sequence.

at10−13 with an increase up to3×10−11. Overall, the evolution
is not unexpectedly different from the previous case, with the
primary dominating the evolution.

Note that the evolutionary tracks for the1.7M� primary in-
dicate that such stars have an extremely shallow outer convec-
tion zone during their MS phase. This might hamper dynamo
action and thus stifle the wind. Since during the MS evolution,
the influence of the wind is minute (see Fig. 6), we do not expect
that this alters our results.

3.3. Synchronized 1.5M� – 1.25M� system

Case III considers two stars with masses> 1M� in aPorb = 4
days, eccentricitye = 0.1, binary configuration. Initial equato-
rial velocities were taken to be 30 and 14 kms−1, but as in Case
II, this difference in rotation rate disappears almost instantly.
Hence, the binary system of interest is one of almost rigidly
rotating (due to the shortτc), essentially synchronized 1.5M�
– 1.25M� stars.

The evolution is summarized in Fig. 7. Note the fast circular-
ization: taken together with the results shown in Paper I – where
the PMS evolution of both a 15 day and a 5 day period system
with two solar-mass stars did not show strong circularization –
we may conclude that non-zero eccentricities for systems with
Porb <∼ 5 days can only occur before or close to ZAMS times.
Systems with larger mass obviously circularize more rapidly for
a given period, which follows from the factors(a/R)8 in the
expression for the circularization time scale (Eq. (6)).

It is also clear from Fig. 7 that before the heaviest compo-
nent enters the giant phase, a noticable influence of the stellar
wind AM loss is already present (compare with Figs. 2, 5). We
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Fig. 8. Case III: mass loss rates for both component stars (solid), with
the Reimers relation as dashed lines for comparison. Only the evolved
primary (thick curves) has significant mass loss associated with its
wind.

now observe ad lnPorb/dt ' −6.8 × 10−11yr−1 on the MS.
It turns out that the wind of the lighter secondary star is the
main loss term responsible for this MS period decrease (or spin
up). Its wind character is magneto-centrifugal, while the pri-
mary star has a much weaker mainly thermal-centrifugal wind.
In the appendix, we show the loss terms associated with both
winds as a function of time in Fig. 11, as well as the evolv-
ing wind character in Fig. 12. It should be noted that because
these stars are synchronously rotating, the difference in wind
character ultimately relates to their different radii and internal
structure. The appendix lists in detail how these quantities can
alter the wind properties. The associated mass loss is plotted in
Fig. 8, again in comparison with the Reimers relation (Eq. (4)).
Interestingly, the secondary has a far smaller mass loss rate in
spite of dominating the angular momentum loss for most of the
evolution. Only after the primary leaves the MS does its wind
provide the dominant AM loss. As in Fig. 3, the lighter compo-
nent has more MS solar-like mass loss with an increase at the
end when stronger centrifugal forces are at play. Not unexpect-
edly, the agreement between the Weber-Davis and the Reimers
prescription is again only reached in the giant phase (for the pri-
mary). The bumps between 2.1 and2.6 × 109 years in the mass
loss rate are related to the characteristic changes in luminosity
L1.5M�(t) and radiusR1.5M�(t) that signal the end of the MS
phase.

The evolution of the various timescales is plotted in Fig. 9.
The ordering of the wind timescales (the shorter being the one
of the secondary) confirms the observation from above: the
lighter component plays a crucial role in the AM balance of
the system. Similar to Cases I and II, when the heavy compo-
nent starts its phase of rapid evolution, effective spin-orbital

Fig. 9. Case III: the various timescales (as in Fig. 4), withτevol, τW ,
andτsync plotted for each component star. The thicker lines are for the
primary.

Fig. 10.Case III: the AM balance plotted as the total AMJTOT, orbital
AM Jorb (multiplied by2/3 for easier visibility), and the spin AM of
each component. In this linear scale, only the spin AM of the 1.5M�
primary component shows up as it induces strong spin-orbital AM
exchange when entering the giant phase.

AM exchange sets in and a period decrease ofd lnPorb/dt '
−7.3 × 10−8 yr−1 is reached. The spin-orbital AM exchange
can best be seen in Fig. 10, where we plot the total AM, the or-
bital AM, as well as the AM of each component star. While the
secondary does not show up in the scale used in that figure, the
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giant-branch ascension of the primary clearly dictates the pro-
cess. Of course, the overall decrease of the total AM balances
the loss terms shown in Fig. 11.

4. Discussion and conclusions

We have considered the AM evolution of late-type binaries on
the MS and while ascending the giant branch. Whereas the usu-
ally small changes in orbital parameters on the MS are caused
by AM loss through the wind(s) of the stars and spin-orbit cou-
pling, on the giant branch the much larger changes of the semi-
major axis are due to the expansion of the stellar envelope(s)
and spin-orbit coupling.

Our investigation allows us to test the Weber-Davis descrip-
tion in a rather different parameter regime than the solar case for
which it was originally proposed, namely for giants. A compar-
ison with the Reimers formula, derived from supergiant winds,
shows increasingly good correspondence between the two de-
scriptions as the star moves up the giant branch. This confirms
that the basic assumptions underlying our wind model (Weber-
Davis wind with the assumption of a constant coronal tempera-
ture) are acceptable over a large part of the Herzsprung-Russell
diagram.

Our calculations reveal that the orbital decay is particularly
rapid when one of the components leaves the MS and expands.
This quickly leads to the formation of contact systems driven by
spin-orbit coupling while one progenitor star ascends its giant
branch. The further merging process could produce a single,
evolved, rapidly rotating giant object like an FK Comae type
star. It is of interest to contrast this scenario with the one pro-
posed by Ste¸pień (1995). He suggested that contact systems
form while both components are in their MS stage – necessarily
through wind-driven AM loss – and that this formation scenario
typically takes several Gyr. In contrast we expect this formation
phase to last for only a short time before the components coa-
lesce and form FK Comae type stars, since in our scenario the
primary is already ascending its giant branch.

According to the same author, the contact phase itself must
also be of the order of a few Gyr. For more massive stars, this
is shorter than their MS lifetime, so that the stars merge and
become an FK Comae object only after one of them reaches
the giant phase. Our calculations suggest that this contact phase
lasts for only a short time before the components coalesce and
form FK Comae type stars. Also, the initial orbital period of the
system can be considerably longer according to our scenario
than according to that of Ste¸pień: even the 9 day period sys-
tem of two solar mass stars (Case I) becomes a contact system
eventually. Note that the masses of the component stars do not
influence the fate of the system. In all cases studied here, the
MS wind is not a factor in the contact system formation. The
evolution of the stellar structure is thus an important ingredient
for calculations of the orbital evolution of binaries. However,
as we shall see below, the ingredients of our model are still not
sufficient to reproduce the short-term orbital-period changes
observed in some systems. Moreover, our calculations apply to
systems where the total mass lost during the primary MS phase

is negligible. Observations reveal that this is not true in gen-
eral, and the relative importance of mass loss versus angular
momentum loss may be a decisive factor in the ultimate fate of
the system. While all cases considered have a contact system as
their likely outcome, an evolving mass ratio may instead lead
to conventional slow-timescale Roche lobe overflow without a
final merger.

All three considered cases have components not too different
in mass from the sun, with periods ranging from 9 down to
1 day during the simulated timeframe. While we concentrated
here on systems starting from ZAMS times until one component
becomes a giant star, we include the two cases reported in Paper I
in the discussion. There, we evolved two symmetric 1M� – 1
M� systems all the way from PMS times to the beginning of
their ascent of the giant branch. These systems started with a 15
day and a 5 day period, respectively, with an initial eccentricity
of e = 0.05.

As we account for stellar winds emanating from hot coronae,
one observational motivation for studying these systems arises
from the many chromospherically active binary star systems.
Strassmeier et al. (1993) conveniently cataloged those systems
with at least one late-type component with Ca II H and K emis-
sion in its spectrum. We comment on a few of these systems
with listedd lnP/dt values (from Hall et al. 1980) and copied
their parameters from the catalog into Table 1. Most systems in
this table were originally studied by Popper (1988, 1990). Note
thatd lnP/dt can have either sign.

For those systems with periods around 7–9 days, Case I stud-
ied in this paper may be relevant. The three tabulated systems
are roughly synchronised, with MM Her havingΩ∗ ≥ Ωorb.
In our model calculations, the only time where this ordering
of rotation rates occured is on the PMS and for a limited time
around ZAMS. A faster rotation at ZAMS times was also advo-
cated by Habets & Zwaan (1989). Further, we found that in this
range of orbital periods, non-zero eccentricities remain possible
on the MS, so that the eccentricity of MM Her is not entirely
in contradiction with our theory. Zahn & Bouchet (1989) con-
cluded that orbit circularization takes place during contraction
in the Hayashi phase. As indicated in Paper I, the two PMS evo-
lution scenarios studied did not include that phase and started
when the first radiative core region had developed. More definite
statements about circularization can be made using our model
when we have full evolutionary tracks extending from Hayashi
contraction all the way to giant expansion.

The values of the period changes are an order of magni-
tude larger than the largest changes obtained in the model.
SS Boo even has a positived lnP/dt value, which in our
model is only observed during the PMS phases as shown in
Paper I. In a 5-day period, mass-symmetric system, we there
got d lnP/dt ' +6.8 × 10−10yr−1. That period change was
essentially due to the contraction of the component stars, lead-
ing to the (again counterintuitive) spin down of the close binary
system due to spin-orbital exchange. Both component stars did
spin up during those times, as the coupling was not sufficient to
enforce corotation. A similar spin down effect in synchronous
systems could arise from mass accretion (ignored in our model).
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Table 1.A selection of chromospherically active binaries from Strassmeier et al. (1993), with reported period changes. The systems are ordered
with decreasing orbital period (listed in days).

Name Spectral type Masses (M�) Radii (R�) Pphot Porb e d ln P/dt (yr−1)

AW Her G2/G8IV 1.25/1.33 2.4/3.2 – 8.8 – −0.7 × 10−6

MM Her G2/K0IV 1.22/1.28 1.6/2.8 7.936 7.96 0.04 −1.4 × 10−7

SS Boo G0V/K0IV 0.97/0.97 1.3/3.3 sync 7.6 0.0 +2.16 × 10−7

Z Her FV/K0IV 1.61/1.31 1.85/2.73 3.96 3.99 0.0 −2.84 × 10−8

UX Com G2/K1IV 1.02/1.2 1/2.5 sync 3.6 0.0 −2 × 10−6

GK Hya F8/G8IV 1.25/1.34 1.5/3.4 sync 3.6 0.0 −2.28 × 10−7

TY Pix G5IV/G5IV 1.22/1.2 1.6/1.7 3.32 3.2 0.0 +1.7 × 10−7

PW Her F8-G2/K0IV 1.17/1.5 1.4/3.8 sync 2.88 0.0 −4.9 × 10−7

RT And F8V/K0V 1.5/0.99 1.17/0.84 sync 0.63 0.09 −1.17 × 10−7

The difference in magnitude of the observed and theoretical pe-
riod changes and the fact thatdP/dt can have either sign rather
supports an interpretation of these period changes in terms of
stellar magnetic activity (Hall 1991, Applegate 1992, Lanza et
al. 1998).

For the shorter period systems (around 3–4 days), our Cases
II and III may be of interest. Again we do not attain the high
d lnP/dt values, we find typicallyd lnP/dt ' −O(10−8), and
could make similar remarks as above about both occuring signs.
These systems are circularized, as expected from the model. Z
Her has ad lnP/dt value that is in accord with the maximal
value predicted by our model. However, this system has the pe-
culiarity that the more evolved, cooler K star is the less massive
one. Presumably, Z Her started off as a normal binary with the K
star being more massive, so that significant mass loss must have
taken place to reverse this situation. This scenario is not present
in the Case studies, where always the total amount of mass lost
from the system during the simulated time period was negligi-
ble. Z Her therefore serves to show that this is not generally
applicable and the mass loss rate may be the more dominant ef-
fect in the binary evolution. In TY Pix, the stellar rotation rate is
slightly lower than the orbital rotation rate, something we could
tentatively relate to the small asynchronism witnessed in Case
I. Finally, the shortest period system listed in Table 1 presents
us with a new puzzle: it lists a non-zero eccentricity.

In summary, the observations indicate several areas where
our case-studies need extra physical input. In order to explain
the observed period changes on the MS fully within the context
of our model, more effective wind-driven AM loss is needed. In
that respect, the Strassmeier catalog mentions a derived dipole
field for UX Com of 579 G, and for RT And of 526 G, both at
least an order of magnitude higher than the highest value used
in our wind models. In addition, Schrijver & Zwaan (1991) de-
termined observationally that the magnetic activity of stars in
tidally interacting binaries is enhanced with respect to similarly
rotating stars in isolation. This suggests that we need to allow
for a more complicated ‘dynamo relation’ (as used in the Weber-
Davis models) where the properties of the secondary enter in
some way (this applies equally to the angular momentum loss
rates derived empirically from single stars, used by e.g., Ste¸pień
1995, van ’t Veer & Maceroni 1988). The resulting stronger AM
loss, in addition to the structurally dominated spin-orbital ex-

change seen in the cases studied, could indeed bring the negative
d lnP/dt values in order of magnitude agreement. On the other
hand, the detailed magnetic topology in close binary systems
may include the formation of large ‘dead’ zones. Just as in single
star studies (Solanki et al. 1997), no mass and AM is lost from
these zones, so that the loss rates do not necessarily increase
with field strength (Moss 1986). The alternative to making the
wind-driven loss more effective, is to invoke a mechanism such
as that proposed by Applegate (1992): binary period changes
resulting from the orbital response to variations in the shape of
a magnetically active component. However, significant shape
deformations would again require kG magnetic fields.

Therefore, our conclusions are as follows. First, our model
can succesfully be used for investigating the AM evolution in
both symmetric and asymmetric binaries. During periods of
rapid structural evolution (PMS contraction and giant ascension)
we find modest to strong spin-orbital AM exchange. The influ-
ence of stellar winds, as they evolve in character due to changes
in the thermal-magneto-centrifugal driving, can be quantified
with mass loss rates and period variations. The obtained mass
loss rates agree with the solar value on the MS and with the
Reimers relation in the giant phase. Our calculations indicate a
viable path to the formation of contact systems. These are ex-
pected to coalesce and form FK Comae-like objects on relatively
short timescales due to the continuing expansion of the primary.
According to this path binaries with considerably larger initial
periods can end up as FK Comae stars as compared to the sce-
nario proposed by Ste¸pień (1995). We identified a case where
the mass asymmetry was of interest to the global AM evolution:
Case III had its primary dictating the spin-orbital AM exchange,
while the secondary shed the AM from the system in the form
of a magneto-centrifugal wind. Our model results, confronted
with the observational evidence on chromospherically active
binaries, suggests that possibly stronger winds or other mecha-
nisms for changing the orbital AM, at least on short time scales,
are at play in these systems.

Meaningful modifications and extensions of our model
could investigate AM scenarios in other than solar-type star
binary systems, where a wealth of observations exists on mass
loss rates (see the review by Cassinelli & Lamers 1987) and
where other types of wind (radiation driven) are at play.
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Appendix: Weber-Davis wind model

The Weber-Davis model (Weber & Davis 1967) is an ideal
magnetohydrodynamic (MHD) solution for a thermal-magneto-
centrifugally driven stellar wind from a star with radiusR∗ and
massM∗, which rotates with angular velocityΩ∗. In particu-
lar, this model solves for the steady-state (∂/∂t = 0) expan-
sion of the magnetized stellar corona using an axisymmetric
(∂/∂φ = 0) and polytropic description in the equatorial plane.
Hence,p/po = (ρ/ρo)α, wherep is the pressure,ρ is the den-
sity, andα is the polytropic index, while∂/∂θ = 0, andvθ = 0,
with θ the spherical polar angle.

As pointed out in Belcher & MacGregor (1976), a Weber-
Davis wind is completely determined by the set of six dimen-
sionless unknownsx1, x2, x3, x4, x5, x6 defined as

[vro/ao, vφo/ao, rs/ro, vrs/ao, rf/ro, vrf/ao] ,

for given values of the five parametersc1, c2, c3, c4, c5, namely[
α, ao,Ω∗ro/ao,

√
2GM∗/ro/ao,

(
Bro,∗/

√
4πρo

)
/ao

]
.

In these formulae, the subscripto refers to (values at) the ref-
erence radius taken atro ≡ 1.25R∗. With ao the base sound
speed, the last three parameters are dimensionless ratios of the
rotational speed at the reference radius, the escape speed atro,
and the base radial Alfv́en speed to the local sound speed. The
six unknowns are the dimensionless base radial and azimuthal
velocity, plus the location of and the radial expansion velocities
at the two critical points[rs, rf ]. At theseslowandfastcritical
radii, the radial speed goes transonic, in the MHD sense.

We explained earlier (Keppens et al. 1994; 1995) that we
constructed a table of Weber-Davis wind solutions starting
from a reference solar wind solution withα = 1.13, ao,� =
167 km s−1, based on a number density of108 cm−3 and coro-
nal temperature1.5 × 106 K at ro,� = 1.25R�, for a rotation
rate ofΩ� ' 3×10−6 s−1 and coronal field strengthBro,� ' 2
G.

The table of solutions is a two-dimensional grid extending
the range of the centrifugalc3 and magneticc5 parameters from
0.5 to 60 times their solar values. The instantaneous values of
the mass loss rate and the wind timescaleτW for a stellar wind
are obtained as follows. The current rotation rate and stellar
radius yield a centrifugal parameter

c3 = f3 × c3,� = (Ω∗/Ω�)(R∗/R�)c3,�.

Similarly, we assume a saturated dynamo relation so that
Bro,∗(Ω∗) increases linearly withΩ∗ for Ω∗ < 20Ω�, but satu-
rates at a constant value for more rapid rotation. When we addi-
tionally incorporate flux conservation, we write for the magnetic
parameter

c5 = f5 × c5,� = min [(Ω∗/Ω�), 20] fB(R2
∗(tref)/R2

∗)c5,�.

It should be noted that the three cases presented here never
had Ω∗ > 20Ω�, so that in practice the dynamo relation is

linear. In this latter equation, the reference timetref for the flux
conservation is taken as the solar aget� = 4.5 × 109 yr if
available from the evolutionary tracks, and equal to the stellar
ZAMS time of minimal radius otherwise. The factorfB is a
pure multiplicative factor to allow for a higher or lower coronal
field strength than the adopted solar values, but is always taken
fB = 1 in the calculations presented here. Under the assumption
that all other quantities (α, ao or base temperature and density,
andc4 or base escape speed) are given by their solar analogues,
we then obtain the mass loss rate as

Ṁ = 4πρo,�ao,�r2
ox1,

and the timescale for the wind spin down of the stellar envelope
region with moment of inertiaIenv as

τW =
Ienvc3

8π
3 ρo,�ao,�r4

ox1

[
x2 − c2

5
x2
1

(x2 − c3)
] .

When deriving these equations, we used several properties of the
Weber-Davis wind model, like the constancy of the mass flux,
and other known constants of motion. For the standard solar
values, the mass loss rate turns out to be2.94×10−14M� yr−1.

What is immediately evident from these formulae and the
way we use the grid of Weber-Davis wind models to obtain mass
loss rates and wind braking torques is that weneglect the ob-
viously important changes in coronal temperature, density, and
escape speedc4. Especially in the late stages of the giant branch
ascension, these assumptions become questionable. Of partic-
ular importance is the presence of the coronal dividing line in
the HR diagram (Haisch et al. 1991, 1992) to the right of which
stars show little x-ray emission and cool winds. Recently, how-
ever, ROSAT observations have suggested that many stars do not
cross the dividing line in the course of their evolution (Hünsch
& Schröder 1996). In particular, stars withM >∼ 1.2M� ap-
pear to always exhibit coronal activity during the giant phase
according to these authors. In that case, our choice of coronal
temperature should be reasonable throughout their evolution.
However, for less massive single stars, the x-ray emission may
drop significantly in the course of their evolution up the giant
branch. During the later giant phases of these stars our calcu-
lations can only show the qualitative effect of the winds rather
than describing them in quantitative detail.

We do allow for the changing stellar radiusR∗ and stress the
rotational and magnetic characteristics of the stellar wind. The
use of a one-dimensional Weber-Davis prescription must also
be compared to more realistic multi-dimensional stellar wind
models quantifying the effect of the changing magnetic topol-
ogy, as closed field line regions form dead zones from which
no mass or AM is lost (cfr. Keppens & Goedbloed 1999; 2000).
Nevertheless, we believe that the model gives a fair quantitative
indication of the evolving wind influence in the binary systems
we studied. As an example, we plot in Fig. 11 the time evolu-
tion of the AM loss termsJ (i)

env/τ
(i)
W for the system of1.5M� –

1.25M� stars presented in Sect. 3.3. During most of the evolu-
tion, the lighter component is responsible for the AM loss. This
can be understood from Fig. 12 where the[f3, f5] values are
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Fig. 11.For Case III: the two AM loss terms associated with the wind
of each star (J in 1055 cgs units,τW in years). The solid line is for the
primary 1.5M�, the dashed line is for the 1.25M� secondary.

Fig. 12.Case III: the changing character of the wind of each component,
as plotted in the[f3, f5] landscape. As time progresses, the evolution
is towards the labeled endpoint. The first ‘kink’ in the 1.5M� track is
due to the immediate synchronization.

plotted as they change during the evolution. While the heavier
component develops a strong centrifugally driven wind(f3), the
lighter star has a significant magneto-centrifugal driving effect
in its wind (f5). As a result, the system AM can be shed most
effectively by the wind of the secondary.
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