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Abstract. An overview of the theory of the Zeeman effect in diatomic molecules for the limiting Hund’s cases (a)
and (b) is given and a numerical approach for the intermediate coupling case (a–b) is developed. In contrast to
earlier derivations, which were limited to doublets, this approach is valid for terms of any multiplicity. General
properties of the Zeeman effect for the various cases are deduced. Finally, calculated Landé factors for prominent
molecular bands in sunspot and cool-star spectra are employed to predict the general behaviour of these bands in
the presence of a magnetic field below the Paschen-Back limit. The limiting field strength is calculated and listed.
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1. Introduction

The spectra of sunspots and of cool stars contain a rich
collection of molecular lines (e.g. Wallace et al. 1998).
Lines of diatomic molecules observed in sunspot spectra
are good temperature and pressure indicators. They are
also useful for determining elemental and isotopic abun-
dances. However, little is known about their diagnostic
capabilities for magnetic studies. The fact that the effect
of the applied magnetic field in molecular lines is smaller
and less striking than that observed in the most Zeeman
sensitive atomic lines has significantly delayed their use
for diagnosing solar and stellar magnetic fields.

With the development of observational facilities, how-
ever, reports of puzzling polarization signatures of molec-
ular lines compared to atomic lines have appeared (e.g.
Harvey 1973, 1985; Rüedi et al. 1995). These have not
yet been understood. This is not surprising in view of
the scarcity of theoretical work on the molecular Zeeman
and Paschen-Back effects for different coupling and mul-
tiplet cases. Contributions made in the physical litera-
ture commonly tended to explain level splitting with very
high accuracy which is not yet needed in astrophysics,
while intensity and polarization patterns of lines were left
out of consideration. Also, only a very limited sample of
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molecules has been studied in laboratories in the presence
of a magnetic field. Moreover, the two latest theoretical
investigations of the molecular Zeeman effect of spectral
lines were separated by five decades (Hill 1929; Schadee
1978).

A review of theoretical and experimental work done
before the 1930s was given by Crawford (1934). The major
theoretical achievements were understanding the Zeeman
effect in multiplet terms for pure Hund’s cases (a) and (b)
(Kronig 1928) and in doublet terms intermediate between
case (a) and case (b) (Hill 1929). However, for the inter-
mediate case, due to Hill’s choice of case (b) basis func-
tions, it was difficult to obtain analytical, relatively sim-
ple expressions explaining the intensity and polarization of
the Zeeman components. Much later, Schadee (1978) re-
peated Hill’s calculations for transitions between doublet
states with arbitrary spin-orbit and spin-rotation interac-
tions, but with Hund’s case (a) wavefunctions as a basis
set. In spite of the major advance which Schadee’s work
represents, until recently there has been, to our knowl-
edge, only a single attempt to utilize this theory in astro-
physics (Illing 1981). This is partly because the problem
was solved analytically and only for doublet terms, so that
the expressions, although somewhat simpler than those by
Hill, remained rather unwieldy and, unfortunately, were
published with misprints in the decisive equations (some
of them are indicated by Schadee 1980). Nowadays, with
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considerable computer power at our disposal, the problem
of intermediate coupling cases can be solved numerically
and, in principle, for terms of any multiplicity.

Here we make use of this possibility to simplify and
extend Schadee’s description of the Zeeman effect for in-
termediate cases. The first successful application of this
approach has been the first spectral synthesis of molecular
Stokes parameters and the first successful fits to molecular
Stokes I and V profiles observed in sunspots (Berdyugina
et al. 2000). Still missing is a description of the theoretical
approach and a thorough investigation of the diagnostic
capabilities of Zeeman-split molecular lines and of their
applications in studies of solar and stellar magnetic fields.

In the present paper we present details of calculations
of the splitting patterns of lines of diatomic molecules ob-
served in spectra of the Sun and other cool stars at weak
and moderate magnetic fields, i.e. in the Zeeman regime.
In the next paper of this series we investigate the diagnos-
tic capabilities of the Zeeman-split molecular lines typical
of solar and stellar spectra, while in still later papers we
intend to investigate the molecular Paschen-Back effect. In
Sect. 2 of the present paper, we give details of the theory
of the molecular Zeeman effect for the two most important
spin coupling cases and develop a numerical approach for
the intermediate coupling case. In Sect. 3, we present an
overview of the diatomic molecular transitions observed
in optical and near infrared spectra of the Sun and cool
stars and discuss the splitting and Landé factors of a large
number of levels and lines.

2. The molecular Zeeman effect

The magnetic splitting of energy levels in the case of
molecules occurs due to the same fundamental causes
as in atoms: if a molecule possesses a non-zero mag-
netic moment, it interacts with an external magnetic
field (Herzberg 1950). The largest contribution to the
magnetic moment of a diatomic molecule is due to the
magnetic moment associated with the orbital and spin
angular momenta of electrons, L and S, respectively, i.e.:
µ = µL + µS = µ0(L+ 2S), where µ0 is the Bohr magne-
ton. If these moments are zero, the contributions from the
rotational motion of the molecule and the spins of nuclei
need to be taken into account. The energy of the interac-
tion of the magnetic moment µ with the external magnetic
field H is the scalar product of the vectors:

∆E = −µ ·H = −µ0(L+ 2S) ·H, (1)

The energies of magnetic components, therefore, depend
on how the electronic angular momenta are coupled to the
rotation of the molecule.

2.1. Strong spin coupling – Hund’s case (a)

In Hund’s case (a), the electronic angular momenta, both
orbital L and spin S, are strongly coupled to the line
joining the nuclei and interact very weakly with the ro-
tation of the nuclei (Herzberg 1950). Therefore, their

components along the internuclear axis, denoted by Λ
and Σ, respectively, form Ω, the total electronic angu-
lar momentum about the internuclear axis, with quan-
tum numbers Ω = |Λ + Σ|, where Λ = 0, 1, 2, . . . , L and
Σ = S, S − 1, . . . ,−S. If Λ is not equal to zero, there are
2S + 1 multiplet components of a given electronic term.
States with Λ = 0, 1, 2, 3, . . . are denoted as Σ,Π,∆,Φ, etc.
Ω and the angular momentum of nuclear rotation R form
the resultant total angular momentum J with quantum
numbers J = Ω,Ω + 1,Ω + 2, . . ., resulting in the rota-
tional structure of the multiplet subterm for given Λ and
Σ (Fig. 1a). Therefore, in this case, the multiplet splitting
of terms is larger than the rotational splitting.

The interaction of the molecular magnetic moment
with the external magnetic field causes a precession of the
total angular momentum, J , about the field direction. The
space quantization of J results in 2J + 1 magnetic com-
ponents (M = J, J − 1, . . . ,−J) with different energies.
If the interaction of the total angular momentum J with
the external magnetic field H is much weaker than the
interaction of Ω with the rotation, i.e. the magnetic split-
ting is smaller than the rotational splitting, the Zeeman
regime is appropriate. In this case, simple analytical ex-
pressions for the Zeeman splitting patterns can be easily
determined with the help of the vector diagram shown
in Fig. 1a (Herzberg 1950). Since L and S are strongly
coupled to the internuclear axis, the magnetic moment in
this direction is equal to (Λ + 2Σ)µ0. The precession of Ω
can be averaged as Ω/

√
J(J + 1), while the precession of

J about the magnetic field gives M/
√
J(J + 1). Finally,

the magnetic splitting of the level J in Hund’s case (a) is
expressed as follows:

∆E =
(Λ + 2Σ)Ω
J(J + 1)

M∆σ0 = gM∆σ0, (2)

where ∆σ0 = µ0H, and g is the analogue of the Landé
factor for this case. Thus, the splitting is determined only
by the quantum numbers of the transition and is inde-
pendent of the molecular constants. This behaviour is
analogous to the Zeeman effect of atomic lines. Examples
of magnetic splitting of rotational levels in the 2Π state
(Λ = 1,Σ = 1/2) in Hund’s case (a) are shown in Fig. 2.

The electric dipole selection rules allow the transitions
for which ∆Ω = 0,±1,∆Λ = 0,±1,∆Σ = 0,∆J = 0,±1,
with ∆J = 0 being forbidden for Ω = 0→ Ω = 0 transi-
tions. Note that states with Λ=0 always belong to Hund’s
case (b) and are discussed in Sect. 2.2. The three types of
transitions with ∆J = +1,−1, 0 are called, respectively,
the R, P and Q rotational branches. For a transition
between the upper level (Ω′,Σ′, J ′,M ′) and lower level
(Ω′′,Σ′′, J ′′,M ′′), the shift of the Zeeman component from
the zero-field position is therefore

∆σ = (g′M ′ − g′′M ′′)∆σ0. (3)

Strengths of transitions between Zeeman sublevels are
proportional to the squares of the matrix elements of
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Fig. 1. Vector diagrams of a diatomic molecule, denoted by the dumbell shape near the bottom of each frame, in a magnetic
field in Hund’s case (a) and (b). Solid ellipses indicate the precession of J in the magnetic field, H. At the same time, in Hund’s
case (a), the much faster precession of Ω about J takes place. In Hund’s case (b), the nutation of Λ about N is much faster
than the precession of N and S about J , while the latter is much faster than the precession of J in the magnetic field. The
faster motions are shown by dashed-line ellipses. R is the angular moment of nuclear rotation.

Fig. 2. Magnetic splitting of rotational levels with different J in the 2Π state (Λ = 1,Σ = 1/2) for two Hund’s cases. While in
case (a) the splitting rapidly decreases to zero, in case (b) it becomes almost independent on J and approaches the constant
value ∆σ0 = 4.66860 × 10−5 H cm−1 which depends only on the field strength.

the electric dipole operator (Kronig 1928; Hougen 1970;
Schadee 1978):

Sa = q(Ω′, J ′,M ′,Ω′′, J ′′,M ′′)2, (4)

which can be split into two parts, the first depending only
on Ω and J , denoted here as SJ′J′′ , and the second on J
and M , denoted as SM′M′′ :

Sa = SJ′J′′SM′M′′ , (5)
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Table 1. Strengths of transitions between rotational levels for
Hund’s case (a). In the formulae, Ω always means the smaller of
Ω′ and Ω′′, while J= J ′ for emission and J=J ′′ for absorption.

∆J SJ′J′′
∆Ω = 0 ∆Ω = ±1

+1 (J+1)2−Ω2

J+1
(J±Ω+1)(J±Ω±1+1)

2(J+1)

0 Ω2(2J+1)
J(J+1)

(J+Ω+1)(J−Ω)(2J+1)
2J(J+1)

–1 J2−Ω2

J
(J∓Ω)(J∓Ω∓1)

2J

Table 2. Strengths of transitions between Zeeman sublevels
normalized in such a way that their sum over all Zeeman tran-
sitions for the given J ′ and J ′′ is unity. In the formulae, J=J ′,
M=M ′ for emission and J=J ′′, M=M ′′ for absorption.

∆J SM′M′′
∆M = 0 ∆M = ±1

+1 (J+1)2−M2

(J+1)(2J+1)(2J+3)
(J+1±M)(J+2±M)
2(J+1)(2J+1)(2J+3)

0 M2

J(J+1)(2J+1)
(J∓M)(J+1±M)
2J(J+1)(2J+1)

–1 J2−M2

J(2J−1)(2J+1)
(J∓M)(J−1∓M)
2J(2J−1)(2J+1)

for which the relatively simple expressions are given in
Tables 1 and 2. Note that the SM′M′′ are normalized in
such a way that their sum over all Zeeman transitions is
equal to unity, so that SJ′J′′ represents the line strength
in the absence of a magnetic field, i.e. the Hönl-London
factor. The normalization of the Hönl-London factors is
chosen according to Whiting & Nicholls (1974).

Knowing the Zeeman shifts and strengths of transi-
tions, we can thus calculate the effective Landé factor:

geff =
∑
M′′

S̃M′M′′(g′M ′ − g′′M ′′), (6)

where S̃M′M′′ are strengths normalized as follows:∑
∆M=k

S̃M′M′′ = 1, k = +1, 0,−1. (7)

The effective Landé factors are useful for the so-called
weak-field approximation, when the magnetic splitting is
smaller than the line width broadened by other processes.
For most molecular transitions under solar conditions this
approximation is acceptable (in the Zeeman regime). With
the selection rules, we can obtain expressions for the ef-
fective Landé factors of the transitions belonging to the
three rotational branches as follows:

geff(R) = g′(J ′ + 1)− g′′J ′′,
geff(P ) = −g′J ′ + g′′(J ′′ + 1),
geff(Q) = g′ + g′′, (8)

Fig. 3. Zeeman patterns of lines in different branches, arising
in the electronic transition 2∆−2Π from the lower rotational
level J = 6.5, when both upper and lower states are either in
Hund’s case (a) (top row) or in Hund’s case (b) (middle row).
The bottom row displays the appearance of the intermediate
case when the upper state is in case (a) and the lower state is in
case (b). The components with ∆M=−1 are plotted downward
for the sake of clarity. The signs of the effective Landé factors
of lines in the P and R branches are always opposite, if ∆Λ 6=0.
The splitting of lines of the R and P branches is largest for the
intermediate case. Note also that in the Q branches the largest
splitting occurs in the π-components (∆M = 0).

or, using the expressions for the Landé factors for upper
and lower levels,

geff(R) = ∆Ω
Ω′ + Ω′′ + Σ
J ′′ + 1

geff(P ) = −∆Ω
Ω′ + Ω′′ + Σ

J ′′
, (9)

geff(Q) =
(Ω′ + Σ)Ω′ + (Ω′′ + Σ)Ω′′

J ′′(J ′′ + 1)
·

The Zeeman patterns of lines in different branches are
shown in Fig. 3.

From an analysis of the Landé factors, some useful
conclusions can be drawn for Hund’s case (a).

– Magnetic splitting of rotational levels is symmetrical
and proportional to the field strength for a given total
angular momentum number J . It is larger for low J
and rapidly decreases with increasing J (see Fig. 2),
so that effective Landé factors rapidly approach zero.

– The largest Zeeman effect is expected for states with
the greatest Ω numbers.
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– If ∆Ω = 0, the effective Landé factors for the R and P
branches are equal to zero, while for the Q branches, if
transitions are allowed, g′ = g′′, i.e. lines of Q branches
exhibit a simple Zeeman triplet splitting.

– The effective Landé factors of P and R branch lines
are always of opposite sign (unless they are zero), the
sign being determine by the sign of ∆Ω.

– In the Q branch it is the ∆M = 0 transitions (i.e.
the π-component of the Zeeman pattern) which ex-
hibit the largest “splitting”, as can be deduced from
Fig. 3. One therefore expects a larger splitting to be
seen in Stokes I, Q, U than in Stokes V (to which the
π-component does not contribute).

– The partial sums of strengths of Zeeman patterns
for transitions with ∆M = 0,+1,−1 (π- and σ-
components) are equal, so that the line itself undergoes
symmetrical splitting (see Fig. 3).

2.2. Weak spin coupling – Hund’s case (b)

In Hund’s case (b), the orbital angular momentum of
the electrons is coupled to the internuclear axis, whereas
the spin is either very weakly coupled to the axis or
not coupled to it at all (Herzberg 1950). For instance,
when Λ = 0, and S 6= 0, the spin is not coupled to
the axis and, thus, Σ and Ω are not defined. In Hund’s
case (b), the orbital angular momentum Λ and the angu-
lar momentum of nuclear rotation form N , the total an-
gular momentum excluding spin, with quantum numbers
N = Λ,Λ + 1,Λ + 2, . . .. If Λ = 0, the angular momentum
N is identical with the rotational moment. Finally, the
angular momenta N and S form a resultant J , the total
angular momentum including spin, with quantum num-
bers J = N +S,N +S − 1, . . . , |N −S|. Thus, in general,
each level with a given N consists of 2S+1 multiplet com-
ponents. Since the spin is now coupled to rotation, in this
case, the rotational splitting of terms is larger than the
multiplet splitting.

If the interaction of the total angular momentum J
with the external magnetic field H is much weaker than
the interaction of S with the rotation, i.e. the magnetic
splitting is smaller than the multiplet splitting of rota-
tional levels, the Zeeman regime is appropriate. Then, the
energies of the Zeeman patterns can be obtained with the
help of the vector diagram for Hund’s case (b) (Fig. 1b).
Here, the magnetic moment in the direction of J is com-
posed of the contribution due to Λµ0 and 2

√
S(S + 1)µ0

(Herzberg 1950). The nutation of Λ about N averages as
Λ/
√
N(N + 1), and the precession of N about J results

in J(J+1)+N(N+1)−S(S+1)

2
√
J(J+1)

√
N(N+1)

. The precession of S about J

averages as J(J+1)+S(S+1)−N(N+1)

2
√
J(J+1)

√
N(N+1)

. Finally, the precession

of J about the magnetic field direction results in the same
average as in Hund’s case (a), namely M/

√
J(J + 1) (see

Fig. 1b). Then, the magnetic splitting of the rotational

level J is expressed as follows:

∆E =
M∆σ0

J(J + 1)
{ Λ2

2N(N + 1)
× [J(J + 1) +N(N + 1)− S(S + 1)]
+ J(J + 1)−N(N + 1) + S(S + 1) }
= gM∆σ0, (10)

where g is the Landé factor for this case. As in case (a), the
splitting is again determined only by the quantum num-
bers of the transition and is independent of the molecu-
lar constants. Examples of Zeeman splittings of rotational
levels with different J are plotted in Fig. 2 (lower panel).
Note the difference in behaviour of the Zeeman splitting
with increasing J , as compared to Hund’s case (a) (up-
per panel).

The electric dipole selection rules allow transitions for
which ∆Λ = 0,±1,∆S = 0,∆N = 0,±1, ∆J = 0,±1 with
∆N = 0 being forbidden for Λ = 0→Λ = 0 transitions. If
∆J=∆N , then the rotational branches R, P and Q with
∆J=+1,−1, 0, respectively, are called main. If ∆J 6=∆N ,
satellite branches appear, e.g. PR, QP , etc., where the
left superscript denotes the branch type according to the
value of ∆N . For a transition between the upper level
(Λ′, S′, N ′, J ′,M ′) and lower level (Λ′′, S′′, N ′′, J ′′,M ′′),
the shift of the Zeeman component from the zero-field po-
sition is calculated according to Eq. (3) with Landé factors
given by Eq. (10).

Strengths of transitions between Zeeman sublevels in
Hund’s case (b) differ from those of case (a), although they
can also be represented as a product of two parts, the first
depending on Λ, J and N , denoted here for simplicity as
SN ′N ′′ , and the second depending on J and M and being
the same as in Eq. (5):

Sb = SN ′N ′′SM′M′′ . (11)

Here, SN ′N ′′ is the Hönl-London factor for Hund’s case
(b). When both electronic states involved in the transition
are of case (b), expressions of SN ′N ′′ are relatively simple
for states of a given multiplicity (see e.g. Schadee 1964).

The effective Landé factors for Hund’s case (b) are
calculated using Eq. (6) under the normalization given by
Eq. (7). As the intensities of the Zeeman components are
the same as in Hund’s case (a) (see Table 2), the expres-
sions given by Eq. (8) can be used to calculate the effective
Landé factors of lines in the main branches. The Zeeman
patterns of lines in different branches for Hund’s case (b)
are shown in Fig. 3.

From the analysis of the effective Landé factors, we
can draw some useful conclusions for Hund’s case (b) as
well.

– As for case (a), the magnetic splitting of the levels
is symmetrical and proportional to the field strength
for a given angular momentum number J . However,
in contrast to case (a), for large J values the split-
ting of the levels becomes approximately independent
of J and other quantum numbers. The splitting then
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approaches the splitting due to the normal Zeeman ef-
fect, i.e. it becomes on the order of ∆σ0 (see Fig. 2).
Nonetheless, if both upper and lower states are in
Hund’s case (b), the effective Landé factors approach
zero for transitions between levels with large J , but
not that rapidly as in case (a).

– The largest Zeeman effect is expected for states with
the greatest Λ values.

– If ∆Λ 6= 0, the effective Landé factors of the P and
R branches are of opposite sign, the sign being deter-
mined by the sign of ∆Λ.

– If ∆Λ = 0, all branches have non-zero effective Landé
factors, in contrast to case (a). The Q branches be-
have similarly to case (a), i.e. appear as simple Zeeman
triplets with positive geff . The effective Landé factors
of the P and R branches are of opposite sign for dif-
ferent multiplet sub-branches.

– As in case (a), partial sums of strengths of Zeeman
patterns for transitions with ∆M = 0,+1,−1 (π- and
σ-components) are equal, and the line undergoes sym-
metrical splitting (see Fig. 3).

2.3. Intermediate coupling cases

2.3.1. Spin uncoupling

It often happens that one of the states or even both are in
an intermediate coupling case, i.e. between Hund’s cases
(a) and (b). Actually, a molecule in slow rotation gener-
ally is well described by case (a), whereas for increased
rotation case (b) provides a better approximation. Thus,
as the molecule gradually passes from a state of slow ro-
tation (with low values of the rotational quantum number
J) to one of increased rotation (with higher values of J),
the uncoupling of the spin momentum from the molecular
axis and its coupling to rotation also takes place gradu-
ally. Hence, the Zeeman splitting of levels also gradually
changes from Hund’s case (a) to (b) as J increases. This
transition is treated as a first order perturbation of the
pure Hund’s cases.

Below we describe the perturbation calculation of the
molecular Zeeman effect for the intermediate case (a–b)
for terms of any multiplicity. This is in contrast to previous
work, which was restricted to doublets.

Consider the effective Hamiltonian consisting of the
sum of the spin-orbital, rotational and magnetic energies:

H = HSO +Hrot +HH = Hab +HH (12)

which can be split into two parts, Hab and HH, the for-
mer performing the transformation of the case (a) wave-
functions Ψa into the intermediate case wavefunctions Ψab

and the latter describing the interaction with the external
magnetic fields. Because of the weak interaction with the
magnetic field in the Zeeman regime, the two parts of the
Hamiltonian can be treated separately.

The diagonal matrix elements of the Hamiltonian de-
termining the fine and rotational structure of the elec-
tronic state with Hund’s case (a) wavefunctions as a basis

set are given by (Kovàcs 1969):

Hab(Λ,Σ; Λ,Σ) = AvΛΣ
+Bv[J(J + 1)− Ω2 + S(S + 1)− Σ2], (13)

where Av is the constant of the spin-orbit interaction and
Bv is the rotational constant for a given vibrational state
v. The off-diagonal matrix elements of Hab are expressed
as follows (Kovàcs 1969):

Hab(Λ,Σ; Λ,Σ± 1) = Bv
√
S(S + 1)− Σ(Σ± 1)

×
√
J(J + 1)− Ω(Ω± 1). (14)

Then, the intermediate case wavefunctions are obtained
from the case (a) wavefunctions by the transformation

Ψab
N =

+S∑
Σ=−S

CΣ,NΨa
Σ, (15)

the coefficients of the linear combination being the el-
ements of the eigenvectors of the perturbation matrix
given by Eqs. (13) and (14). These eigenvectors are found
numerically.

The second step in the calculation is to find the effect of
the external magnetic field on the new wavefunctions Ψab

N .
Matrix elements of the perturbation HH due to the inter-
action with the magnetic field are given by (e.g. Schadee
1978):

HH(Λ,Σ; Λ,Σ) =
(Λ + 2Σ)Ω
J(J + 1)

M∆σ0,

HH(Λ,Σ; Λ,Σ± 1) =
M∆σ0

J(J + 1)

√
S(S + 1)− Σ(Σ± 1)

×
√
J(J + 1)− Ω(Ω± 1). (16)

Then, the Zeeman shifts of the energy levels are obtained
as follows:

∆E =
∑
Σk

∑
Σj

CΣk,NCΣj ,NHH
ΣkΣj = gM∆σ0, (17)

whereHH
ΣkΣj are the elements of the perturbation matrix

given by Eq. (16) and the Landé factor g is now a linear
combination of the perturbation matrix elements divided
by M∆σ0. It is obvious that even for doublet terms the
analytical expressions of the intermediate Landé factors
are rather complicated, while for terms of higher multi-
plicity they become extremely unwieldy. For this reason
we restricted ourselves to numerical calculations of the in-
termediate case Landé factors for the terms of our interest
(which are discussed in Sect. 3).

The elements CΣ,N and, thus, the Landé factors de-
pend on the spin-orbit coupling and rotational constants.
The ratio Y =Av/Bv characterizes how close the coupling
is to the limiting cases. For Y �J(J+1) the Landé factor
takes the form of case (a) given by Eq. (2); for Y �J(J+1)
it approaches case (b) given by Eq. (10).

Strengths of transitions between Zeeman sublevels in
the intermediate case can be expressed with the help of
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the elements of the transformation matrix (Kovàcs 1969):

Sab = SJ′J′′N ′N ′′SM′M′′

SJ′J′′N ′N ′′ = |
+S∑

Σ=−S
CΣ,N ′

√
SJ′J′′CΣ,N ′′ |2. (18)

Here, SJ′J′′N ′N ′′ and SJ′J′′ are the Hönl-London factors for
the intermediate Hund’s case (a–b) and pure case (a),
respectively. The latter have been introduced in Eq. (5)
and are tabulated in Table 1. SM′M′′ is the normalized
strength of the Zeeman component (cf. Eqs. (5) and (11)),
it is tabulated in Table 2. The transformation matrix co-
efficients CΣ,N ′ and CΣ,N ′′ are calculated for the upper
and lower states involved in the transitions.

The analytical expressions of the matrix elements
CΣ,N and Hönl-London factors SJ′J′′N ′N ′′ for various mul-
tiplet states are given by Kovàcs (1969), although they
can be easily calculated numerically as described above.
The intermediate case Hönl-London factors are to be nor-
malized according to the sum rule given by Whiting &
Nicholls (1974).

The most important conclusions for the intermediate
case (a–b) are the following.

– As well as for the limiting cases, the magnetic splitting
of the levels is symmetrical and proportional to the
field strength for a given angular momentum number
J . The splitting however depends on the rotational and
spin-orbit coupling constants, whose values depend on
the considered electronic state and molecule. Also,
they generally vary among vibrational bands within
an electronic state. Therefore, the perturbation calcu-
lations are specific to a given molecular band.

– In contrast to the limiting cases, if the upper and lower
states strongly differ in spin coupling, absolute val-
ues of the effective Landé factors of the transitions
can increase as J increases, because of increasing the
difference |g′M ′ − g′′M ′′|. For instance, as seen from
Figs. 2 and 3, if one state is described by case (a)
and the other by case (b), the splitting in the R and
P branches increases enormously.

– The sign of the effective Landé factor can change with
J within a given rotational branch.

– As in the limiting cases, partial sums of strengths of the
π- and σ-components are equal, i.e. the line undergoes
symmetrical splitting (see Fig. 3).

2.3.2. Orbital momentum uncoupling

Rotational levels of states with Λ 6= 0 are usually doubly
degenerate, since the projection of the orbital angular mo-
mentum onto the internuclear axis can have two values:
+Λ and −Λ. The degeneracy is removed if the interaction
of the orbital momentum with the rotation of the nuclei is
taken into account (e.g. Herzberg 1950; Kovàcs 1969). If
both states have Λ 6= 0, rotational lines appear as doublets
arising due to transitions between the rotational sublevels

of different symmetry. This phenomenon is called Λ-type
doubling.

The two sublevels arising due to the possible projec-
tions become energetically non-equivalent because of the
interaction of the orbital angular momentum with the ro-
tation and consequent uncoupling of the former from the
internuclear axis. The case of complete uncoupling of the
orbital angular momentum from the internuclear axis is
classified as Hund’s case (d). It can therefore be stated
that Λ-type doubling reflects an early stage of the gradual
transition from case (a) or case (b) to case (d). Taking
into account the orbit-rotation interaction in the pertur-
bation calculations should alter the relative intensities and
magnetic splitting of lines of the Λ-doublets, which are as-
sumed to be equal without such interaction. Although it is
in principle possible to include this effect in our approach,
here we neglect this perturbation as its effect is an order
of magnitude smaller than the perturbation considered in
Sect. 2.3.1 (e.g. Radford 1962). Therefore, by neglecting
perturbations due to L uncoupling we introduce an error
that is only of the order of 10−3 for the Landé factor of
a given level. For astronomical purposes this accuracy is
quite adequate.

3. Molecules observed in solar and stellar spectra

In the visible part of sunspot spectra, lines of about 10 di-
atomic molecules have been identified. They arise due
to electronic-vibration-rotational transitions. These tran-
sitions are observed in spectra of cool stars as well. In
Table 3 we present a list of the transitions of interest. In
order to identify Hund’s case, for each electronic state we
give minimum multiplet and rotational splittings. Recall
that the state belongs to Hund’s case (a) if its multiplet
splitting is larger than the rotational one, and to case (b)
if it is vice versa. If the two kinds of splitting are of a com-
parable size or their relation changes when J increases, the
states are classified as intermediate between the two cases.
As multiplet splitting increases rapidly with the number of
electrons (Herzberg 1950), lighter molecules have normally
states described by Hund’s case (b) or intermediate, while
heavier molecules tend to have states in Hund’s case (a).

As discussed in Sect. 2, for the Zeeman regime to be
valid, the magnetic splitting of molecular levels must be
smaller than their multiplet or rotational splitting, de-
pending on Hund’s case. For the molecules of interest,
we list in Table 3 the magnetic field strength which pro-
duces a Zeeman splitting equal to the smallest splitting
of the electronic state, be it multiplet or rotational. The
tabulated field strengths represent estimates below which
the Zeeman regime is appropriate. One can see that all
Σ states, which are always in case (b), can be treated in
the Zeeman regime only at very weak fields, generally be-
low 500 G. This happens because the spin-rotational cou-
pling is usually so weak that these two angular momenta
are uncoupled even by a small field. This is the molecular
analogue of the atomic Paschen-Back effect. In a forth-
coming paper we will discuss this effect and review the
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Table 3. Diatomic molecules having transitions in the optical
and near IR that are present in sunspot spectra.

Mult. Rot. Mag. Hund’s

State split.(1) split.(1) field(2) case

(cm−1) (cm−1) (G)

TiO X3∆ 96 2.2 4.7 × 104 a

A3Φ 170 3.1 6.6 × 104 a

B3Π 16 1.0 2.1 × 104 a–b(3)

C3∆ 90 2.0 4.3 × 104 a

a1∆ - 3.2 6.9 × 104 a

b1Π - 2.0 4.3 × 104 a

c1Φ - 4.2 9.0 × 104 a

C2 a3Π 15.3 3.3 7.1 × 104 a–b

d3Π 16.9 3.5 7.5 × 104 a–b

CH X2Π 27.9 57.6 6.0 × 105 b

A2∆ 2.0 89.4 4.3 × 104 b

OH X2Π 139 56.7 1.2 × 106 a–b

A2Σ 0.1 34.8 2100 b

CN X2Σ 0.0036 3.8 77 b

A2Π 52.6 26.1 5.6 × 105 a–b

B2Σ 0.0078 3.9 167 b

MgH X2Σ 0.013 11.6 280 b

A2Π 35.3 7.8 1.7 × 105 a–b

B′2Σ . . .(4) 12.4 . . .(4) b

CaH X2Σ 0.022 8.6 470 b

A2Π 79 12.9 2.8 × 105 a–b

B2Σ 0.0069 8.6 148 b

FeH 4∆ 191 19.5 4.1 × 105 a–b
4∆ 214 17.5 3.7 × 105 a–b

(1) Multiplet and rotational splittings are given for the closest
levels, i.e. they represent minimum splittings in a given state.
(2) The equivalent magnetic field strength is calculated for the
smallest splitting in the state. It represents an estimate of the
field strength at which the Zeeman regime is no longer valid
and the Paschen-Back effect has to be taken into account.
(3) Hund’s case changes from (a) to (b) as J increases.
(4) Multiplet splitting was not resolved (Balfour & Cartwright
1976).

states suffering from it. All other states, in both Hund’s
cases, can be treated in the Zeeman regime with high
confidence up to at least 10 kG. Such strong fields are
normally not observed on the Sun and other cool stars.

Transitions within or between such states can be described
by the formalism outlined in this paper. Exceptions to this
rule may be cool magnetic white dwarfs, which can have
strong fields.

When studying magnetic fields in sunspots or on K-
and M-type stars, molecular lines often are a source of
great irritation. Such analyses generally only employ pro-
files of atomic lines, most of which are blended by molecu-
lar lines in sunspot spectra and in the spectra of cool stars.
In order to compensate for these blends, the Zeeman-split
molecular line profiles must be synthesized. An important
example are the OH lines blending the Fe i 15652.9 Å line
in sunspot umbrae (Berdyugina et al. 2002; Lagg et al., in
preparation). On the other hand, the stronger and more
magnetically sensitive molecular lines can provide a pow-
erful diagnostic tool for studying solar and stellar mag-
netic fields. Therefore, we calculated Landé factors for
the states listed in Table 3 and the effective Landé fac-
tors of the transitions between these states. These Landé
factors are valid within the Zeeman regime, i.e. for field
strengths below those listed in Table 3. Below we sum-
marize the magnetic properties of the molecular states
listed in Table 3 and transitions between or within them.
Calculations for pure cases (a) and (b) are valid for any
vibrational band in a given electronic system. The pertur-
bation calculations for the intermediate case are always
made for the (0, 0) band, if not mentioned otherwise.

3.1. TiO

The triplet states of TiO are under strong spin-orbit cou-
pling, except probably the B3Π state. Recently we showed
that the Zeeman splitting of the α (C3∆ − X3∆) and
γ (A3Φ−X3∆) systems calculated for pure Hund’s case (a)
reproduced the Stokes V profiles observed in sunspots very
well (Berdyugina et al. 2000). Therefore, the case (a) ef-
fective Landé factors for these systems should generally
be adequate, especially for transitions between lower ro-
tational levels.

In order to estimate deviations from case (a), we
carried out perturbation calculations as described in
Sect. 2.3.1. For the coupling constant Y we used values
close to: 96 (X3∆), 116 (A3Φ), 42 (B3Π), and 99 (C3∆),
respectively (Ram et al. 1999; Phillips 1973). These values
imply that deviations from case (a) are to be expected for
rotational levels with J larger than 10, 11, 6, and 10, re-
spectively. Indeed, as the perturbation calculations show,
some deviations appear starting from around these levels
(see Fig. 4), although case (a) remains a very good approx-
imation for all states except B3Π. As shown in Fig. 4, the
B3Π2 state represents a very good example of the grad-
ual spin uncoupling as J increases, so that for lower ro-
tational levels (J < 5) the case (a) Landé factors are a
good approximation, while for higher levels (J > 25) the
case (b) Landé factors are better. It is interesting that the
case (a) and (b) Landé factors of the states with the spin
projection zero (X3∆2, A3Φ3, B3Π1, C3∆2) are not very
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Fig. 4. Landé factors for the triplet states of TiO calculated for pure Hund’s cases (a) and (b) – solid lines, and for the
intermediate (a–b) case – dashed lines.

different (the second row in Fig. 4), so that the pertur-
bation calculation does not alter very much the effective
Landé factors of the R2, P2 and Q2 branches.

It is remarkable also that levels that are magnetically
insensitive when described in case (a) become split be-
cause of the applied perturbation. This is the case for the
X3∆1, B3Π0 and C3∆1 states (see the first row in Fig. 4).
Since in these states (Λ + 2Σ)Ω = 0, the case (a) Landé
factors are zero as well. The small spin uncoupling, how-
ever, removes the degeneracy of the levels.

Turning now from the splitting of individual levels
to the Zeeman effect of transitions we find that the
α(C3∆−X3∆) system has, among others, the lowest mag-
netic sensitivity: the geff of its P and R branches are ex-
actly zero in case (a), since ∆Ω = 0 (Fig. 5). Also, as noted
above, the first multiplet substates ∆1 are not Zeeman
sensitive in case (a), since Λ + 2Σ = 0 (see Eq. (2)),
which results in zero effective Landé factors of the Q1

branch as well. Lines of the Q2 and Q3 branches exhibit
a Zeeman triplet splitting for small J numbers, but the
strengths of lines are very small and decrease rapidly as J
increases. The perturbation does not modify significantly

the magnetic sensitivity of the branches whose effective
Landé factors are still close to zero (Fig. 5).

The γ-system (A3Φ−X3∆) is one of the most magnet-
ically sensitive systems, especially the P3 and R3 branches
with |geff | ≤ 2.1 (Fig. 6). The deviations because of the
perturbation are small for small J numbers but become
significant for larger J . This results in a gradual increase
of |geff | as a function of J , so that |geff | approach 0.3–0.5
at J=30 for the P and R branches. Lines of all Q as well
as the P2 and R2 branches are the least perturbed.

The most significant deviations due to the pertur-
bation are seen for the B3Π state. This alters signifi-
cantly the effective Landé factors of lines of the γ′-system
(B3Π −X3∆). The spin coupling in the upper electronic
state is completely transformed from case (a) into case (b)
over a rather small range of J values (see Fig. 4). Because
of this, the |geff | of the P1, P3 and R1, R3 branches in-
crease and take values between 2 and 1, even for large
J numbers (Fig. 7). Landé factors of lines of the other
branches are not significantly perturbed, which is typical
for all the TiO triplet systems.
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Fig. 5. The effective Landé factors for the TiO α-system calculated in the Zeeman regime for case (a) – left panel, and deviations
from them due to the perturbation caused by spin uncoupling – right panel. R, Q and P branches are represented by solid,
dashed and dashed-dotted lines, respectively. In case (a) geff of all R and P branches as well as of the Q1 branch are zero.

Fig. 6. The same as Fig. 5 for the γ-system. All lines of the system are magnetically sensitive, especially those in the P3 and
R3 branches.

Fig. 7. The same as Fig. 5 for the γ′-system. In case (a) (left panel) the geff of the R1, P1 and Q1 branches are zero. With the
perturbation taken into account, the magnetic sensitivity of the P1, P3 and R1, R3 branches increases with J , while that of the
other branches is only slightly modified.
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Fig. 8. The effective Landé factors for the TiO singlet band systems calculated in the Zeeman regime. R, Q and P branches
are represented by solid, dashed and dashed-dotted lines.

For singlet states the total spin S=0. Then, there is no
difference between pure Hund’s cases (a) and (b), and the
expressions for Landé factors given by Eqs. (2) and (10)
are reduced to the same formula. Thus, the effective Landé
factors of the β (c1Φ − a1∆) and δ (b1Π − a1∆) systems
calculated with no perturbations are correct in the first
order approximation. These are presented in Fig. 8. The
systems show moderate magnetic sensitivity with |geff | ≤
1.6, which rapidly decreases as J increases.

On the basis our Landé-factor calculations we conclude
that most TiO lines with J ≤ 12 and also larger J for the
γ′-system observed in spectra of sunspots and cool stars
are potentially good indicators of surface magnetic fields.

3.2. CH

Lines of the A2∆−X2Π system are responsible for the
spectral feature called the G-band, which plays a key role
in stellar spectral classification. When the Sun is imaged
in G-band radiation, it reveals the presence of the so-
called G-band bright points, which correspond to small-
scale magnetic structures within intergranular lanes (cf.
Berger & Title 2001 and references therein). However, the
relationship between the G-band bright points and the
magnetic field is not entirely straightforward and in need
of clarification, in particular since the bright points are a
subject of intensive study. Therefore, the magnetic prop-
erties of the CH lines, which provide a major contribution
to the G-band, are of great importance.

Because of small values of the spin coupling constants
(Y ′ = −0.075 and Y ′′ = 2, Bembenek et al. 1990) both
electronic states of the system are of pure case (b). The
deviations due to incomplete spin uncoupling are rather
small (Fig. 9) and occur only for the very first lines of the
R1, R2 and Q2 rotational branches. The magnetic sensi-
tivity of transitions at low J is quite high, especially for
lines of the R1, P2 and Q1 branches, for which maximum

perturbed geff values of 2.0, −1.1 and 1.4 are respectively
reached. This makes the most Zeeman sensitive CH lines
of the A −X system an attractive indicator of solar and
stellar magnetic fields.

3.3. C2

Both upper and lower electronic states of the Swan sys-
tem (d3Π−a3Π) are under intermediate spin coupling, as
their coupling constants Y are relatively small, −9.7 and
−9.4, respectively (Huber & Herzberg 1979). However, de-
viations from pure case (b) due to incomplete spin uncou-
pling are seen only for small J (Fig. 10), while lines with
J ≥ 10 are well described by case (b). In general, the mag-
netic sensitivity of lines from this system is not very large
as compared to other molecular band systems at similar
wavelengths in the visible.

3.4. OH

The ground state X2Π needs to be described by interme-
diate case coupling which rapidly approaches pure case
(b) as J increases, since Y = −7.5 (Abrams et al. 1994).
Vibration-rotational bands of the Meinel system arising
due to transitions between the levels of the ground state
are observed in the infrared. Lines of theR and P branches
show moderate splitting: |geff | ≤ 0.33 (Fig. 11), while lines
of the Q branches are too weak to be useful. The perturba-
tion calculations are found to be important only for tran-
sitions with small J numbers. The effective Landé factors
are larger for bands of the ∆v = 2 sequence as compared
with those of the ∆v = 1 sequence. In Fig. 11 the pertur-
bation calculations are shown for the (2, 0) band. Lines
of different multiplet transitions in this system have ef-
fective Landé factors of opposite sign. This explains the
puzzling observation of the Zeeman-split opposite-polarity
OH lines from the (2, 0) band in sunspot spectra published
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Fig. 9. The effective Landé factors for the CH A − X system calculated in the Zeeman regime for case (b) – left panel, and
deviations from them due to the perturbation caused by incomplete spin uncoupling – right panel. R, Q and P branches are
represented by solid, dashed and dashed-dotted lines.

Fig. 10. The same as Fig. 9 for the C2 Swan system. The Q branches are very weak in this system and, therefore, are not
plotted here.

Fig. 11. The same as Fig. 9 for the OH vibration-rotational transitions between the levels in the ground state X2Π.
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Fig. 12. The same as Fig. 9 for the OH A−X system.

Fig. 13. The same as Fig. 9 for the CN, MgH and CaH A−X systems. The pure case (b) geff values are identical for all three
molecules and are given in the leftmost panel, while the deviation due to a partial uncoupling of the spin are different and are
plotted individually for the three molecules in the three right-hand panels.

by Harvey (1985). Using the present calculations we re-
cently performed the first successful fit to Stokes I and
V profiles of these lines (Berdyugina & Solanki 2001) and
also OH lines from the (3, 1) band blending the strongly
magnetically sensitive Fe i 15652.9 Å line in sunspot um-
brae (Berdyugina et al. 2002; Lagg et al., in preparation).

The first excited electronic state A2Σ is of pure case
(b), as Λ = 0 and the spin is not coupled to the inter-
nuclear axis at all. Therefore, magnetic properties of lines
of the A −X system observed in the ultraviolet are well
described by case (b), with relatively small deviations due
to perturbations in the ground state (Fig. 12). Lines of the
Q branches are more magnetically sensitive and less per-
turbed. Lines of the R1 and P2 branches show the smallest
effective Landé factors.

As mentioned at the beginning of the present section,
because of the weak spin-rotational coupling in Σ states,
the Zeeman regime calculations for them are limited to
rather small magnetic field strengths. For the OH A2Σ
state, the limit is about 2 kG (see Table 3). Already at
this field strength and certainly above it the Paschen-Back
effect needs to be taken into account. This implies that
in order to use the ultraviolet OH lines to study sunspot

umbrae and cool stars, whose magnetic field strengths can
reach larger values, the calculations must be done in the
Paschen-Back regime.

3.5. CN, MgH, CaH

The ground and first excited electronic states of CN,
MgH and CaH are of two kinds: 2Σ and 2Π, which re-
sult in two band systems A2Π−X2Σ and B2Σ−X2Σ for
each molecule. The magnetic properties of the 2Σ states
in the Zeeman regime are the same as discussed for the
OH A2Σ state (Sect. 3.4), namely they are of pure case (b)
and suffer from the Paschen-Back effect at very weak
magnetic field strengths (see Table 3). The A2Π states
of the three molecules are of the intermediate case (a-b)
with somewhat different spin-orbit coupling constants:
Y (CN) = −31, Y (MgH) = 5.7, Y (CaH) = 18 (Cerny
et al. 1978; Bernath et al. 1985; Berg & Klynning 1974).
As a result, the deviations from pure case (b) for the three
molecules are of different amounts (Fig. 13), the MgH
A − X system being the closest to case (b). Recall that
these calculations are valid only for the Zeeman regime,
which is strongly limited in application, but can be useful,



714 S. V. Berdyugina and S. K. Solanki: The molecular Zeeman effect

Fig. 14. The same as Fig. 9 for the B2Σ − X2Σ systems of
CN, MgH, CaH. As Σ-states are always in pure case (b), no
perturbation calculation is needed for the Zeeman regime.

for instance, for the interpretation of the Hanle effect
in MgH lines discovered in the Sun by Stenflo & Keller
(1997). With the properly accounted Paschen-Back effect,
the A −X systems of CN, MgH and CaH would be sen-
sitive tools for solar and stellar magnetic studies; see our
earlier results for MgH, presented by Berdyugina et al.
(2000), where, however, perturbations to pure case (a)
were combined with the Paschen-Back effect in the multi-
plet structure.

The B2Σ−X2Σ systems of the three molecules are cer-
tainly of pure case (b), and the only perturbation which
should be taken into account is the uncoupling of the
spin from the rotation because of the Paschen-Back ef-
fect, which is the subject of a forthcoming paper. Here,
in Fig. 14, we present calculations for the Zeeman regime
only, which is applicable for very weak fields (see Table 3).
Since Λ = 0 and S = 1/2 in both states, the magnetic sen-
sitivity of the systems is rather low: |geff | ≤ 0.4. This is
critical for the CN B−X system, whose lines are observed
in the near ultraviolet. Therefore, it cannot be considered
as a useful indicator of solar and stellar magnetic fields.
Generally, the A−X systems are much more magnetically
sensitive than the B −X systems of these molecules.

3.6. FeH

The 4∆ −4 ∆ system is produced by transitions between
two electronic states with couplings of the angular mo-
menta that are intermediate between the limiting cases (a)
and (b) (Phillips et al. 1987), although the perturbation
analysis has not been yet done and the spin-orbit coupling
constants were not determined. This makes it difficult to
predict values of the effective Landé factors for FeH lines
for the intermediate case. In Fig. 15 we present only cal-
culations for Hund’s case (a). In this case, geff of the R
and P branches are zero, and only lines of the Q branches

Fig. 15. The same as Fig. 5 for the FeH 4∆−4∆ system. The
multiple Q sub-branches are identified by the corresponding
Ω values. The perturbations from case (a) are expected to be
similar to those shown in the right panel of Fig. 7 for the TiO
γ′-system.

are magnetically sensitive, which appear as simple Zeeman
triplets with |geff | ≤ 2.2.

The perturbations due to spin uncoupling are expected
to be large for the R and P branches. The behaviour
of the perturbed Landé factors appears to be similar to
that of the TiO γ′-system shown in the right panel of
Fig. 7. Namely, absolute values of the geff of lines in the R
and P branches will increase as J increases. Qualitatively,
this is just what was observed by Wallace et al. (1998) in
sunspots. Lines of the Q branches are expected to be less
perturbed (see Fig. 7) and, thus, they will keep their high
magnetic sensitivity for J ≤ 10.5. This is confirmed by our
preliminary case (a) calculation of the most sensitive line
Q7/2,7/2(3.5) (geff = 2.2) which fits perfectly the sunspot
observations (Berdyugina et al. 2001).

We conclude that FeH lines of this system represent a
powerful tool for solar and stellar magnetic field studies,
but are currently limited in usefulness due to the unknown
spin-coupling constants. As soon as the spin-coupling con-
stants are measured, the perturbed Landé factors can be
calculated. Note also that in principle our perturbation
calculation of the Zeeman effect can itself be used as a
tool for determining the spin-coupling constants if appro-
priate Stokes I and V observations are available.

4. Summary

The theory of the molecular Zeeman effect has, in con-
trast to the atomic effect, been largely neglected. With
improved observations, the need for improvements in the
theory has increased. We present here an approach that al-
lows, in addition to the limiting Hund’s cases (a) and (b),
to compute the splittings and strengths of the Zeeman
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components in the intermediate case (a–b) for terms of
any multiplicity.

Already this step enables some general conclusions to
be drawn regarding the influence of the magnetic field on
bands of transitions of interest for the study of solar and
stellar magnetism. Thus, we can say which molecular tran-
sitions observed in the visible are magnetically sensitive
and can be useful diagnostics (if the lines are sufficiently
strong and unblended). In the Zeeman regime the spectral
lines have a symmetric splitting pattern regardless of the
spin coupling case. For the pure Hund’s cases the split-
ting is largest for small J values and rapidly decreases as
J increases. However, within a band, some transitions can
belong to one case while others belong to an intermediate
case. This alters significantly the dependence of the effec-
tive Landé factors of lines on J , so that they can increase
as J increases. This applies in particular to the TiO γ′

(B3Π − X3∆) and FeH 4∆ −4 ∆ systems. Furthermore,
the splitting of transitions in the intermediate case is in
general larger than for pure Hund’s cases (the other pa-
rameters L, S, etc. being equal). One important finding is
Landé factors of negative sign are quite common for molec-
ular levels and lines. Moreover, the sign of effective Landé
factors can change within a band because of gradual spin
decoupling, i.e. in the intermediate Hund’s case (a–b). We
have calculated effective Landé factors in the pure and
intermediate cases for a sample of astrophysically impor-
tant molecules and have drawn conclusions for individual
bands in Sect. 3 which are not repeated here.

It is clear, however, that the present paper is only one
step of many that need to be undertaken before the full
power of the molecular Zeeman effect can be applied to
solar and stellar studies. In a next step we intend to ex-
plore the diagnostic capabilities of various magnetic tran-
sitions within the Zeeman regime, followed by a compari-
son with observations (which have already been initiated
by Berdyugina et al. 2000). Particularly interesting cases,
such as FeH will be studied separately. Finally, we plan to
turn to the molecular Paschen-Back effect. As can be seen
from Table 3 it is potentially important for all the listed
molecules except FeH and TiO (if we restrict ourselves to
transitions in the visible).
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11 230 Å), NOAO, ftp://ftp.noao.edu/fts/spot3atl

Whiting, E. E., & Nicholls, R. W. 1974, ApJS, 27, 1


