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ABSTRACT

Asteroseismology provides us with the possibility of determining the angle, i, between the direction of the
rotation axis of a pulsating Sun-like star and the line of sight. A knowledge of i is important not just for
obtaining improved stellar parameters, but also in order to determine the true masses of extrasolar planets
detected from the radial velocity shifts of their central stars. By means of Monte Carlo simulations, we esti-
mate the precision of the measurement of i and other stellar parameters. We find that the inclination angle
can be retrieved accurately when ie30� for stars that rotate at least twice as fast as the Sun.

Subject headings: planetary systems — stars: fundamental parameters — stars: oscillations —
stars: rotation

1. INTRODUCTION

For an Earth-based observer the rotation axis of the Sun
is almost perpendicular to the line of sight. Traditionally,
the solar rotation axis has been approximated to be exactly
perpendicular to the ecliptic plane for helioseismic investi-
gations of spatially unresolved oscillation data. An excep-
tion concerns the search for oblique rotation of the Sun’s
core (Goode & Thompson 1992; Gough, Kosovichev, &
Toutain 1995). The rotation axes of stars are, however, ran-
domly distributed in space. Since the visibility of the pulsa-
tion modes with various azimuthal orders m is a function of
the angle between the rotation axis and the line of sight, i,
this angle cannot be ignored in asteroseismology. The pres-
ence of random i-values not only affects the method to
measure oscillation mode parameters, but asteroseismology
conversely provides us with the possibility of determining i,
a parameter that in general is very poorly determined. Space
missions such as COROT of CNES (Baglin et al. 2001) and
Eddington of ESA (Favata, Roxburgh, & Christensen-
Dalsgaard 2000) are expected to deliver the data necessary
to do high-precision asteroseismology on a large number of
stars.

The surface rotation rate of a star is one of its fundamen-
tal parameters and has been well studied. The standard
method of deducing the rotation rate is to consider the
widths of spectral lines. This technique only gives v sin i,
however, where v is the equatorial rotation velocity at the
stellar surface. Asteroseismology can in principle provide
measurements of the angular velocity � and the inclination
angle i. From these three measurements it is possible to
determine the stellar radius, another fundamental param-
eter, without knowledge of stellar structure and evolution.

Knowledge of i is important not just for obtaining
improved stellar parameters, but also in order to determine
the masses of extrasolar planets. The standard technique
used to detect such planets is to look for periodic Doppler
shifts in the spectrum of the central star of the extrasolar
planetary system (Mayor & Queloz 1995; Noyes et al. 1997;
Marcy & Butler 2000). This technique, however, only

returns Mp sin ip, where Mp is the mass of the orbiting body
and ip is the inclination of the normal to its orbital plane rel-
ative to the line of sight. Clearly, the mass estimate obtained
in this manner is a lower limit. Since i and ip are expected to
be similar (see below), a knowledge of i would help to
improve the mass estimates of extrasolar planets consider-
ably and would distinguish also misidentified brown dwarfs
in orbits with small ip from bona fide planets. In the solar
system i and ip differ by less than 10� for all the planets
excluding Pluto. In addition, currently favored theories of
planetary system formation predict that the orbital plane of
planets should nearly coincide with the equatorial plane
of the central star (Safronov 1972; Lissauer 1993). An alter-
native technique for detecting planets involves looking for
planetary transits in photometric data. So far this technique
has uncovered only a couple of such systems (Charbonneau
et al. 2000; Henry et al. 2000; Udalski et al. 2002; Konacki
et al. 2003; Dreizler et al. 2003), compared to a total of over
100 planets detected using radial velocities. However, mis-
sions such asCOROT, Eddington, and Kepler aim at discov-
ering many such systems. Since for transiting planets ip is
known to high accuracy (Brown et al. 2001), a comparison
with the independently measured i of the central stars would
allow a direct test of the theoretical prediction that ip and i
are very similar. Clearly, there are many reasons to attempt
to measure i.

Here we present a technique employing low-degree non-
radial oscillations to determine i for sufficiently rapidly
rotating stars. The technique makes use of the fact that the
ratio of amplitudes of the m ¼ �1 and 0 components of
dipole oscillations is a strong function of i. Similarly, the
amplitudes of the peaks in quadrupole multiplets exhibit
different dependences on i. This technique is thus similar to
using the ratios of �ðDMJ ¼ �1Þ to �ðDMJ ¼ 0Þ compo-
nents of Zeeman split atomic transitions to determine the
angle of the magnetic field vector relative to the line of sight,
a standard procedure in Zeeman magnetometry. By study-
ing solar dipole modes of oscillation, Gough et al. (1995)
were able to measure the inclination of the Sun’s rotation
axis within 5� of the true value.

This technique also provides �, the angular velocity. For
active Sun-like stars � can also be determined by following
surface tracers. By comparing the � determined from
oscillations with the angular velocity from tracers, infer-
ences can be made on the stellar differential rotation. A
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knowledge of this quantity, particularly for more rapidly
rotating stars, would be of great interest (e.g., for dynamo
theories). Alternatively, for those stars for which accurate
astrometrically determined parallaxes are known and from
which radii R* have been determined, a comparison of
�R� sin i obtained from asteroseismology with v sin i deter-
mined spectroscopically could set limits on the differential
rotation. We note that differential rotation could be deter-
mined seismically by measuring the rotational splitting
frequencies of the quadrupole modes withm ¼ �1 and�2.

In this paper we simulate a large number of realizations
of oscillation power spectra seen in intensity with known
values of the stellar rotation and of the inclination angle.
We then fit a parametric model to each power spectrumwith
a maximum likelihood technique to estimate i, �, and other
mode parameters. The distribution of the measured values
of i indicates how precise a measurement can be. In order to
assess the feasibility of the technique, we assume that only a
single multiplet, l ¼ 1 or 2, is observed, whereas in reality
we expect a number of multiplets to be accessible. In prac-
tice, the information from tens of modes should be com-
bined to better constrain i. Although we are investigating a
problem that has not been studied before, we employ many
results from helioseismology. We choose to give a fairly
detailed description in order to state underlying assump-
tions and to reach out to a relatively broad audience.

2. EFFECT OF ROTATION ON
STELLAR OSCILLATIONS

Stars like the Sun undergo global acoustic oscillations
driven by near-surface turbulent convection. The pulsation
frequencies !nl of eigenmodes with radial order n and spher-
ical harmonic degree l are characteristic of the spherically
symmetric structure of a star (Brown & Gilliland 1994). For
distant Sun-like stars, observations are mostly sensitive to
high-order acoustic modes with l � 2, i.e., radial, dipole,
and quadrupole p-modes. Because low-degree frequencies
satisfy a relatively simple asymptotic relation (Tassoul
1980) in which the large separation !nl � !n�1;l and the
small separation !n0 � !n�1;2 depend weakly on n, the
degree l of a multiplet can in principle be identified without
ambiguity in the oscillation power spectrum (Fossat 1981).
A solar oscillation power spectrum for 200 days of observa-
tion of the total irradiance (Fröhlich et al. 1997) is shown in
Figure 1. Many attempts have been made to detect p-modes
on other Sun-like stars. So far they have only been clearly

detected on � Cen A (Bouchy & Carrier 2001; Schou &
Buzasi 2001; Bedding et al. 2002).

Rotation removes the ð2l þ 1Þ-fold degeneracy of the
frequency of oscillation of the mode (n, l). The nonradial
modes of a rotating star are thus labeled with a third index,
the azimuthal order m, which takes integer values from �l
to +l. When the angular velocity of the star, �, is small, the
effect of rotation on mode frequencies can be treated as a
small perturbation. In the case of rigid-body rotation, and
to a first order of approximation, the frequency of the mode
(n, l,m) is given by (Ledoux 1951)

!nlm ¼ !nl þm� 1� Cnlð Þ : ð1Þ

The kinematic splitting,m�, is corrected for the effect of the
Coriolis force through the dimensionless quantity Cnl > 0,
whose value depends on the oscillation eigenfunctions of
the nonrotating star. High-order, low-degree solar oscilla-
tions have Cnl < 10�2; rotational splitting is dominated by
advection. We note that the rotation-induced frequency
shift would not be linear in m if the angular velocity � were
to vary with latitude (e.g., Hansen, Cox, & VanHorn 1977).

To the next order of approximation, centrifugal forces
distort the equilibrium structure of the star. This results in
an additional frequency perturbation (independent of the
sign ofm) that scales like the small parameter

�2R3

GM
; ð2Þ

i.e., the ratio of the centrifugal to the gravitational forces at
the stellar surface (Saio 1981; Gough & Thompson 1990).
Here R denotes the radius of the star,M its mass, and G the
universal constant of gravity. Second-order rotational
effects are negligible in the Sun (Dziembowski & Goode
1992). These effects are, however, significant for faster rotat-
ing Sun-like stars (Kjeldsen et al. 1998). Other perturba-
tions, such as a large-scale magnetic field, may introduce
further corrections to the pulsation frequencies (Gough &
Thompson 1990).

In this paper we only consider first-order rigid rotation
and substitute !nl þm� for !nlm. Our purpose is to assess
the feasibility of measuring the basic rotation parameters �
and i. In an inertial frameR0 with polar axis coincident with
the angular velocity vector �, scalar eigenfunctions are pro-
portional to a spherical harmonic functionYm

l ð�0; �0Þ, where
h0 and �0 are the colatitude and longitude defined in the
spherical-polar coordinate system associated with R0.

Fig. 1.—Solar oscillation power spectrum for 200 days of observation of the total irradiance (Fröhlich et al. 1997). The data are from the VIRGO experi-
ment aboard the ESA/NASA Solar and Heliospheric Observatory (SOHO). The global modes of oscillation are ordered in sequence: ðn� 1; l ¼ 2Þ, ðn; l ¼ 0Þ,
and ðn; l ¼ 1Þ with radial order n increasing with frequency. The large frequency separation is ð!n;l � !n�1;lÞ=2� � 135 lHz, and the small separation is
ð!n;l¼0 � !n�1;l¼2Þ=2� � 10 lHz.
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Under the approximation that the intensity fluctuation due
to a mode of oscillation is proportional to a scalar eigen-
function measured at the stellar surface (such as the
Lagrangian pressure perturbation), the brightness varia-
tions due to the free oscillations of a star may be written
as a linear combination of eigenmodes:

I 0 t; �0; �0ð Þ ¼ <
X
nl

Xl

m¼�l

AnlmY
m
l �0; �0ð Þei!nlmt ; ð3Þ

where Anlm are complex amplitudes, t denotes time, and R

takes the real part of the expression. A more accurate
expression for I0 requires an explicit relationship between
modedisplacement and light-fluxperturbation (e.g., Toutain
&Gouttebroze 1993).

To obtain the intensity that an Earth-based observer
would measure, it is convenient to transform to an inertial
frame R with polar axis pointing toward the observer,
inclined by the angle i with respect to X. Colatitude h and
longitude � are spherical-polar coordinates defined in R.
For an appropriate choice of longitude origins, spherical
harmonics expressed in R0 and R are related linearly
according to (Messiah 1959)

Ym
l �0; �0ð Þ ¼

Xl

m0¼�l

Ym0

l ð�; �ÞrðlÞm0mðiÞ ; ð4Þ

where the rotation matrix rðlÞ is real and unitary.
According to Wigner’s formula (see Messiah 1959), each

rotation matrix element can be written explicitly as a homo-
geneous polynomial of total degree 2l in the two variables
sinði=2Þ and cosði=2Þ. Inserting equation (4) into equation
(3), we obtain intensity variations expressed in the frame
with polar axis ð� ¼ 0Þ pointing toward the observer:

Iðt; �; �Þ ¼ <
X
nlmm0

AnlmY
m0

l ð�; �ÞrðlÞm0mðiÞe
i!nlmt : ð5Þ

The spherical harmonic projection (l,m0) is given by a linear
combination of eigenmodes (l, m). From the above equa-
tion, we derive the observed disk-integrated intensity signal,
I(t):

IðtÞ ¼
Z 2�

0

d�

Z �=2

0

d� Iðt; �; �ÞWð�Þ cos � sin � ; ð6Þ

where W(h) is the limb-darkening function. Because the
function Ym0

l ð�; �Þ is proportional to expðim0�Þ, compo-
nents with m0 6¼ 0 vanish upon integration over azimuth,
and

IðtÞ ¼ <
X
nlm

VlAnlmr
ðlÞ
0mðiÞe

i!nlmt ; ð7Þ

with the visibility factorVl given by

Vl ¼ 2�

Z �=2

0

Y 0
l ð�ÞWð�Þ cos � sin � d� : ð8Þ

For each (l,n) there are 2l þ 1 visible peaks in the power
spectrum, as is expected for a steady perturbation such as
rotation. The quantity V 2

l is an estimate of the geometrical
visibility of the total power in a multiplet (l, n) as a function
of l. The solar limb-darkening function quoted by Pierce
(2000) implies ðV1=V0Þ2 ¼ 0:50 and ðV2=V0Þ2 ¼ 0:17. These

estimates are crude (see Toutain & Gouttebroze 1993).
However, the ratios Vl/V0 are unimportant to the present
study as we are interested in the relative power between
azimuthal modes with common values of l and n.

Assuming that there is energy equipartition between
modes with different azimuthal order, we write amplitudes
Anlm in the form

Anlm ¼ Anlj jei�nlm ; ð9Þ

where the magnitude Anlj j is independent ofm and �nlm is an
arbitrary phase. Using this assumption, consistent with the
solar data, together with equation (7), we find that the
dependence ofmode power on azimuthal orderm is given by

ElmðiÞ ¼ r
ðlÞ
0mðiÞ

h i2
: ð10Þ

Matrix elements r
ðlÞ
0mðiÞ are explicitly given by Messiah

(1959) in terms of associated Legendre functions, Pm
l :

ElmðiÞ ¼
ðl � mj jÞ!
ðl þ mj jÞ!

P
mj j
l ðcos iÞ

h i2
: ð11Þ

The above equation links mode visibility to inclination
angle i (see also Dziembowski 1977; Toutain &Gouttebroze
1993). It provides the basic information required to later
extract i from photometric measurements. It is, however,
unknown whether the key assumption, equation (9),
remains valid for very fast rotators as rotation affects con-
vection and therefore the mechanism by which acoustic
modes are excited. For dipole multiplets, l ¼ 1, the observed
mode power (eq. [11]) is given by

E1;0ðiÞ ¼ cos2 i ; ð12Þ
E1;�1ðiÞ ¼ 1

2 sin
2 i : ð13Þ

For quadrupole multiplets, l ¼ 2, we have

E2;0ðiÞ ¼ 1
4 3 cos2 i � 1
� �2

; ð14Þ
E2;�1ðiÞ ¼ 3

8 sin
2ð2iÞ ; ð15Þ

E2;�2ðiÞ ¼ 3
8 sin

4 i : ð16Þ

It is worth noting the symmetries Elmð�iÞ ¼ Elmð�� iÞ ¼
ElmðiÞ. Knowledge of Elm(i) is not enough to fully specify the
direction and sense of the rotation axis, but only ij j mod �.
When the rotation axis is aligned with the line of sight (i ¼ 0
mod �), only the mode m ¼ 0 is visible and rotation cannot
be inferred. Notice also that

P
m ElmðiÞ ¼ 1, so that Elm rep-

resents the relative power in the mode m within a multiplet
(n, l).

3. MODELING OSCILLATION POWER SPECTRA

In the previous section we studied the intensity variations
due to the free oscillations of a star with an arbitrary orien-
tation of the rotation axis. We found that the brightness
variations can be approximated by

IðtÞ ¼
Xl

m¼�l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ElmðiÞ

p
cos !nl þm�ð Þtþ �m½ � ; ð17Þ

when considering only the contribution from a single multi-
plet (n, l). The observed power in the azimuthal component
m is given by Elm(i), and �m is an arbitrary phase. In Sun-like
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stars, oscillations are, however, excited by near-surface tur-
bulent convection. The above model is too simple as it
ignores the stochastic nature of stellar pulsations (Woodard
1984). Oscillations also have a finite lifetime determined by
their interaction with convection. In this section we give a
more realistic description of the statistical properties of the
oscillation signal in Fourier space.

The observed brightness variations of a star are presumed
to be given by the function I(t) recorded over a large obser-
vation time interval of length T, at a sufficiently high
cadence (say, less than 1 minute). Since pulsations are
forced by turbulence, the signal is a random sample drawn
from some probability distribution. Neglecting edge effects
introduced by the time window, we assume that I(t) is a sta-
tionary process. We denote by I(!j) the fast Fourier trans-
form of I(t) sampled at the angular frequency !j ¼ 2�j=T .
A random variable is fully specified by its expectation value,
E, and higher order moments (in the sense of ensemble
averages). Here I(!j) is complex with zero mean,
E½Ið!jÞ� ¼ 0, and stationarity implies that frequency bins
are uncorrelated:

E I !j

� �
I !j0
� �h i

¼ 0 for j 6¼ j0 ; ð18Þ

where the bar denotes the complex conjugate. Foglizzo et al.
(1998) showed that low-degree modes are essentially uncor-
related. This is a consequence of the fact that there is a very
large number of excitation events per damping time. The
central limit theorem ensures that mode amplitudes con-
verge to independent Gaussian distributions. The signal
I(!i) can thus be modeled by a sum of independent complex
Gaussian random variables:

I !j

� �
¼

X
m

�m !j

� �
Nm;j þ �nNn

j : ð19Þ

The symbol N denotes a complex Gaussian random varia-
ble with zero mean and unit variance, E½jNj2� ¼ 1. The
standard deviation of a mode amplitude, denoted by the
function �m(!), is large for ! near the resonant frequency
!nl þm� (see below). The distributions Nm;j are all inde-
pendent of each other. The additional term �nNn

j denotes
uncorrelated Gaussian noise with standard deviation �n.
The origin of this noise is both stellar (convection) and
instrumental (e.g., photon noise). For simplicity, the noise
level, �n, is assumed to be frequency independent over a
small frequency interval around !nl.

In order to obtain �m(!), one should in principle solve the
inhomogeneous wave equations once a model for wave
damping and excitation has been specified. Here, however,
we parameterize the variance �2

m in the form

�2
mð!Þ ¼ SElmðiÞLnlð!�m�Þ : ð20Þ

The constant S gives the overall amplitude of the power,
and the weights Elm(i) give the m-dependent visibility as a
function of inclination angle i (see x 2). The line shape,
Lnl(!), is a real positive function that becomes large for !
near the resonant frequency !nl. We choose the standard
Lorentzian line profile (e.g., Anderson, Duvall, & Jefferies
1990) appropriate for describing an exponentially damped
oscillator:

Lnlð!Þ ¼ 1þ !� !nl

�=2

� �2
" #�1

; ð21Þ

where the damping rate C represents the FWHM of Lnl(!).
Notice that equation (21) only gives the positive-frequency
part of the spectrum; the negative-frequency part does not
contain extra information and can be deduced from the
relation Ið�!Þ ¼ I !ð Þ.

Since the sum of independent Gaussian random variables
is a Gaussian variable, the Fourier spectrum (eq. [19]) at
frequency !j can be written in terms of a single complex
normal distribution,Nj:

I !j

� �
¼ S

X
m

ElmðiÞLnl !j �m�
� �

þN

" #1=2

Nj : ð22Þ

We introduced the notation N ¼ ð�nÞ2. The traditional
method to generate a complex Gaussian distribution is
called the Box-Muller method. Given a uniform distribu-
tion on [0, 1], Uj, and a uniform distribution on [0, 2�], �j,
the random variable

Nj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnUj

p
ei�j ð23Þ

is complex Gaussian with independent real and imaginary
parts and unit variance. From equations (22) and (23), we
see that a realization of the power spectrum is given by

P !j

� �
¼ I !j

� ��� ��2¼ � ln Uj

� �
P !j

� �
; ð24Þ

whereP is the expectation value of the power spectrum,

P !j

� �
¼ S

X
m

ElmðiÞLnl !j �m�
� �

þN : ð25Þ

We now have an expression for generating realizations of a
stellar oscillation power spectrum. Because Lnlð!nlÞ ¼ 1, it
makes sense to refer to S/N as the signal-to-noise ratio in
the power spectrum. Since � lnðUjÞ is an exponential distri-
bution with unit mean and variance, the probability density
function of the random variable P(!j) is given by

f Pj

� �
¼ 1

P !j

� � exp � Pj

P !j

� �
" #

; ð26Þ

where f(Pj) describes the probability that P(!j) takes a par-
ticular value Pj (Woodard 1984; Duvall &Harvey 1986).

Figure 2 shows plots of the expectation value of the power
spectrum,P(!), for various values of the inclination angle i.
The left-hand panels in Figure 2 are for dipole multiplets
l ¼ 1, and the right-hand panels for quadrupole multiplets
l ¼ 2. In these plots the parameters are � ¼ �� and
� ¼ 6��, where ��=2� ¼ 1 lHz and ��=2� ¼ 0:5 lHz are
characteristic solar values for the line width and the angular
velocity. For noiseless data, the dependence of the power at
different frequencies on i is clearly evident, and it is possible
to distinguish between different i-values relatively easily.

To illustrate the effect of stochastic excitation, Figure 3
shows two realizations, P(!), of an l ¼ 2 power spectrum
for i ¼ 30� and 80�, together with the expectation values
denoted by the thick curves. A solar-like background noise
was prescribed (S=N ¼ 100). Although realization noise is
important, the two spectra can be distinguished from each
other.

4. ESTIMATION OF STELLAR PARAMETERS

In the previous section we described a simple statistical
model for the stellar oscillation power spectrum. This model
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depends on a minimal set of physical parameters (!nl, C, �,
i) and the overall signal and noise levels (S, N ). In this sec-
tion we describe an algorithm that allows these parameters
to be estimated from a realization of the power spectrum.
We use the maximum likelihood method, which is com-
monly used in helioseismology (e.g., Anderson et al. 1990;
Schou 1992; Toutain & Appourchaux 1994; Appourchaux,
Gizon, & Rabello-Soares 1998; Appourchaux et al. 2000).

We consider a section of the spectrum that includes the
2l þ 1 peaks of a given multiplet (l, n). The spherical har-
monic degree l is either 1 or 2. We denote by k the set of
parameters that we want to estimate:

k ¼ �kf g i;�; !nl ;�;S;Nf g : ð27Þ

Maximum likelihood estimators involve specifying the joint
probability density function for the sample data fPjg. For a
given frequency !j, the probability that the power takes the
particular value Pj is given by the probability density func-
tion, f(Pj) (see eq. [26]). We write f ðPj jkÞ to indicate the
dependence on the parameters k. Because frequency bins
are independent, the joint probability density function is
simply the product of f ðPj jkÞ for the index j spanning the
frequency interval of interest. The likelihood function FðkÞ
is another name for the joint probability function evaluated

Fig. 2.—Expectation value of the power spectrum,P(!), for dipole and quadrupole multiplets as a function of the inclination angle i. The left-hand panels
are for dipole multiplets, l ¼ 1, and the right-hand panels are for quadrupole multiplets, l ¼ 2. The parameters are � ¼ �� and � ¼ 6��, where ��=2� ¼
1 lHz and��=2� ¼ 0:5 lHz are characteristic solar values for the line width and the angular velocity. The bottompanels show the power for the specific values
i ¼ 30� (solid lines) and 80� (dashed lines). There is no background noise in these plots.

Fig. 3.—Two realizations of the power spectrum of an l ¼ 2multiplet vs.
centered frequency ð!� !nlÞ=2�. The stellar rotation is � ¼ 6��, and the
mode line width is � ¼ ��. (a) corresponds to an inclination angle i ¼ 30�,
and (b) is for i ¼ 80�. A signal-to-noise ratio S=N ¼ 100 has been pre-
scribed, and the simulation corresponds to 6 months of uninterrupted
observations. Expectation values of the power are overplotted.
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at the sample data

FðkÞ ¼
Y
j

f Pjjk
� �

: ð28Þ

The basic idea of maximum likelihood estimation is to
choose estimates k� so as to maximize the likelihood
function. In practice, one minimizes

LðkÞ ¼ � lnFðkÞ : ð29Þ

This gives the same result since the logarithm is a monotonic
increasing function. The probability of observing the sam-
ple values is greatest if the unknown parameters are equal to
their maximum likelihood estimates:

k� ¼ argmin
k

LðkÞf g : ð30Þ

In this paper we use the conjugate gradient method to find
the parameters that minimize the functionL.

The method of maximum likelihood has many good
properties (e.g., Kendall & Stuart 1967; Rao 1973). The
maximum likelihood estimate k� is not biased as the sample
size tends to infinity.Moreover, for large sample size, k� will
have an approximate multinormal distribution centered on
the true parameter value k. Maximum likelihood estimators
are also minimum variance estimators. Furthermore, when
the model is misspecified, k� will still have a well-defined
probability distribution and will be approximately normally
distributed. In our case we have a finite sample size, since T
is limited to a few months. There is no guarantee that the
maximum likelihood estimator will be normally distributed
or even unbiased. Note also that the distribution of i* has to
be periodic sinceL only depends on ij jmod �.

In order to derive the correct probability distributions of
the likelihood estimates, we run Monte Carlo simulations
(e.g., Toutain & Appourchaux 1994). The method consists
of simulating a large number of realizations of a power spec-
trum and then fitting each realization to construct the distri-
butions of the measured parameters. Monte Carlo
simulations enable us to determine the bias and the preci-
sion associated with the measurement of each parameter �k.
Ideally we would want to run simulations for each relevant
point in k-space and for varying observation times T.
Because Monte Carlo simulations are time consuming, we
decide to keep C and S/N fixed to their solar values, varying
only � and i. For all simulations, the observation time is
T ¼ 6 months.

5. RESULTS

In Figure 4 we show the results for one set ofMonte Carlo
simulations. Plotted are in Figures 4a and 4c the inclination
angle i* and in Figures 4b and 4d the angular velocity in
solar units, �*/��, returned by the fit versus the inclination
angle, i, that entered the computation of each realization.
For this set we simulate a single l ¼ 1 triplet and the rota-
tion frequency is � ¼ 6��. For each value of the inclination
angle i ranging from 0� to 90�, we computed 2000 realiza-
tions of the power spectrum. The initial guesses in !�nl , C*,
S*, andN* for the fits to the simulated spectra are randomly
distributed in some interval around the true parameter val-
ues. The random initial guess in i* is uniformly distributed
between 0� and 90�, whatever the true inclination angle. For
�*, we started with two different initial guesses. The guesses
are indicated by the dashed lines in Figures 4b (for the

results shown in Figs. 4a and 4b) and 4d (for Figs. 4c and
4d). The guess for � shown in Figure 4d is not too dissimilar
from an initial guess based on v sin imeasurements.

We note that most i* values returned by the fits lie within
�5� of the true i. However, the distribution of i* is highly
non-Gaussian as i tends to either 0� or 90�. The accuracy is
lower for small i-values in particular if a wrong initial guess
of �* is made (Fig. 4c). In this case the fits tend to either
i� ¼ 0� or 90� for id10�. The inaccuracies in �* are also
largest for small i, and systematically too low values are
returned if the initial guess is too low (Fig. 4d).

The reason for this behavior lies in the fact that only the
m ¼ 0 component is visible at i 	 0 (Fig. 2). Hence, the
oscillation spectrum does not provide any means of distin-
guishing between a (rapidly) rotating star observed almost
pole-on and a nonrotating (or very slowly rotating) star
with arbitrary i-value. In this case the maximum likelihood
fit returns the solution closer to the initial guess (compare
Figs. 4b and 4d).

In Figure 5 we plot the same as Figure 4, but for an l ¼ 2
mode. On the whole, the results look similar. At most incli-
nation angles the accuracy in the measurements of i* and
�* is higher than for l ¼ 1. The major exception is i in the
range 20�–40�. The fitting procedure cannot decide between
i� 	 i, �� 	 � and i� 	 90�, �� 	 �=2. Figure 2 again
reveals the cause of this uncertainty. For i 	 20� 40� only
the m ¼ 0 and �1 components have significant power. The
solution with �� 	 �=2 is achieved if the m ¼ �1 compo-
nents are misidentified as Dm ¼ �2. This is only possible if
simultaneously i� 	 90� is assumed (see Fig. 2). Unsurpris-
ingly, this wrong solution is more commonly obtained when
the initial guess of �* is closer to �/2 than to � (Fig. 5d).
For ie80� again two solutions are obtained, the correct one
and�� 	 2� combined with i� 	 30�. In this case the fitting
procedure misidentifies them ¼ �2 peaks asm ¼ �1 peaks.

The most reliable result is obtained by fitting dipole and
quadrupole modes simultaneously. Figure 6 shows likeli-
hood estimates for three multiplets l ¼ 0, 1, 2 combined.
The ambiguities at i 	 20� 40� and ie80� present in the fits
to l ¼ 2 alone are removed, while the scatter in i* and �* is
considerably smaller than for fits to l ¼ 1 peaks alone. Only
the ambiguity at id10� remains. ‘‘Medians ’’ and ‘‘ error
bars ’’ are plotted in Figure 6. By construction 2

3 of the points
lie between error bars. Because the distributions of i* and
�* are definitely not Gaussian, these values are only indica-
tive; they are not sufficient to assess the measurement preci-
sion. Also plotted in Figures 6c and 6d are the fitted
frequency of the l ¼ 0 mode, !�n0, and the line width, C*,
common to all the modes. The measurement accuracy of
these parameters appears to be independent of the inclina-
tion angle i. Indeed, rotation has no effect on the singlet
l ¼ 0. Including an l ¼ 0 mode in the minimization proce-
dure helps in turn to measure �* and i* from the dipole and
quadrupole modes by reducing the uncertainty on C*.

So far we have only considered rapidly rotating stars with
rotational splitting considerably larger than the line width.
We now turn to the case � ¼ 2�� and repeat the analysis
described above for � ¼ 6��. The distribution of i* and �*
obtained by fitting 750 realizations to l ¼ 0, 1, 2 combined is
shown in Figure 7. As expected, the accuracy of the deduced
i* and �* values is considerably lower now than for the
more rapidly rotating stars. The individual azimuthal com-
ponents in a multiplet are not resolved since � ¼ 2�. For
ie45� the errors are found to be around �10� for i* and
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5%–15% for �*/�. At smaller i-values the fits tend to over-
estimate i and the uncertainty for both i* and �* becomes
excessively large for decreasing i but remains unchanged for
!�n0 and C*. A comparison with Figure 7 reveals that the
accuracy of these last two quantities is mostly independent
of the rotation rate when l ¼ 0, 1, 2 are fitted together.

Although extremely useful, Monte Carlo simulations
require long computations. A less reliable but straight-
forward method to obtain a formal error, �k, on the maxi-
mum likelihood estimate ��k is to expand L about the true
parameter value �k. As mentioned earlier, in the limit of
infinite sample size, k� tends to a multinormal probability
distribution that is asymptotically unbiased,

E ��k
� �

¼ �k ; ð31Þ

and has minimum variance. An estimate of �k is

�2
k ¼

1

Ckk
; ð32Þ

where Ckk is the kth element on the diagonal of the inverse,
C ¼ H�1, of the Hessian matrix given by

Hkk0 ¼ E
@2L

@�k@�k0
ðkÞ

	 

: ð33Þ

The formal error �k, called the Cramer-Rao lower bound, is
a lower limit on the error bar associated with the measure-
ment of �k (e.g., Kendall & Stuart 1967). Toutain &
Appourchaux (1994) showed that these error bars are useful
estimates in helioseismology.

Figure 8 shows the errors �sin i and �� derived from equa-
tion (32) for a single l ¼ 1 mode, plotted as a function of
sin i and �/��. This calculation is easier to carry out when
sin i is chosen as an independent parameter instead of i. A
comparison with Figures 6 and 7 reveals that the error bars
obtained by inverting the Hessian have the correct magni-
tude. By construction they are symmetric about the true
parameter values and cannot describe the asymmetric distri-
bution of i* displayed by the Monte Carlo simulations

Fig. 4.—Maximum likelihood estimates i* and�* deduced from an l ¼ 1 triplet vs. the true i. The true rotation frequency is� ¼ 6��. Plotted are the results
of 2000 realizations. (a) and (b) differ from (c) and (d ) in the initial guess for the rotation rate (indicated by the dashed lines). The scale indicates the percentage
of the points falling into a bin. For (a) and (c) a bin is 2�. For (b) and (d ) a bin is 0.12��.
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(Fig. 7). Of particular interest is the dependence of the error
bars on �. Figure 8 suggests that it is extremely difficult to
determine either i or � for a star with the solar rotation rate
when a single mode l ¼ 1 is taken into consideration.

We have also determined error bars from Monte Carlo
simulations for stellar rotation frequencies in the range
1 < �=�� < 10, although restricted to only i ¼ 30� and
80�. Medians and error bars are plotted in Figure 9 for a
simultaneous fit to three multiplets, l ¼ 0, 1, 2. This figure
shows that it is realistic to apply asteroseismic techniques
for �e2��, with the results being more reliable for i ¼ 80�

than i ¼ 30�. When azimuthal modes are fully resolved (say,
� > 3��), error bars are fairly independent of the rotation
rate. Note that for i ¼ 30� and� < 2��, the error bars on�
(Fig. 9b) appear to be decreasing for decreasing�. This is an
artifact: we simply do not have enough realizations to
describe the broad distribution of �* in this range. Further-
more, likelihood estimates i* and �* appear to be biased
when �d2��. This is likely to be due to our definition of
the median (we do not take into account the periodic nature
of the distributions).

6. DISCUSSION

We have shown in this paper that the inclination angle, i,
of the axis of rotation of a Sun-like star can in principle be
determined with great precision using the techniques of
asteroseismology. The observational requirement is a long,
nearly continuous time series sampled at a high cadence.
The missions COROT and Eddington will provide such data
for a large number of stars, with continuous observation for
up to 5 and 36 months, respectively. The Danish project
MONS (Kjeldsen & Bedding 1998) aims at targeting indi-
vidual stars for up to 2 months with a high duty cycle. We
have found that it is difficult to estimate the inclination
angle for stars with i < 30�, whereby this limit is lower for
more rapidly rotating stars. Note however that, statistically,
more than 85% of the stars have i > 30�.

Gough et al. (1995) applied essentially the same method
to estimate the inclination angle of the Sun. Solar p-modes
were observed continuously in irradiance for 160 days in
1988 by the IPHIR experiment (Phobos mission). Gough et
al. (1995) found the ratio between the power in (l ¼ 1,

Fig. 5.—Same as Fig. 4, but for an l ¼ 2multiplet
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m ¼ 0) modes and (l ¼ 1, m ¼ �1) modes to be less then
0.0009, i.e., i > 89=96. They pointed out that at the time of
the observations the mean inclination of the rotation axis of
the solar surface was i ¼ 85�, corresponding to an expected
ratio of 0.015. Although this discrepancy could be inter-
preted as a depth dependence in the direction of the solar
rotation axis, it is more likely that it is due to a measurement
bias. Examination of Figure 4a reveals that the fitting proce-
dure preferentially returns values i� 	 90� for inclination
angles in the range 80� < i < 90�. Besides, the hypothesis of
solar rotation about a unique axis is consistent with spa-
tially resolved LOI data (Gizon, Appourchaux, & Gough
1998). From an astronomer’s point of view, it should be
clear that Gough et al. (1995) were successful in measuring i
with a good precision. We also note that Paunzen, König, &
Dreizler (1998) used a somewhat similar diagnostic, i.e., the
amplitude ratio of m ¼ �1 and 0 dipole gravity modes, to
estimate the inclination of an oscillating pre–white dwarf
star.

The precision that can be achieved on the measurement
of i depends on each individual star. First of all, acoustic
modes must be excited to a sufficiently high amplitude. In
this paper we fixed luminosity amplitudes at their solar
value with respect to the background noise. Houdek et al.
(1999) presented estimates of oscillation amplitudes in
main-sequence stars derived from model calculations of

stellar convection. They found that velocity amplitudes
essentially scale like the mass-to-light ratio of the star, in
agreement with an earlier prediction by Kjeldsen & Bedding
(1995). The noise background may also vary. Here we took
S=N ¼ 100, but it has been shown that a useful estimate of i
can be obtained when the signal-to-noise ratio is as low as
S=N ¼ 20 (Gizon 2002).

Another condition for determining i is a sufficiently high
stellar rotation rate, in order to resolve azimuthal modes
split by rotation. This condition is met when the angular
velocity of the star, �, is at least twice larger than the line
width, C, of the modes of oscillation. Since C is a decreasing
function of frequency, the analysis of low-frequency multi-
plets may be crucial in order to measure the inclination
angle of slowly rotating stars. We refer the reader to the
work of Houdek et al. (1999) for a study of the variation of
mode damping with frequency and stellar parameters. It
should be mentioned that the line profile of a peak in the
power spectrum may show a small asymmetry. Provided
that the asymmetry does not depend on m and that the
peaks in a multiplet are resolved, our results will not be
affected.

A single realization of the power spectrum will be avail-
able for a particular star. How will we know when a mea-
surement of i is meaningful? A large set of Monte Carlo
simulations will be essential in assessing the reliability of

Fig. 6.—Maximum likelihood estimates obtained by fitting three multiplets l ¼ 0, 1, 2 simultaneously, for � ¼ 6��. The gray scale shows the distributions
of i*, �*, the FWHM, C*, and the frequency of the l ¼ 0 mode, !�n0, vs. i. Plotted are the results of 750 realizations. The thin double lines mark the median of
the estimated parameters for each i, and 2

3 of the points fall in between the two thick lines.
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Fig. 8.—Formal error bars obtained by inverting the Hessian for an l ¼ 1 multiplet. In (a) and (c) the error bars on i* and �* vs. sin i are given for two
rotation rates, � ¼ 2�� (dashed curves) and � ¼ 6�� (solid curves). In (b) and (d ) error bars for i ¼ 30� (dashed curves) and 80� (solid curves) are plotted vs.
�=��. A sample error bar for� ¼ 2�� and i ¼ 30� is explicitly plotted. Other parameters are � ¼ ��, S=N ¼ 100, andT ¼ 6months.

Fig. 7.—Same as Fig. 6, but for� ¼ 2��



a measurement. As we saw in this study, the answer is
likely to be very reliable for several outcomes of the mini-
mization procedure (e.g., large �* and large i*). In general,
the fit also returns an error bar on each estimated parame-
ter that could be used to further increase the confidence in
a measurement. Finally, we repeat that the precision on i
can be improved by considering more than one multiplet in
the power spectrum. The exact number of potentially usa-
ble modes depends on the oscillation amplitudes for a

particular star. For the Sun, tens of modes can be
employed (Fig. 1).
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