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Summary. Expressions defining the contribution functions of the
“line depression” Stokes profiles formed in a general magnetic
field are derived. This definition is valid for a general atmosphere.
Such contribution functions are better suited to determining the
heights at which the bound-bound transitions responsible for
spectral lines are important than the contribution functions to the
“intensity” Stokes parameters defined by Van Ballegooijen
(1985). Expressions defining response functions for both “inten-
sity” and “line depression” Stokes parameters are also derived for
an arbitrary atmosphere and magnetic field. A code for calculat-
ing the various Stokes contribution functions is described and
some example calculations are presented. These clearly demon-
strate the superior diagnostic value of the contribution functions
to the “line depression” Stokes profiles.

In an Appendix an analytical calculation of the contribution
functions for a special case (absorption matrix independent of
optical depth) is presented. A major result of this analytical
calculation is a simple relationship between the contribution
functions of the Stokes I and V profiles for weak fields.

Key words: lines: formation — polarization — radiation transfer —
stars: magnetic field sun: magnetic field

1. Introduction

Stellar spectral lines are generally analysed in order to probe
the atmospheres in which they are formed. Therefore it is
important to know just at which depth in the atmosphere a
spectral line, or, to be more precise, a specific part of the spectral
line is “formed”. A rich and, for that matter, controversial
literature exists on the subject (e.g. De Jager, 1952; Pecker, 1952;
Mein, 1971; Gurtovenko et al., 1974; Beckers and Milkey, 1975;
Caccin et al., 1977; Makita, 1977; Gurtovenko and Sheminova,
1983; Magain, 1986). Two different approaches have been pro-
posed to solve the problem, one uses a “Contribution Function”,
the other a “Response Function”. While it seems generally
accepted by now that the two concepts are complementary to each
other, so that the choice between them should be made according
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to the kind of information one wants to extract from an observed
line profile, the exact form of these functions has been quite
controversial until rather recently. We feel that the issue has been
settled, at least in principle, by the work of Magain (1986) who
developed plausible selection criteria for both functions. Thus it is
now possible to obtain unambiguous information on structural
details of stellar atmospheres from the analysis of line profiles.
When it comes to the interpretation of the Stokes parameters
which emerge at the top of an atmosphere pervaded by a magnetic
field the situation is less satisfactory. Until recently only two
attempts to assess the relative importance of an atmospheric layer
for the creation of a Stokes signal had been undertaken. The first
by Wittmann (1973, 1974) who computed a Stokes “‘contribution
function” which actually was a numerical approximation to a
magnetic field response function of the Stokes V' parameter. Later
Landi Degl’Innocenti and Landi Degl’Innocenti (1977) derived an
expression for the response functions of the Stokes parameters
under unrealistically restrictive assumptions. Considerable pro-
gress was made by Van Ballegooijen (1985) who developed a
formalism to solve the Unno-Rachkovsky equations (Unno, 1956;
Rachkovsky, 1962) which permitted the Stokes parameters to be
represented as integrals over depth of certain functions. The latter
were identified by the author with the respective Stokes contri-
bution functions based on the analogy to the definition of the
intensity contribution function in the absence of a magnetic field.
However, as has been shown by Magain (1986) and by others (e.g.
Gurtovenko et al., 1974) the intensity contributions function is not
a useful diagnostic tool because it represents, in particular if the
line is weak, predominantly the bound-free and free-free processes
responsible for the continuous intensity. We believe that Magain’s
arguments in favour of the relative line depression R=1—1I/I,
being the quantity whose contribution function represents best the
bound-bound interactions of the spectral line and is thus respo-
nsible for the shape of the line profile apply equally well to the
other three Stokes parameters, because they also owe their
existence entirely to the various bound-bound processes. Hence in
the present paper we shall extend the work of Van Ballegooijen
and, using his technique, compute what might be called the Stokes
line depression contribution function (Sect.2). In addition, in
Sect. 3, we shall derive a general expression for the corresponding
response functions. In Sect. 4 we shall briefly describe a computer
code which we have developed for numerically solving the Unno-
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Rachkovsky equations in a stellar atmosphere in order to
determine the emergent Stokes parameters and their appropriate
contribution functions. In Sect. 5 a few Stokes parameter profiles
will be shown which we have computed together with their
contribution functions, calculated according to the different
definitions. These plots demonstrate the superior diagnostic
quality of the Stokes “line depression” contribution function as
compared to Van Ballegooijen’s definition.

Finally, in the Appendix we derive analytical expressions for
the contribution functions under certain assumptions. Although
these expressions are of little diagnostic value they do allow us to
to show that for weak fields a simple relation exists between the
contribution functions of Stokes I and V. The derivation also
given us a clearer insight into why the Jones and Mueller
formalisms are analytically but not numerically equivalent when
obtaining the formal solution of the Stokes radiative transfer
equations. In addition, an analytical solution may be used to
check the reliability of numerical procedures of calculating the
contribution functions.

As a prelude we list the basic equations of relevance to the rest
of the calculations. In Jones calculus, which we use throughout the
present paper, the radiative transfer equation for 4 Stokes
parameters in the presence of a magnetic field can be written as

dD *
ch—AD+DA —F, )
(Van Ballegooijen, 1985) with
_1/1+Q U+iv @
“2\U-iv I-Q )’
A=1 1+;7,-.i-aQ oy + oy , 3)
2\ oy —iay T+n—ag
1

Q)

F— <Sc +(mr+ng) Sy
2 (ny —iny)S,

(ny +iny) St )
Sc+(’71—’7Q)SL ’

where
Og=1Mg—10p, Xy=Hy—iQu, Oy ="Hy—iQy.

Expressions for the various coefficients # and ¢ have been given by
e.g. Landi Degl’Innocenti (1976). In Eq. (1) A* represents the
transpose and complex conjugate of A. Note that 7. is the
continuum optical depth along the line of sight. By defining 7, in
this manner, we do not have to introduce x = cos 6, where 6 is the
heliocentric angle, and as a consequence our transfer equation is
also valid for non-plane-parallel atmospheres, which we consider
to be closer to reality (e.g. when modelling small magnetic flux
concentrations on the sun).

To obtain the formal solution we follow Van Ballegooijen
(1985) and introduce the matrix T which satisfies the differential
equation

dT

dz, =AT

and T(0)=E, )

where E is the unity matrix. Once T(z, ) is known, the contribution
functions of the Stokes parameters C;, Cp, Cy, Cp, can be
obtained in a straightforward manner via

Cr)=(M)~ ' F(T*)™! ©)
and the relations

Cr(te) = Cyy (1) + Cap (7o)

Co(re) = Cy1 (1) — Cpp (1),
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Cy(re)=Cr(t) + Cpy (7o)
Cy(te)= —i(Cya(te) — Cpy(x0)) - 0]

The matrix Cis the integrand of the formal solution of Eq. (1). For
more information we refer to Van Ballegooijen (1985).

2. Contribution functions to the “line depression”
Stokes parameters

In order to derive a diagnostically useful contribution function for
the Stokes parameters we follow the procedure outlined by
Magain (1986) for unpolarized light, i.e. we first derive the
transfer equation for what we call “line depression Stokes
parameters” and then find its formal solution. Although the
derivation is completely equivalent in both Mueller and Jones
formalisms, we present it using the latter since it is of greater
practical value for the numerical solution of the transfer equation.

We define the Stokes parameters of the relative line depression
at any depth in the atmosphere as

RI (Tc) — Ic(Tc) _ I(Tc) =1— I(Tc)

I(z.) I(z.)’
S T o]
Ro) = e =~ Ty
R T R (] ®

where I, Q., U, and V, are the Stokes parameters of the
continuum radiation. They are functions of the continuum optical
depth. We have implicitly assumed that no continuum polari-
zation is present in the stellar atmosphere. For field strengths of
1-10kG, typical for the magnetic structures in the photospheres
of non-degenerate stars, continuum circular polarization is ex-
pected to be between 1076 and 10~ ° in units of I, (Kemp, 1970)
and can therefore be neglected. For fields much stronger than this,
the “weak” field limit for the Zeeman effect is no longer valid in
any case and the absorption matrix changes its character.

In this section we make no assumptions regarding the matrices
A and F. In analogy to the matrix D, defined in Eq. (2), we
introduce the matrix R such that

_1/R+Ry Ry+iRy\ 1. 1

R_2<R,,—iR,, R;— Ry _2E ICD' ©
Making use of the identity

dR _Ddl, 1 dD

dr, I dv, I, dt,

and replacing the derivatives of I, and D through the right-hand-
sides of their respective radiative transfer equations, i.e. the right-
hand-side of Eq. (1) and of

dl,

dTC _Ic_Sc» (10)
we obtain after a short calculation

g—f—zARR-i—RAﬁ—FR, (11)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1988A%26A...204..266G

 T9BBAGA T 12047 2665

268
where
S, .
—+771+06Q du“i‘lay
Ac=i| E
R™2 . S
oy — oy -I—+i71—ch
1/S.
—A+§<Z—I>E, (12)
F _1(1__&><’71+’7Q ’7U‘|‘i’7v>
R= ,
2 I, ) \ny—iny Hr— Mg
1 St S,
-5 (-7 (F-5m). @)

The formal solution of Eq. (11) is analogous to the one
proposed by Van Ballegooijen (1985) for D. We introduce the
matrix Ty which satisfies the differential equation

dr, = AT

with TR(0)=E. (14)

The contribution matrix for the line depression is then determined
by

Cr(ze) =Tz ' Fx(TH) ™, (15)
while the contribution functions for R;, Ry, Ry, and Ry can be
determined from Cjy through relations similar to Eq. (7). The
emergent value of R can be obtained by integrating over Cg(7,).
Alternatively, using Eq. (9) we can directly determine D (0) if so
required:

D(0) = 1(0)(115 jTRlFR(T;'{) 1d1> (16)

3. Response functions for the Stokes parameters

In some cases the response function of a spectral line is of greater
interest than its contribution function, e.g. for the empirical
diagnostics of given atmospheric parameters, such as the tempera-
ture, magnetic field, or the velocity. Examples of diagnostic
techniques for the temperature and for velocity gradients in solar
magnetic fluxtubes involving response functions have been given
by Landi Degl’Innocenti and Landolfi (1982, 1983), respectively.

We generalize the derivation given by Caccin et al. (1977) for
the case of B = 0 to the case of an arbitrary magnetic field. We first
apply this approach to derive the response functions of the
unnormalized Stokes parameters and later also present an ex-
pression for the response functions of the “line depression” Stokes
parameters.

Let f be the (scalar) physical parameter of the atmosphere
which we are interested in, with § = f(.) being a general function
of optical depth. Then a perturbation in § of the form

B—B+p

will affect A, D, F, and «, (the continuum absorption coefficient,
hidden in z.) in the transfer Eq. (1). The perturbed quantities,
denoted in the following by an index 6 8, can be expressed through
the unperturbed ones by Taylor expansions according to J 4.

A= ¥ (5é)" A

o nl 0p
e 5607 D
w=Y (if?" a@/;f (17)

For sufficiently small perturbations J f we can neglect second
and higher order terms. If we introduce these expressions into the

perturbed transfer equation (multiplied by —x, 55)
dD,
a'; = —Ke,55(AspDsp+ D5 Aty —Fsp) (18)

and equate terms with equal powers of J 8 we obtain the original
unperturbed transfer equation, Eq. (1), for terms of zero-th order
in 6 f. For terms linear in 6 § we get the following equation for 6D
which has the same general form as the transfer equation:

‘iZD=A5D+5DA*—5F, (19)
where

aD
oD =0p%; (20)
and

oF 1
SF = 6p <W>’ ‘2’;} (AD + DA* —F)— a‘; -D ‘3*; ) 1)

Since in Eq. (21) D, the solution of Eq. (1), can be taken to be a

known quantity, Eq. (19) for D can accordingly be solved using

Van Ballegooijen’s (1985) technique,

D)= [ (T)"'6F(T*) 'dr. (22)
0

The response function matrix of D with respect to f, which we

denote as Py, is essentially the integrand of Eq. (22):

L (OF 1 ok, A A
P (G 5 -9 -5 DD r)
SN @)

T is once more the solution of Eq. (5), so that no new set of
differential equations must be solved in order to evaluate the
response functions. The response function for the four Stokes
parameters can then be written, in analogy to Eq. (7), as

Pp,](fc) = Pﬁ,u(‘fc) +Pﬁ,22(7-'c),
Py o(te) =Py 11(te) — Py 22(70),
P y(te) =Py 12(te) + Pp 21 (7o),
Pp,V(Tc) = —i(Pﬂ,u(Tc) —Pﬂ,Zl(Tc))'

Note that for B = 0, the Stokes I response function reduces to the
non-magnetic response function derived by Caccin et al. (1977).
For the response function, P, ¢, of the “line depression” Stokes
parameters, R, we obtain exactly the same expression as Eq. (23),
with A, D, F, and T replaced by their counterparts, Ag, R, F and
Ty, given in Sect.2:
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_, [OF 1 0Ok,
Py r=Tz! (——al; = op AxRTRAR-Fy)
_0Ag o o OAR) i
g R—R aﬁ>(TR) : (29)

This is not surprising, since the transfer equation for R, Eq. (11), is
formally the same as Eq. (1).

4. Numerical computation of the Stokes parameters
and their contribution functions

We have developed a FORTRAN code for the numerical solution
of the Unno-Rachkovsky equations using the Jones calculus as
proposed by Van Ballegooijen. Several servions of the program
exist. Their final result is always the set of “normalized” Stokes
parameters (SP), i.e. the SP divided by 7., the continuous
intensity. The versions differ by the nature of the employed
contribution functions (CF). The first version computes the CF of
the SP themselves and obtains the SP by integration of the CF
[Egs. (1)—(7)]. L. is then calculated in the same fashion as Stokes /
at a wavelength far from line center and the SP are normalized by
division through this quantity. The second version computes the
CF of the normalized SP. Integration then yields the normalized
SP directly. In the third version the “line depression” CF are
computed and integrated [Eqgs. (9)—(16)]. The normalized SP are
then obtained by negating the results (and adding 1 in the case of
Stokes I). In versions 2 and 3 /, has to be computed explicitly in the
program as a function of continuum optical depth.

The program consists of three parts. In the first part all
variables that depend on atomic parameters alone are determined,
in particular the relative strength of the Zeeman sublevels
involved. In the second part the height dependent atmospheric
quantities are computed for each atmospheric grid point. We use
x =log s, the logarithm of the continuous opacity at 500 nm, as
independent variable. This part includes the determination of the
electron density by the iterative solution of a set of Saha equations.
As aresult we obtain total line opacity, continuous opacity and the
parameters which govern the profile of the line. Input to part two
are temperature, total pressure, magnetic field vector, bulk
velocity and microturbulent velocity at each grid point. The third
part of the program is version dependent. It computes for each
wavelength point the respective CF as function of depth by a
Runge-Kutta integration of Eq. (5) or Eq. (14) which are actually
sets of 8 coupled (real) first order differential equations. Then the
appropriate matrix equations are solved [e.g. Eq. (15)]. Finally the
values of the emergent SP (or related quantities) are obtained by
integration of the CF over depth.

For a detailed description of the relevant quantities involved in
the computation the reader is referred to Landi Degl’Innocenti’s
description of his own computer program (Landi Degl’Innocenti,
1976).

An advantage of Van Ballegooijen’s matrix formalism is the
simplicity of the boundary condition for integration of Eq. (5):
T(0) (Actually T(x,)) is equal to the unity matrix. This is
considerably easier to deal with than the somewhat cumbersome
conditions which have to be met in the conventional integration of
the Unno-Rachkovsky equations (Landi Degl’Innocenti, 1976).

Various tests were performed in order to ascertain the validity
of our program. They were all made using the Fe15250.2 A line.
First we compared Stokes [ for vanishing magnetic field with
values obtained by direct integration of the transfer equation of
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unpolarized light. We also compared it with values computed by
H. Schleicher (private communication) who used his own radia-
tive transfer program. The results of the two direct integrations
differed by less than 1%. The results of the Van Ballegooijen
procedure were found to deviate from these values by amounts
which depended on the spacing of the grid points of the model
atmosphere which in the tests extended from x = —4.0 to x = 1.0.
With a grid width of 4x = 0.1 the deviations varied from 0.1% to
12%, for 4Ax=10.05 from 0.1% to 6%, and for 4x=0.01 the
deviations hardly ever exceeded 1%. From this we concluded that
for vanishing magnetic fields our code contains no significant
error. Similar results were obtained with the third version of the
program [Egs. (9)—(16)]: In order to achieve an accuracy of about
1% the grid width has to be of the order 0.01. For a grid width of
0.1 inaccuracies of the order of 10% occur.

In order to test the program’s performance for the case of non-
vanishing magnetic field we used the analytical solution of the
Unno-Rachkovsky equations for the special case of a longitudinal
and uniform magnetic field and a normal Zeeman triplet:

1=% L+ 42) +f = AD)]

V= =2~ f Gt 42),

where (1) =1() for vanishing magnetic field and 4/ is the
Zeeman shift. We found that for a grid width of 0.1 these
equations were fulfilled to an accuracy of 3% or better.

5. Sample calculations

We have used the code described in Sect.4 to calculate Stokes
profiles and contribution functions. Some examples shall be
discussed in this section with the aim of illustrating the difference
between the contribution functions to the intensity Stokes profiles
(Cy, Cg, Cy, Cy) and to the line depression Stokes profiles (Cg, 1,
Cr.g» Cr,u> Cr,v). Figure 1 shows the results of such an LTE
calculation of Fer 5250.2A for a height independent field of
strength B=1200G and a quiet sun atmosphere (Schleicher,
private communication) which is similar to model C of Vernazza
et al. (1981) in the upper layers and follows Holweger and Miiller
(1974) in the deeper layers. The angle between the line of sight and
the magnetic field B is 135°, the azimuthal angle of the field is 90°,
the microturbulence velocity 1.2kms™! and a Van der Waals
enhancement factor of 3.0 has been assumed (cf. Holweger, 1979).
The emergent Stokes I, Q, U, V profiles are plotted in Fig. 1a.
Figure 1b to d show their contribution functions (dashed curves:
Cy, Cy, Cy, Cy, solid curves: Cg ;, Cr o> Cr,us Cr,v), at wave-
lengths 44=0mA, 50mA, and 100mA from line centre
respectively. The maxima of all contribution functions have been
normalized to unity to make their comparison easier.

Note the totally different shapes of the intensity contribution
functions from the line depression contribution functions. In
particular, the intensity contribution functions are dominated by
the contribution to the continuum as soon as one moves out
towards the line wings. They change only little for 44 2 50mA. In
contrast, the Cy change considerably between 44 =50mA and
100 mA. Also note that even for 41 = 100 mA, where the emergent
Stokes profiles approach their continuum values, the Cy are still
quite different from the intensity contribution functions. This
illustrates quite clearly that the bound-bound transitions giving
rise to a spectral line may occur preferably at a hight quite

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1988A%26A...204..266G

YWOOT =Yy 10y 1daoxs ‘q se swreg p "YW (g =y 10§ 3deoxs ‘q se dwes 3 "yw (= Yy 10]
*3°1“91Ju00 Ju| 1 (pI[Os “4 ¥y ‘A'¥p DUy <I'¥ ) sayryord saxj0Ig uorssardap aul| oy pue (poysep ‘49 ‘17 07 ‘I5) so[iyoxd s903§ AIISUSIUI Y} 03 SUONOUNY UONNGHIU0) q $3[yoId 4 ) ‘D T $9Y01S JusS 1wy € ' 06 = ¢

‘PIoy o1} Jo S[BuE [EINUNZE 31 ‘. SET = ¢ ‘PIoY Y1 PUE JYSIS Jo ouI] oY) UGdMIEq S[SUE AL, "D 00T} = g YSuSNSs Jo pJay Juspusdapul-jySioy e yim aroydsowe uns Jomb e Ul paje[no[eo aul Y 7'057S 194 P-e1 B4
0006 + 607

0006 + 607 0006 + 607 000G + 607 q £
1 0 i- z- €- - 0 > z- £- 1 0 1- z- €- - o -
_A 'S 4 s 'ool I i 1 I ‘0? 'l I ' 92 '0? °.° Wd
9]
L 20~ o L 2°0- | 2°0- m
-2°0 <
00 |- . ~4 00 00 m
.... ..... N om
-2°0 ; L 20 L 20 -0 2
-3°0 - 40 -3°0 90 o
970 -9°0 F9°0 <
-8°0 <
n [e° o I® ()} N i M
o1 s o't o't (4] m
=
0°0 : (yw) yibueqeaoy =
=
ssnyd 00¢T - 9 CIWNA/09Wa =
O
wy Jad suO1qOUN § UOYENGIJRUOY SINOLS =
2
&
[yw]w [yw]w [yw]w [yw]w B
ooz 001 0 001- 002- 002 001 0 001- 002- o® 001 0 001- 002- 002 001 0 001- 002- .
1 1 L 00°0 1 1 1 S1°0- i 1 I $°0- 1 S Il 0°'0 y
S
0 ] - £°0- S
| 20 L o1°0- -2°0 m
-2°0- 5
- $0°0 L 50°0- . 2
- 1°0- o0 3
-90°0 00°0 00 m
. o
. -9°0
- 80°0 L 00 -1°0 mu
20 (=]
o o170 -01°0 8°0 nm
1/n °1/0 o1/ [F° °1/1 3
z1°0 S1°0 30 0’1 w._
b
o 0°06 - ¢ o O0°SEl -8 oes/ux 0°0 = A 9 002! -4 Dw
peyjoows — GH/NYIA/NUI/1T6/MI0H ©
121 = QUSN 0s0°0 = x713a 0°S- = 0X 00g-184e7 0-910
(=)
7
N

¢ " 0Gc¢S I 84 40} LOQOEOLOQ §38401¢G

1999 0. L VBVYRE6TI.


http://cdsads.u-strasbg.fr/abs/1988A%26A...204..266G

(penunuoo) 314

=
N
000§ 4 607 0005 & 8o 000S + 601 p
1 0 - - (S S 0 1- e s~ - 0 1- T s - -
re 1 1 'l vo? 3 3 2 4 '.0! " 'l - 4 V.? °o°
-2°0- - 2°0- -2°0-
o 20
Lo%0 00 fp~——F——T= 00
20 -2°0 -2°0 4o
40 -3°0 T.o o0
-9°0 -9°0 -9°0
o0
-9°0 -9°0 Y
[} 0°t [ o't
0°001- : (Yw) yYyrbueqesoy
SSNY9 oo0ct - 8 Z9Wa/09Wa
wy ged suoqqoun g UOI3NGIIIUO] SINOILS
0006 + b0 0006 + 60 0006 + 607 000§ + 607 d
1 [} 1- z- €- - 0 1- 2- £~ - 0 1- 2- £~ ¥- 1 -
e e e 1 ‘OOI ) 1 ' I '.Ql e - 1 _l ‘nol OQO
-2°0- -20-
............ L 2°0
00 TN e T 00
20 : 270 4o
Lve0 3 470 .
- 9°0 -9°0
-8°0
-8°0 A -8°0
o't ot ..I... o't

1999 0. L VBVYRE6TI.

0°05- ?:5 yybusqenopm
SSNY3 002t = 4 Z9W0/09K0a
W L@Q WCOJ.\«OCDT._ COJ.#DQJ.(_#COO muv_o.ﬁm

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1988A%26A...204..266G

 T9BBAGA T 12047 2665

272

different from the free-free and bound-free transitions responsible
for the continuum, even if the line is very weak at the wavelength in
question. This basic difference between the line depression and
continuum formation height is mirrored in the non-magnetic case
which has been clearly and convincingly discussed by Magain
(1986).

Thus it becomes apparent that the Cp are theoretically
“cleaner” than the intensity contribution functions, in the sense
that while the latter mix information on the continuum and the
lines, the former give us information on the lines only. However,
there remains the important open question of the sensitivity of the
two contribution functions to atmospheric parameters, a vital
aspect if they are to be used for the diagnosis of solar and stellar
magnetic features. Once more the Cy are superior to the C as Fig. 2
demonstrates. In Fig.2a two emergent Stokes I profiles are
plotted which were calculated for the same atmosphere as the
profiles in Fig. 1, but for different field strengths, namely B=0G
(solid) and B = 2000 G (dashed). In Fig. 2b the C; at 41 =80 mA
for these two profiles are plotted. Note the minute difference
between the two curves. Finally, Fig. 2c shows the C ; at the same
42. Here the difference is easily visible. At B=2000G, the o-
components of the Stokes I profile have their minima close to
43,=80mA, so that we would intuitively expect the line at this
wavelength to be formed higher in the atmosphere for B = 2000 G
than for B=0G. Cg ; is therefore not only more sensitive to
changes in B, but its dependence on Bis also plausible and may be
interpreted in a straightforward manner. The same is also true for
the contribution functions to the other “line depression” Stokes
parameters.

A more systematic analysis of the contribution functions to the
Stokes profiles as a function of different atmospheric and atomic
parameters will be published separately. Such a study will later
allow us to use Stokes contribution functions as an integral part of
the diagnostics of solar and stellar polarimetric observations (e.g.
those of Stenflo et al., 1984), but also of models of magnetic
features (e.g. Knolker et al., 1988; Steiner et al., 1986).

Acknowledgements. We are indebted to Manfred Schiissler for
many helpful and amusing discussions. We are also most grateful
to Helmhold Schleicher for letting us use his code for the
computation of the continuous opacity.

Appendix: analytical derivation of Stokes contribution functions

In this Appendix we use the algorithm of Van Ballegooijen (1985)
to derive the intensity contribution functions to the Stokes
parameters of a Zeeman split line analytically assuming an
atmosphere with an absorption matrix independent of optical
depth. We also assume LTE and neglect magnetooptical effects.
The last two assumptions are not necessary. They only simplify the
calculations and should not affect the conclusions reached in this
section. This set of assumptions is more general than that adopted
by Unno (1956), since we do not require the Planck function to be
linear in 7 and the line need not be a Zeeman triplet, any splitting
pattern is allowed. Note that for the absorption matrix to be
independent of height, both the magnetic field strength and the
total Doppler broadening must be constant.

In contrast to Landi Degl’Innocenti and Landi Degl’Innocenti
(1985), who present the formal solution for the Stokes profiles in
Mueller calculus involving 4 x 4 matrices, and without giving an
explicit expression for the contribution function, we shall derive
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0.254
0.00 — Y o~
-200 ~100 200

0
A[mAi]
Fig. 2a. Emergent Stokes 7/ profiles of Fe1 5250.2 A calculated in a quiet sun

atmosphere with § = 135° and ¢ = 90°. Dashed curve: B = 2000 G, solid curve:
B=0G
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Fig. 2b. C; at 4A=80mA to the two profiles plotted in Fig. 2a
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Fig. 2¢c. Cg ;at 41 =80mA to the two profiles plotted in Fig.2a
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an explicit expression in Jones calculus which involves 2 x2
complex matrices.

As a first step we must solve Eq. (5), which at first sight appears
to be a set of 4 complex coupled differential equations. However,
closer inspection reveals that it is composed of two independent
pairs of coupled differential equations; one pair for 7', and T,
and one for T, and T, respectively. The differential equations
for T, and T,, read

dT, 1 .
dTll =5 [(A+n4+0p) Ty + (ay+ioy) Thy],

ATy,

1 .
de. 3 [(oy —iay) Tig + A +1p—ap) Ty, ]

The differential equations for T}, and T, are identical to these if
we replace Ty, by Ty, and T3, by T,,. This is a direct result of the
definition of matrix multiplication. Any set of differential equa-
tions which can be written in the form of Eq. (5), where A and T
are arbitrary n x n matrices, can be reduced to a set of coupled
equations for the first column of T only, the equations for the
other columns being identical to those for the first column. This
property, which implies that instead of nxn only n coupled
equations have to be solved, means that both the traditional
Mueller formalism and the Jones formalism are in principle
equivalent. We shall return to this point later.

Now we make use of the assumptions listed at the beginning of
the section (S, =S, = B,, 0p =0y =0y =0). Then the matrices A
and F reduce to:

1<1+771+77Q
A=- .
2\ ny—iny

Ny +iny >=iF
1+’71_’7Q B,

By transforming Eq. (5) into the basis of the eigenvectors of -
independent A we can diagonalise A and solve for T}, and 75, (or
equivalently T, and T3,). The general solution, after retrans-
formation into the original basis, reads

1 .
Ty =T, =——— (K (g + V/np+ng+ny) e
Hy — My
+ K, (g — /g + 1o +17) ),

Ty, =Ty, = K €% + K, e®2%.

(A1)

(A2)

InEq. (A2) K, and K, are constants of integration, while ¢, and ¢,
are the eigenvalues of A

e 2=%(1+n |/ng+nt+n).

The boundary condition T (0) = E ensures that T is not singular.
After taking the boundary conditions into account we obtain the
final solution

(A3)

1
T11= ((”Q+77p) EEIIC_(”Q—”;)) QGZtc)a
2n,

—1 £17, €27,
T21=”U2” My (7% — %),
p

Ny + iy
T,=—F"T,4,
2= Ty, 2

(A4)

where 7, = |/n5+ 715 +77 .
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The main difference between the analytical and numerical
methods of solving Eq. (5) is that while analytically we can first
determine a general solution (which is the same for all the columns
of T) and have to consider the boundary conditions only at the
end, numerically each element of T has to be solved for individu-
ally, since the boundary conditions must be taken into account
from the very beginning. This is also the reason why, although in
principle equivalent, the Mueller matrix formalism is numerically
inferior by a factor of approximately 2 to the Jones formalism
when calculating the Stokes profiles via the formal solution of the
transfer equation (as first pointed out by Van Ballegooijen, 1985).
This means that the solution of the Stokes radiative transfer
equation does not violate the generally accepted basic equivalence
of the two formalisms, a reassuring result.

Once we have obtained T we can determine the contribution
functions of the Stokes parameters via Egs. (6), (7), and (A1). The
calculation is tedious but straightforward and the resulting
expressions read:

CI (fc) = (81 e—Zeltc +626—282%) Bv(Tc) s

Colr) = o B, (1) (g, e 2817 — g, ¢~ 282%)
ur

CU (Tc) = ”—U CQ .
Mo

Cyz)="c,. (A5)
Mo
Expressions for ¢, , are given in Eq. (A3).
For the case of B =0 (no magnetic field), Eq. (A 5) reduces to

Cro(t) =B, (1+7,) e” 1105,

CQ,0=CU,O=CV,0=Os (A6)

which is the well known emission contribution function of the
unpolarized line profile. #, is the absorption coefficient of the
Stokes I profile of the Zeeman unsplit line. If we assume that
B,= B, (1+ft,),1.e. the Planck function is linear in ., when we
can obtain the emergent Stokes vector by integrating Eq. (A5).
The result is the classical Unno solution of the radiative transfer
equation for polarized light (Unno, 1956).

Let us next consider the case of a magnetic field aligned along
the line of sight. Then #, = #, =0, so that C; and C, reduce to

G = % (A7) 0 (1) ooy = G E er =
Cy= % (1+7ny) e~ (THne)te _ a +’7—) e~ +n-)rc) = . ;C— ,
(A7)

where . =#; +#, and C are the contribution functions of right
and left circularly polarized light, respectively.

From the well known relation, valid in a constant field for a
Zeeman triplet (e.g. Unno, 1956; Mathys, 1988)

N+ (D) =1o(AF 42y)
it follows directly that

C:(W=Cro(AF 44n), (A8)

where 41 is the Zeeman splitting in wavelength units. We have
assumed that B, at a given 1, does not vary over the width of the
spectral line. In this special case it is possible to determine C; and
Cy from the contribution function of the magnetically unsplit line,
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C; o- If we further assume weak fields, i.e. 44y < 44y, where 47y,
is the Doppler width of the line, then due to Eq. (A 8) we can write
C. in terms of a Taylor expansion of C; , . Neglecting terms of the
order of 413 we obtain with the help of Eq. (A7)

414 d*C
C1=C1,o+—2H dlg’o’
dcC
Cp=—Ay d/'1~°. (A9)

The remarkable relationship between 7 and the unsplit /
profile I,
dl,

V=—Aiy =2

a0 (A10)

known to be valid in the weak field case for the absorption
coefficients (i.e. unsaturated weak lines, Stenflo et al., 1984) and
for the line profile including saturation (Solanki et al., 1987), is
therefore seen to hold for the intensity contribution functions of
Stokes I and V for weak and constant magnetic fields as well.
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