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Abstract. We present relations between thermal and magnetic quantities in a simple, isolated sunspot, as deduced from the
inversion of 1.56 µm spectropolarimetric data. We used a combination of two infrared Fe I lines at 15 648.5 Å and 15 652.8 Å
in the inversions. Due to the high Zeeman sensitivity of these lines, we can study this relationship in the entire sunspot. The
relevant parameters were derived both as a function of location within the sunspot and of height in the atmosphere using an
inversion technique based on response functions. In this paper we relate the magnetic vector with temperature. We find a non-
linear relationship between the various components of the magnetic vector and temperature, which confirm the results from
earlier investigations. We also computed the Wilson depression and the plasma β for the observed sunspot and compare our
results with earlier findings.
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1. Introduction

A relationship between temperature and magnetic field in
a sunspot has been theoretically predicted and computed
(Alfvén 1943; Maltby 1977; Dicke 1970) and has been stud-
ied observationally (Kopp & Rabin 1992; Solanki et al.
1993; Martı́nez Pillet & Vázquez 1993; Stanchfield et al.
1997; Westendorp Plaza et al. 2001; Penn et al. 2002, 2003).
Observations support a linear relationship between the squared
field strength and temperature in the umbra, whereas a strong
departure from the predicted linear relationship is seen outside
the umbra (Kopp & Rabin 1992; Solanki et al. 1993; Balthasar
& Schmidt 1994). A smooth transition in field strength is ob-
served near the umbral-penumbral boundary, whereas the con-
tinuum intensity and hence the temperature displays a jump
near this boundary (see Solanki 2003 for a review). The dif-
ference between the predicted and observed behavior suggests
that the measurements do not sample the same layers in the
umbra and penumbra.

Since in the sunspots the observed relationship between
the magnetic field and temperature must be a consequence of
the magnetostatic horizontal force balance, the relationship
between Bz, Br and the gas pressure Pg is given by,

P0(z) = Pg(r, z) + B2
z (r, z)/8π + Fc(r, z)/8π, (1)

Fc(r, z) = 2

a∫
r

Bz(r
′, z)
∂Br(r′, z)
∂z

dr′. (2)

Here, P0(z) is the quiet Sun gas pressure, Pg is the gas pressure
inside the sunspot and Bz and Br are the vertical and radial field
components, respectively. a is the radial distance of the sunspot
boundary, r and z are the radial and vertical coordinates, and Fc

represents the curvature integral. Martı́nez Pillet & Vázquez
(1993) were able to utilize this relationship for calculating the
Wilson depression under the assumption of known curvature
force. They computed a Wilson depression of 400–800 km
in the umbra of their observed sunspots (with the range be-
ing given by different assumed values of Fc), which agrees
well with previous determinations (Gokhale & Zwaan 1972).
Solanki et al. (1993) used a similar technique and estimated
the Wilson depression as a function of radial distance in a
sunspot. They found that the τ = 1 level is depressed by around
100–150 km in the penumbra and 400–450 km in the umbra
under the assumption that the integrated radial curvature force
Fc = 0.

Here we describe an investigation of the thermal-magnetic
relation in a simple sunspot based on parameters obtained from
an inversion of spectral data obtained in two adjacent Fe I lines
in the IR H-band (Mathew et al. 2003). Due to the superior
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Fig. 1. Continuum a) and line core intensity b) and c) images of the observed sunspot. The contours mark the boundaries between three
continuum temperature zones, which correspond to the inner umbra (bounded by solid white), the umbral-penumbral boundary (between solid
and dotted dark), and the penumbra (between dotted and dashed dark lines). The displayed intensities are normalized to the average quiet sun
value. The spectrograph slit is placed in the vertical direction and the spot is scanned from left to right. Each tick mark corresponds to 1′′.

Zeeman sensitivity of Fe I 15 648.5 Å line (and partly the inver-
sion of molecular lines simultaneously with atomic lines) it is
possible to investigate the thermal-magnetic relationship in the
whole sunspot (Solanki et al. 1993). Also, the effect of stray
light is smaller in the infrared, which otherwise could contami-
nate the intensity profiles (Kopp & Rabin 1992). Since a map of
the magnetic and thermal properties over the whole sunspot is
available, we determine a map of the Wilson depression of this
spot and also the plasma β in it. Finally we compare our results
with earlier findings obtained using visible and infrared lines.

2. Data and analysis

We use spectropolarimetric data (full Stokes profiles), simul-
taneously recorded on 27th Sep 1999, in two IR Fe I lines
(15 648.5 Å, g = 3 and 15 652.8 Å, geff = 1.53) with the TIP
(Tenerife Infrared Polarimeter, Collados 1999; Martı́nez Pillet
et al. 1999). A scan was made of a fairly round sunspot, when it
was near the disk center (µ = 0.92). The spot belongs to active
region NOAA 8706 and had a diameter of around 31′′. Figure 1
shows the normalized continuum and line core intensity images
of the observed sunspot.

Continuum intensities are obtained from the mean values of
Stokes I profiles over a line-free window near 15 646.7 Å. The
continuum intensity, Ic,QS, averaged over all the points where
the polarization signal integrated over the observed spectral
range P = [(Q2+U2 +V2)/I2]1/2 < 10−3 has been employed to
normalize the intensity. Contours in the figure represent three
continuum intensity zones which approximately correspond to
umbra, umbral-penumbral boundary and the penumbra in the
intensity histogram distribution.

In Fig. 1 the slit is placed in the vertical direction and the
spot is scanned from left to right. The observations were carried
out with a spectral sampling of 29 mÅ, and covered a spectral
range of 7 Å. The good and uniform seeing conditions during
the observing interval kept the image blurring low. From the
average photospheric power spectrum, we estimated the spatial

resolution to be in the range of ∼1′′−1.2′′. We fit straight lines
to the flat and steadily increasing parts in the power spectrum,
respectively. The intersection of these two straight lines pro-
vides the cutoff spatial frequency which is taken as the seeing
limit. The correlation tracker installed at the VTT (Ballesteros
et al. 1996) was used to stabilize the image, which allowed
a smooth scanning throughout the observing run. Line core
intensities are obtained by detecting the minimum of the re-
spective absorption lines. In order to accurately determine the
minimum, we used a polynomial fit about the pixel with the
lowest intensity within the absorption line at a given spatial
point. The line core quiet Sun intensity Il,QS is obtained by the
same method as described for the continuum intensity. Figure 2
shows sample Stokes I profiles for a disk side (solid line) and a
limb side (dashed line) penumbral point. The shift between the
two plotted profiles is due to the Evershed effect. The difference
in line core intensity in the disk side and limb side penumbral
profiles is attributed to a difference in inclination of the field
and is discussed in more detail in Sect. 4. The data have been
described in greater detail by Mathew et al. (2003, hereafter
Paper I).

The data were inverted by Mathew et al. (2003) using the
code “SPINOR” described by Frutiger et al. (2000). This code
incorporates the “STOPRO” routines (Solanki 1987), which
compute synthetic Stokes profiles of one or more lines upon
input of their atomic data and one or more model solar at-
mospheres. LTE (Local Thermodynamic Equilibrium) condi-
tions are assumed and the Unno-Rachkovsky radiative trans-
fer equations (RTE) are solved. Starting with an initial guess
model, the synthetic profiles were iteratively fit to the ob-
served data using response functions (RFs) and the Levenberg-
Marquardt (Press et al. 1992) algorithm to minimize the merit
function χ2 (Ruiz Cobo & del Toro Iniesta 1992; Frutiger
2000). The inversion returned temperature (T ), magnetic field
strength (B), field inclination (γ), field azimuth (χ), line-of-
sight velocity (VLOS) stratifications, as well as micro-(ξmic) and
macro-turbulent (ξmac) velocities. Using the known location of
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Fig. 2. Sample profiles of Fe I 15 648.5 a) and 15 652.8 Å b) line from the disk side (solid curve) and limb side (dashed curve) penumbra.

the sunspot, γ and χ are converted into angles relative to the so-
lar coordinates. Of interest here is the zenith angle ζ. It is used
to determine Bz, the vertical component of the magnetic field.
More details on this particular data set, the inversion procedure
and the results have been given in Paper I.

For this investigation the continuum temperature, obtained
by converting continuum intensity into temperature using the
Planck function (Solanki et al. 1993) is employed. We convert
the continuum intensity into temperature solving the following
equation for T ,

Ic

Ic,QS
=

ehc/λkBT0 − 1
ehc/λkBT − 1

· (3)

Here, h is Planck’s constant, kB is Boltzmann’s constant, c is the
speed of light, Ic/Ic,QS is the normalized continuum intensity
with respect to the quiet Sun, T0 is the quiet Sun temperature
and λ is the wavelength. We adopt a value for T0(τ1.6 = 1) =
7058 K taken from the quiet Sun model described by Maltby
et al. (1986). Instead of using the temperature returned from in-
versions, we stick to this choice, because of the poor sensitivity
of these lines to the temperature, due to the telluric and molec-
ular blends. In the following sections, we mainly concentrate
on the thermal-magnetic relation for deep atmospheric layers,
specifically we consider the layer averaged over log τ1.6 values
ranging from 0 to −0.5.

3. Stray light considerations

Stray light can affect the relation between magnetic parame-
ters and temperature (Solanki et al. 1993; Martı́nez Pillet &
Vázquez 1993). In order to take care of stray light, in our in-
versions the Stokes profiles were calculated in LTE through

a two component model atmosphere: in every pixel two at-
mospheric components are allowed for, one magnetic (with a
filling factor α) and one field-free (with filling factor 1 − α),
where α is a free parameter of the inversions (Paper I). The fill-
ing factor 1− α of the field-free component is a measure of the
stray light contamination in the profiles. Note that any emis-
sion from field-free gas within the solar surface area sampled
by a pixel is formally counted to the stray light. In Fig. 16 of
Paper I we plot the azimuthal averages for the continuum in-
tensity (Ic/Ic,QS) and the scattered light parameter (1 − α) for
the analyzed sunspot. The average scattered light parameter is
less than 0.1 in the umbra and increases to ∼0.5 near the outer
penumbra. A local maximum in this parameter is noticed near
the umbral-penumbral boundary, where the gradient in contin-
uum intensity is large.

Here we use the parameter α to correct the continuum in-
tensity in the following way. The observed continuum inten-
sity Iobs can be written as,

Iobs = αIspot + (1 − α)Iscat (4)

where Ispot is the real continuum intensity emerging in the spot
and Iscat is the stray light contamination from the surround-
ings. We assume that Iscat basically originates from the quiet
Sun photosphere and assign the average quiet Sun continuum
intensity value to Iscat. From Eq. (4) we then obtain an esti-
mate of Ispot, which we then use to derive the temperature. This
eliminates to first order the effect of stray light in our derived
thermal-magnetic relations. Second order effects, such as po-
larized scattered light from the penumbra in the umbra still re-
mains, however. For a comparison, in Fig. 3 we plot the temper-
ature derived from the continuum intensity before and after the
stray light correction. The dashed line represents slope unity.
Evidently, stray light introduces an increase in the derived tem-
perature, as expected.
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Fig. 3. Computed continuum temperature before and after the stray
light correction. The dashed line marks exact equality between the
two quantities.

4. Observed relationships

Figure 4a shows the B vs. T relationship for optical depths av-
eraged over log τ1.6 from 0 to −0.5 for all the points within the
sunspot. The open circles denote the umbral points, the plus
signs umbral-penumbral transition region and the triangles the
penumbral points. The difference in slope between the umbra,
umbral boundary and penumbra is clearly visible. Our result is
qualitatively similar to the results obtained by earlier investiga-
tors, quantitative differences are expected to arise largely from
different heights sampled. We employ the average over the log
τ1.6 range 0 to −0.5 of the parameters returned by the inversion
in order to take into account somewhat conflicting requirements
that on the one hand the magnetic and thermal quantities should
if possible refer to the same height (i.e. around log τ1.6 = 0)
while on the other hand the deduced magnetic field is more
reliable where the employed spectral lines obtain a large con-
tribution (i.e. around log τ1.6 = −1 to −0.5).

In the umbra, the magnetic field strength decreases with
increasing temperature and the distribution is distinctly nonlin-
ear. For the umbra (as defined for the purposes of this paper),
two regions can be identified in the plot, a strong variation of
the field strength with temperature below 5700 K and a grad-
ual change in the field strength with temperature between 5700
and 5900 K. The penumbral distribution of B versus T shows
a strong overall decrease of B with increasing T , with an in-
creased scatter. A gradual change in field strength is found for
the umbral-penumbral transition region. The break between the
B − T relation in the umbra and in the umbra-penumbra re-
gion become more clearly visible if we take B from the higher
layer ( e.g. log τ1.6 = −0.5 or −1.0). Then the deduced curves
look more similar to those plotted by Kopp & Rabin (1992)
and Solanki et al. (1993). The height averaged field strength
they measured refers to a height with large response function of
the spectral line to magnetic field strength, which is at around
log τ1.6 = −0.5 to −1.0.

Figure 4b shows a field zenith angle ζ versus T diagram
averaged over the same log τ layers. As in the case of B, ζ
also displays a nonlinear relationship with T . ζ remains

below roughly 30◦ throughout the umbra, and the variation with
temperature is smooth across the umbral-penumbral boundary.
Towards the higher temperature region (i.e. in the penumbra)
a steep increase in ζ is noticed. The points with ζ > 90◦ (i. e.
those lying above the dotted line in Fig. 3b) imply return flux.
They coincide with down flows in the outer penumbra (Paper I).

In Figs. 4c and 4d we plot the vertical (Bz) and radial (Br)
field components versus T . Note that the relation between ζ and
temperature influence the Bz and Br versus T relation. Bz shows
a similar trend as the field strength B, except that there is practi-
cally no break between the inner umbra and the umbral bound-
ary layer. Also, as expected, Bz drops almost to zero at the
highest temperatures. It actually drops slightly below zero at
locations where ζ runs beyond 90◦ near the penumbral bound-
ary. Br, on the other hand, increases over the whole temperature
range, although the exact relation is masked by the large scat-
ter. The relatively small variations of the magnetic parameters
across the umbra-penumbra boundary basically describes the
fact that this boundary is relatively narrow (see Fig. 1) and the
field changes gradually with radial distance. Similarly the steep
change of the magnetic field in the penumbra only signifies that
the temperature is relatively homogeneous there.

In addition to the thermal-magnetic relation, we also ob-
tained a plot for field zenith angle ζ versus B which is shown
in Fig. 6a. The results are similar to the one obtained by
Stanchfield et al. (1997). Here the relationship is almost lin-
ear, with a slight S-shape and a large scatter near the um-
bral penumbral boundary. Much of the scatter is introduced by
the larger uncertainty in the results obtained from inversion at
log τ1.6 = 0. For comparison in Fig. 6b we plot field strength
versus zenith angle at log τ1.6 = −0.5. An anti correlation is
now clearly visible. This figure explains the similarity between
the thermal-magnetic relationship involving B and ζ (Figs. 4a
and 4b) and the much steeper dependence of Bz on temperature
(Fig. 4c) than of B (Fig. 4a).

Figures 5a and 5b show scatter plots of field strength (B)
versus core intensity in the Fe I 15 648.5 and 15 652.8 Å lines,
respectively. The shape of the core intensity plot differs from
the continuum B vs. T plot especially at higher tempera-
tures. The observed relationship between the magnetic field
strength and line core intensity is similar to the results pre-
sented by Stanchfield et al. (1997). Intriguing is that the
Fe I 15 648.5 Å points in the core intensity plot follow two dis-
tinct paths in the penumbra. The 15 652.8 Å line also shows
rudimentary signs of such a behavior. Further analysis reveals
that the two branches are populated by disk side and limb side
penumbral points. The property of relevance for this behavior is
the difference in inclination of the field with respect to the line-
of-sight. For larger field inclinations (as is the case for limb side
penumbral points), the peak ratio of the Zeeman π to σ com-
ponents becomes larger, which results in a reduction of the line
core intensity. This effect is more prominent in a completely
Zeeman split line, such as Fe I 15 648.5 Å. A noticeable dif-
ference in core intensity is seen in the disk side (γ ∼ 4◦) and
limb side (γ ∼ 80◦) penumbral Fe I 15 648.5 Å intensity profiles
shown in Fig. 2a. Both correspond to otherwise similar param-
eters (B ∼ 1700 G, T ∼ 6200 K). The less Zeeman sensitive
Fe I 15 652.8 Å line, plotted in Fig. 2b, exhibits a far smaller
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Fig. 4. Magnetic field strength B a), zenith angle ζ b), Magnetic field components Bz c) and Br d) versus continuum brightness temperature T .
The circles denote the umbral points, the plus signs represent points in the umbral-penumbral boundary region, and the triangles the penumbral
points. The vertical dashed line indicate the temperature corresponding to the inner and middle contours in Fig. 1.

Fig. 5. Magnetic field strength B versus FeI 15 648.5 a) and 15 652.8 Å b) core intensity. The symbols have the same meaning as in Fig. 4.

Fig. 6. Magnetic field strength B versus field zenith angle ζ, a) averaged over log τ1.6 = 0 to −0.5, b) for the layer at log τ1.6 = −0.5. The
symbols have the same meaning as in Fig. 4.
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Fig. 7. Wilson depression (ZW) of the observed sunspot. The inner and outer contours represents the umbral and penumbral boundaries obtained
from the continuum image, respectively.

difference (the shift between the two plotted profiles is due to
the Evershed effect).

5. Wilson depression and plasma β

In this section we present maps of the Wilson depression (ZW),
gas pressure (Pg), magnetic pressure (PB) and plasma β(=
8πPg/B2) for the observed sunspot. The Wilson depression
is obtained by a method described by Solanki et al. (1993)
cf. Martı́nez Pillet & Vázquez (1993). The relationship be-
tween Bz, Br and gas pressure Pg in the sunspot can be derived
by the integration of the radial component of the magnetostatic
horizontal force balance equation in the sunspot and is given in
Eq. (1). The gas pressure within the sunspot is eliminated by in-
troducing the equation of state, and Eq. (1) can be re-written as,

T (r, z)
T0(z)

=
m(r, z)
m0(z)

ρ0(z)
ρ(r, z)

[
1 − B2

z (r, z) + Fc(r, z)

8πP0(z)

]
, (5)

where ρ is the gas pressure, and m the mean molecular weight.
The second term (magnetic) in Eq. (5) is the sum of two com-
ponents, the first one (B2

z ) is associated with the magnetic pres-
sure and the second (Fc) with the horizontal tension forces due
to the bending of the field lines. Martı́nez Pillet & Vázquez
(1993) proposed that the above equation could be utilized to
obtain an estimate of the Wilson depression, ZW, which can be
defined as,

ZW(r, λ) = z(τ0.5 = 1,QS) − z(τλ = 1, r) = −z(τλ = 1, r),

where τλ is the continuum optical depth at wavelength λ and z
increases in the direction of decreasing τ. Above we have set
z(τ0.5 = 1) = 0 in quiet Sun. Using Eq. (5), the total pres-
sure in the sunspot, P0(z), can be determined from the mea-
sured B and T in the sunspot. A comparison of P0 with a stan-
dard model of the quiet atmosphere and convection zone can
be used to fix the height at which B and T are determined,
this depth is approximately equal to the Wilson depression ZW.

Martı́nez Pillet & Vázquez (1993) rewrite Eq. (5) as,

T (r, z)
T0(z = 0)

=
m(r, z)
m0(z)

ρ0(z)
ρ(r, z)

T0(z)
T0(z = 0)

×
[
1 − 1 + f (r, z)

8πP0(z)
B2(r, z)

]
(6)

where,

f (r, z) =
Fc(r, z) − B2

r (r, z)

B2(r, z)
·

Assuming,

m(r, z)
m0(z)

ρ0(z)
ρ(r, z)

T0(z)
T0(z = 0)

= constant

in the umbra, and assigning a constant value for f (r, z) for all
the points in the umbra, they obtain values for ZW between
440−760 km for 0 ≤ f ≥ 1.

Since we have the information on gas pressure Pg and Bz

for each spatial position in the sunspot from our inversions,
we use these values in order to compute the total pressure
P0(x, y, z) at each location in the sunspot. We use Eq. (1) for
our computations. While deriving ZW, we kept Fc = 0, since
this is the simplest assumption to make. The value of geomet-
rical height z, corresponding to the computed pressure P0 is
obtained from a standard quiet Sun model. For the present pur-
pose we use Spruit’s (1974) model, which combines a model
of the convection zone with an empirical model atmosphere
(HSRA; Gingerich et al. 1971).

In Fig. 7 we plot the z(τ1.6 = 1) = −ZW surface for the
observed sunspot. The bottom plane in the plot shows the cor-
responding image of the Wilson depression. The white con-
tours in the image represent the umbral and the penumbral
boundaries obtained from the continuum intensity image. We
obtained average values for ZW of close to 400 km in the um-
bra and around 120 km for the penumbra. A jump in ZW, cor-
responding to the steep variation in temperature is seen across
the umbral-penumbral boundary.
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Fig. 8. Magnetic pressure a), gas pressure b), Wilson depression c), and the plasma β d) for the observed sunspot. The inner and outer contours
represents the umbral and penumbral boundaries obtained from the continuum image, respectively.

In Figs. 8a–d we plot maps of the magnetic pressure,
gas pressure, Wilson depression, and plasma β, respectively.
The magnetic pressure is computed from the magnetic field
strength, i.e. PB = B2/8π. In the umbra and at least in the in-
ner penumbra, the magnetic pressure PB is larger than the gas
pressure Pg. Gas pressure varies drastically across the umbral-
penumbral boundary, whereas the magnetic pressure variation
is steep in the outer penumbra. There the magnetic pressure
actually drops below the gas pressure. This can be seen more

clearly in Fig. 8d, where we display the plasma β. β is less than
unity in most of the umbra and in the inner part of the penum-
bra, but reaches values >1.5 in the outer penumbra.

6. Discussion and conclusions

We have investigated the relationship between the temper-
ature and the magnetic field vector in a simple sunspot
by employing parameters obtained from the inversion of
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spectropolarimetric data obtained in two neighboring Fe I lines
(15 648.5 Å, and 15 652.8 Å) in the IR H-band, for a simple
sunspot. In order to compute the temperature, we use the con-
tinuum intensity values corrected for the non-magnetic stray
light contamination. Thus our results are expected to be rela-
tively unaffected by stray light. Overall, our results confirm the
findings by earlier investigators (Kopp & Rabin 1992; Solanki
et al. 1993; Martı́nez Pillet & Vázquez 1993; Stanchfield et al.
1997; Westendorp Plaza et al. 2001; Penn et al. 2002, 2003).

We found a nonlinear relationship between the field
strength and temperature. We observe a strong variation of field
strength (above 2800 G) with temperature and a more gradual
change in field with temperature from 2400–2800 G; this in-
cludes the umbra-penumbra transition region. Below 2400 G,
a steep change in field strength with temperature is observed.
This relation is very similar to the relation obtained by Kopp
& Rabin (1992), Solanki et al. (1993) and Stanchfield et al.
(1997). Recently, Penn et al. (2003) reported the results from
observations of a sunspot using the Fe I 15 648.5 Å line. They
also find a similar non-linear relationship between temperature
and field strength. The difference in temperature between our
results and theirs could be due to the use of two different contin-
uum temperatures used for converting the spot brightness tem-
perature.

The vertical field component follows a similar trend as
the field strength, except that it does not increase as rapidly
as B with decreasing temperature. The radial magnetic compo-
nent Br exhibits a more linear, but rather noisy relationship in
the umbra.

Looking at Eqs. (5) or (6) it is clear that the spot tem-
perature is a relatively complicated function of the magnetic
field configuration. For a purely vertical homogeneous field,
the equation can be interpreted as a linear relationship be-
tween B2 and T , as long as the B and T values all refer to
a fixed height and the ratio m(r, z)/ρ(r, z) as well as the cur-
vature force remains constant. Obviously, these conditions are
approximately fulfilled in the inner umbra. Around the umbral
boundary, however, the change in the thermal-magnetic rela-
tionship implies that there is a substantial departure from these
conditions. Assuming the curvature force to be constant we ob-
tain a notable jump of around 200 km in the Wilson depression
at that location. In the penumbra the relation between T and Bz

is steeper basically because the radiation is coming from a dif-
ferent height where the constant of proportionality,

1
8π

T0(z)
P0(z)

m(r, z)
m0(z)

ρ0(z)
ρ(r, z)

,

has a different value.
The relationship between magnetic field strength and line

core intensity differs from the above especially for the penum-
bral points, where for FeI 15 648.5 Å line, we found two
branches. I.e. the profiles of this line follow somewhat differ-
ent relationships. These correspond to two sets of line-of-sight
inclinations for the limb-side and center-side penumbra.

We also found a nonlinear relationship between the field
inclination and temperature, especially in the outer penumbra,
where a steep increase in field inclination is found for small
change in temperature. Interestingly, this relationship looks like

a mirror image of the B vs. T and Bz vs. T relationship. This
differers from the linear relationship found by Solanki et al.
(1993). An approximate linear relationship is found between
the magnetic field strength and field inclination. This relation-
ship is comparable with the results obtained by Stanchfield
et al. (1997) and Westendorp Plaza (2001).

We have computed the Wilson depression at every point in
the observed sunspot, thereby producing the first map of this
quantity. In the umbra we found an average value of around
400 km and in the penumbra around 120 km. While comput-
ing the Wilson depression we neglected the effect of curva-
ture forces. The values obtained here confirm the results ob-
tained using a similar method and similar data set by Solanki
et al. (1993). Across the umbral-penumbral boundary a jump
in ZW of around 200 km is observed. This qualitative radial
dependence of ZW agrees with the picture obtained by uti-
lizing the the Wilson effect (Wilson & Cannon 1968; Wilson
& McIntosh 1969; Wittmann & Schröter 1969). The differ-
ence in ZW derived here (around 400 km in the umbra) and
obtained from the Wilson effect (600 ± 200 km, Gokhale &
Zwaan 1972) could be due to the effect of field-line curva-
ture. The influence of curvature force on the derivation of the
Wilson depression is discussed by Martı́nez Pillet & Vázquez
(1993) and Solanki et al. (1993). Considering the values of ZW

obtained from Wilson effect observations, i.e. taking 400 and
800 km as the lower and upper limits in the umbra (cf. Solanki
et al. 1993) we computed values for Fc/8π in the umbra be-
tween 0 and 1.3 × 106 dyn cm−2, with a most probable value
of 5.8 × 105 dyn cm−2, corresponding to ZW of 600 km. This
is well in line with the earlier values obtained for the same by
Martı́nez Pillet & Vázquez (1993) and Solanki et al. (1993).
Since the Wilson effect measurements only provide a single,
average umbral Wilson effect value it is not possible to deter-
mine the distribution of Fc over the whole sunspot. It is thus
not possible to distinguish between the sunspot models, such as
that of Jahn (1989), which has currents distributed beneath the
whole penumbra, and Jahn & Schmidt (1994), in which all cur-
rents are restricted to current sheets at the umbral and sunspot
boundary.

In the umbra and in the inner penumbra, we found the
gas pressure to be lower than the magnetic pressure. The
plasma β is lower than unity in the umbra and in most of
the inner penumbra, but increases to values above 1.5 in the
outer penumbra.
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