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Abstract. We consider the impulsive excitation of fast vertical kink standing waves in a solar coronal loop that is embedded
in a potential arcade. The two-dimensional numerical model we implement includes the effects of field line curvature and
nonlinearity on the excitation and damping of standing fast magnetosonic waves. The results of the numerical simulations
reveal wave signatures which are characteristic of vertical loop oscillations seen in recent TRACE observational data.
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1. Introduction

Solar magnetohydrodynamic (MHD) waves are an important
diagnostic tool of the medium through which they propagate
(Roberts at al. 1984; Roberts 2000, 2002; Nakariakov 2003;
Klimchuk et al. 2004). They are also natural carriers of energy
and probably transport some of the energy needed to heat the
solar corona.

The last decade has seen the discovery of a variety of
coronal loop oscillations and waves. Both propagating waves
and various standing modes have been detected. These include
transverse oscillations (i.e. oscillations of the loop perpendicu-
lar to the plane containing the unperturbed loop; Aschwanden
et al. 1999), standing longitudinal slow modes (Wang et al.
2002), and most recently vertical oscillations (i.e. transverse
oscillations within the plane containing the unperturbed loop;
Wang & Solanki 2004). Here we are interested in the ver-
tical oscillations of a solar coronal loop. The observed loop
(recorded by TRACE in active region 9893 at the northwest
limb) expanded and contracted with an oscillation period of
about 230 s after being triggered by a flare. The initial velocity
of the loop was estimated as ∼130 km s−1 and the displacement
amplitude of the loop apex as 7900 km. The loop length was
estimated as 300−400 Mm. An interesting feature of these os-
cillations is the evidence that they are compressible.

Oscillations that are presumably triggered by sudden
energy release processes such as solar flares were discussed re-
cently by Nakariakov & Ofman (2001), Cooper et al. (2003),
and Nakariakov et al. (2004). Terradas & Ofman (2004)
discussed the possibility that transverse waves in coronal
loops can produce density enhancements at the apex. The

mechanism involved was the ponderomotive force of stand-
ing MHD waves. Terradas et al. (2005) studied the excitation
and damping of transversal coronal loop oscillations, using a
simple line-tied one-dimensional model. Shergelashvili et al.
(2005) demonstrated swing interaction between fast magne-
tosonic and Alfvén waves in an inhomogeneous medium. They
showed that the fast magnetosonic waves propagating across
an applied non-uniform magnetic field can parametrically am-
plify Alfvén waves propagating along the field, through the
periodical variation of the Alfvén speed. Slow standing waves
were discussed by Selwa et al. (2005) using parametric stud-
ies in the one-dimensional approximation. Fast standing waves
were numerically simulated by Murawski et al. (2005a) who
found high-order standing fast kink mode oscillations in a loop
that is embedded in a weak magnetic environment. Murawski
et al. (2005b) extended this work to the case of a general mag-
netic field neglecting gas pressure. They showed that impul-
sively triggered fast magnetosonic waves in a cold loop have
periods which are compatible with both the period of the fast
kink mode in the arcade and the observational data provided by
TRACE. Transverse oscillations in solar coronal loops induced
by propagating Alfvénic pulses were discussed by del Zanna
et al. (2005).

In this paper we extend the models of Murawski et al.
(2005a,b) by taking into account small but finite gas pressure
effects. We aim to explain the recent observational findings
by Wang & Solanki (2004). We consider a two-dimensional
curved magnetic field topology in a strongly magnetized coro-
nal plasma.

The paper is organized as follows: the physical model and
numerics are described in Sect. 2. The numerical results are
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presented in Sect. 3. This paper is concluded by a short sum-
mary of the main results in Sect. 4.

2. Physical model and numerics

Our model system is taken to be composed of a magnetized
plasma with infinite electrical conductivity that behaves like an
ideal gas with polytropic index γ = 5/3. As we are interested in
characteristic spatial scales lower than the pressure scale height
in the solar corona, we neglect the effect of gravitational
stratification. This assumption is not fully justified as the den-
sity scale height H = 46 Mm for an isothermal loop with elec-
tron temperature Te = 1 MK (Aschwanden 2002), while the
loop height considered here is h = 70 Mm. Indeed, the effect
of gravity is important in giving the plasma β a realistic distri-
bution with height.

With the above assumptions, the evolution of the system is
modeled by the ideal MHD equations, which describe the con-
servative transport of mass, momentum, energy, and magnetic
flux, viz.

∂�

∂t
+ ∇ · (�V) = 0, (1)

∂ (�V)
∂t

+ ∇ · [(�V) V
]
= −∇p +

1
µ

(∇ × B) × B, (2)

∂E
∂t
+ ∇ ·

[

(E + pT)V − B(B · V)
µ

]

= 0, (3)

∂B
∂t
= ∇ × (V × B) , (4)

∇ · B = 0. (5)

Here � is the mass density, V is the flow velocity, B is the mag-
netic field with the magnetic permeability µ, pT denotes the to-
tal pressure given by the sum of the gas and magnetic pressures:

pT = p +
B2

2µ
· (6)

The plasma energy density E is expressed by this pressure as

E =
�V2

2
+

p
γ − 1

+
B2

2µ
· (7)

2.1. Equilibrium configuration

We use the coronal arcade model that has been described by
Oliver et al. (1998). In this model the coronal arcade is settled
in a motionless environment (V = 0). The assumption of a low
plasma β implies that the pressure gradient∇p can be neglected
in comparison to the Lorentz force, so that

(∇ × B) × B = 0. (8)

We are interested in the case of a potential magnetic field with
zero current,

∇ × B = 0. (9)

We limit our discussion to a two-dimensional magnetically
structured atmosphere for which the plasma quantities are in-
dependent of the spatial coordinate y, ∂/∂y = 0. We assume

Table 1. Scale and equilibrium parameters.

L [Mm] �0

[
kg
m3

]
VA0

[
m
s

]
cs

[
m
s

]
B0 [G] T0 [MK]

100 10−12 106 105 11 0.44

that the unperturbed magnetic field is B = (Bx(x, z), 0, Bz(x, z))
and that Vy = By = 0 for all time. In such a system we can
express the equilibrium magnetic field in terms of a magnetic
potential A = Aŷ as

B = ∇ × A, (10)

where ŷ is a unit vector along the y-direction. Combining
Eqs. (9) and (10) we obtain Laplace’s equation, ∇2A = 0, with
solution

A(x, z) = B0ΛB cos (x/ΛB)e−z/ΛB . (11)

This method leads to the equilibrium magnetic field
components

Bx = B0 cos (x/ΛB) e−z/ΛB , (12)

Bz = −B0 sin (x/ΛB) e−z/ΛB . (13)

Here B0 is the magnetic field strength at the level z = 0 and ΛB

is the magnetic scale height. Requiring Bx to vanish at x/ΛB =

±π/2, we find that

ΛB =
2L
π
, (14)

where L denotes the half-width of the arcade.
For the potential magnetic arcade the equilibrium pres-

sure p0 has to be constant. This pressure can be evaluated from
the reference sound speed cs as

p0 =
1
γ
�0cs

2. (15)

In a gravity-free atmosphere we can assume that the back-
ground mass density is constant, viz. �0 = const. Such a choice
implies an isothermal atmosphere with constant sound speed
and background temperature T0. The field strength B0 at the
level z = 0 is connected to the background density �0 through
the Alfvén speed VA0 as

B0
2 = µ�0VA0

2, (16)

where VA0 = denotes the Alfvén speed at the level z = 0.
Scale and equilibrium parameters introduced above are shown
in Table 1.

We consider a “loop” that is embedded in the arcade such
that its edges follow magnetic field lines1. We chose the mass
density contrast �i/�0 = 10 given by a step-function profile
with �i corresponding to the internal mass density. This loop
does not have a perfect circular shape, but its average radius

1 The “loop” is itself infinitely extended in the y direction and thus
strictly speaking also an arcade. However, we refer to it as a loop in
order to distinguish it from the full magnetic field structure it is em-
bedded in.
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and length can be estimated as 70 Mm and 190 Mm, respec-
tively. These values are similar to those of the loop observed
by Wang & Solanki (2004). The loop half-width at the foot-
points is chosen as 2.5 Mm. Due to the absence of gravity the
plasma β = 2cs

2/(γVA
2) grows from 0.012 at the loop foot-

points to 0.054 at the loop apex in the ambient medium. This
growth is not quite realistic, but cannot be avoided in the ab-
sence of gravity. Importantly, the value of β is low everywhere
in the loop.

2.2. Perturbations

As we are interested in impulsively excited waves, we launch
a hot pulse in temperature or, equivalently, in the mass density
and pressure at time t = 0 from the location x = z = 0, i.e.
below the loop apex. This pulse has the spatial form:

δ�(x, z, t = 0)
�0

= A� e−(x2+z2)/w2
,

δp(x, z, t = 0)
p0

= Ap e−(x2+z2)/w2
, (17)

where w = 35 Mm is the initial pulse width. We choose initial
relative amplitudes of the pulse A� = 1.5 and Ap = 15, which
corresponds to a pulse that is 6.4 times hotter than the corona.

It is noteworthy here that the observed relative dimension
of the flaring site w with respect to the loop size is rather large
(e.g., Nakariakov et al. 2004). The initial location of the pulse
corresponds to the flaring site. Unfortunately, the observations
do not indicate directly the location of the flaring site (Wang &
Solanki 2004). However, we expect that in order to produce a
vertical oscillation of a loop the flare site must be located close
to the plane containing the loop. Thus it is well suited to be
modelled in 2-D. The adopted pulse parameters were chosen
such that they lead to numerical results which show encourag-
ing agreement with observations.

2.3. Numerics

We use the Versatile Advection Code (VAC) developed
by Tóth (1996). This code provides a choice of different
numerical schemes to advance a system of hyperbolic equa-
tions in 1, 2 or 3D. Here we use the Flux Corrected Transport
scheme (Boris & Book 1973) to solve the MHD equations in 2-
D. Numerical tests obtained with VAC can be found in Tóth &
Odstrčil (1996).

In multi-dimensional MHD simulations the numerical
value of the divergence of the magnetic field can become dif-
ferent from zero. There are several options in VAC to fix this
problem. Here we use the projection scheme, which eliminates
the divergence of the magnetic field after each time step by
solving a Poisson equation iteratively.

Equations (1)–(5) are solved numerically in an Eulerian
box with the x- and z-dimensions (−L, L) × (0, 2 L). This box
is covered by a grid of 600 × 600 numerical cells. Grid conver-
gence studies based on grid refinement (300 × 300, 400 × 500,
600 × 600 and 900 × 900) were performed to show that the nu-
merical results are not affected by poor spatial resolution. We

apply line-tying boundary conditions, with V = 0, at the bot-
tom and at the left and right hand sides of the simulation region.
Open boundary conditions, with zero-gradient extrapolation of
all plasma variables, are adopted for the top boundary.

3. Results

Figure 1 displays time-signatures of the mass density of the
loop apex (shown is a cut along the line x = 0). The pres-
ence of two temporal scales of oscillation can be distinguished:
(a) long period oscillations associated with global loop move-
ment which is triggered by the initial pulse and (b) short pe-
riod oscillations seen in mass density, although with a rela-
tively low amplitude. The long period fluctuations are strongly
damped fast kink oscillations. The short period oscillations
represent magnetosonic waves which are trapped by the loop
cavity. The general resemblance of Fig. 1 to the observational
data of Wang & Solanki (2004) is striking, although there are
differences in detail. Similarities include the strong damping,
and the depletion of mass density at times of maximum expan-
sion. The loop system moved outward by a maximum distance
of about 4000 m with an initial velocity of Vz = 22 km s−1,
which are smaller than the observational values of 7900 m and
130 km s−1 (Wang & Solanki 2004). The initial pulse in the
simulations is obviously weaker than the one giving rise to
the observed oscillations. We found, however, that if we in-
crease the strength of the initial pulse by a factor of two, the
loop becomes unstable. The relatively low stability of the loop
in our simulations may have to do with the neglect of gravity
(plasma β increasing with height) or with the simple magnetic
field topology applied. The seeming filamentation of the loop
seen in Fig. 1 may be a numerical artifact which is an inherent
feature of the Flux Corrected Transport (FCT) method (Boris
& Book 1973) that was used in the VAC code. This feature was
not observed with the second-order TVD Lax-Friedrich method
implemented in the code.

Figure 2 shows difference images of mass density evalu-
ated at two times corresponding to consecutive peaks in the
displacements (see Fig. 1). White (black) shading denotes an
excess (depletion) of mass density in comparison to the ear-
lier moment of time. Note that the loop is uniformly displaced
and the maximum density displacement occurs near the loop
apex. These profiles reveal that the first kink mode is excited, in
agreement with the observations (Wang & Solanki 2004, their
Figs. 3c,d).

The global oscillations of the loop can be traced by follow-
ing the position of the loop apex in time (Fig. 3). The apex
position is estimated as the maximum of the Gaussian function

G(z) = G0 · exp

[

− (z −G1)2

2G2
2

]

+G3 (18)

fitted across the loop. Here G1 denotes the position of the loop
apex, G0 +G3 is the amplitude of Gaussian function (density at
the loop apex) and G2 is the half-width of the Gaussian function
(half-width of the loop).
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Fig. 1. Time-signature of the mass density (colour) at the apex of the
loop.

Fig. 2. Difference images of mass density spatial profiles evaluated
over two different intervals of time: �(t = 240 s) − �(t = 0) (upper
panel) and �(t = 460 s) − �(t = 240 s) (lower panel).

We get a wave period and damping time of the oscillation
by fitting the apex position vs. time (Fig. 3) to the damped sine
function

D(t) = D0 + D1 · sin (D2t + D3) exp(−D4t), (19)

where P = 2π/D2 denotes the period of the oscillation and
τ = 1/D4 is the damping time. The above fitting provides
P = 496 s and τ = 223 s. This period is about twice larger
than the observed ∼230 s period of the displacement oscil-
lations (Wang & Solanki 2004), while the damping time is
approximately three times shorter than the observed value of
11.9 min (Wang & Solanki 2004). The difference in the

Fig. 3. Solid lines denote the position of the loop apex a) and mass
density at the loop apex b) vs. time. Dotted lines correspond to damped
sine functions fitted to the solid lines.

period is not a serious drawback of the model, since by in-
creasing VA0 by a factor of about two we would obtain the
observed period. However, irrespective of the choice of VA0,
the ratio of the damping time to the wave period, τ/P, reaches
a value of 0.5 for the numerical data, while for the observation
τ/P = 3. This difference may result from the simple physical
model we adopted. The identification of the cause of the strong
wave damping is not straightforward, although wave leakage,
possibly enhanced by the curvature of the loop may play a
role (Ruderman & Roberts 2002; Van Doorsselaere et al. 2004;
Andries et al. 2005). Figure 4, which shows vertical flow com-
ponent across the apex of the loop reveals a significant amount
of fast magnetosonic waves. There could potentially be leak-
ing energy to the ambient plasma, although considerable far-
ther simulations and analysis are required to identify the true
cause of the damping and why it is stronger in the simulations
than in the observations.

A comparison between Figs. 3a and 3b reveals that whereas
the loop apex shows a smooth oscillation that is well fit by a
damped sine function, the mass density, in addition to show-
ing an oscillation with the same period and damping time, also
exhibits high frequency oscillations. After removing the longer
term variations we determine a period of 150 s for the higher
frequency component. The fact that these short periods are not
visible in Fig. 3a suggests that the short period pulsations do
not correspond to higher harmonic kink modes.

It is noteworthy that, unlike in the analyzed observational
data of Wang & Solanki (2004), the simulated loop does not
return to its original position at large times, but retains an offset
to higher z. As this feature is present for all numerical methods
and resolutions that we have tried, we conclude that the offset
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Fig. 4. Time-signature of the vertical component of the flow for the
same cut as shown in Fig. 1.

Fig. 5. Half-width of the loop at the apex vs. time.

reflects a new equilibrium the loop attains after being perturbed
by the initial pulse. This offset can also be a result of the added
energy/mass under the loop by the pulse (17) which prevents it
from settling the same equilibrium height.

In Fig. 3b it is discernible that the loop is rarified when it is
largest, while it is denser in its most compact state. Using I ∼
�2, where I denotes intensity, this implies that the loop is darker
and brighter when it has expanded and compressed, again in
good agreement with the observations (Wang & Solanki 2004).
Note that the phase shift between position and density is not
exactly 180◦ (as determined from the dotted curves in Fig. 3).
At the end of the simulation the loop is clearly less dense than
at the beginning. This loop evacuation is due to the energy
leakage. During this process plasma flows into the ambient
medium, smoothing initially sharp loop edges and evacuating
its interior. As we have verified that numerical diffusion is neg-
ligibly small, this process is not an inherent numerical artifact.

The oscillation is thus not a pure kink mode, but shows
some compressibility. The initial pulse excites a packet of
waves in which kink waves have the highest contribution but
compressible waves like fast magnetosonic sausage or slow
waves are present too. This conclusion is supported by Fig. 5,
which displays the half-width of the loop at the apex vs. time.
The dominant feature of the figure is the broadening of the loop
when the pulse hits it, followed by a slow relaxation to roughly
its original width. In addition, a shorter period oscillation of
the half-width is also visible. This oscillation, with a period of
130–140 s, is more clearly seen in Fig. 6, where the half-width

Fig. 6. Short period oscillations of mass density at the loop apex (solid
line) and half-width of the loop (dashed line) at the apex vs. time.
These oscillations are obtained from Figs. 3b and 5 by filtering out
long period oscillations.

has been plotted after removing the longer term changes. The
similarly filtered density at the loop apex is also plotted. For
the density profile the dotted curve in Fig. 3b, described by
Eq. (19), was first removed.

Figure 6 clearly shows the anti-correlation between half-
width and density. This antiphase behavior is consistent with
the expectations for a fast sausage mode. It is noteworthy here
that a sausage mode can propagate freely only for wave peri-
ods τ shorter than the cut-off period τc that is given by (Edwin
& Roberts 1982, 1983)

τc =
4a
√

V2
Ae − VA

2

VAeVA
=

4a
√

1 − �0/�i

VA
, (20)

where a is the half-width of a slab. We get τc = 8.56 s for
a = 2.5 Mm at the loop foot-points and τc = 13.70 s for a
maximum value of a = 4 Mm at the apex. Since the wave pe-
riod is much larger than both these estimates, the sausage wave
seen in our simulations cannot be purely guided along the loop.
The excited wave is therefore a leaky sausage wave (Edwin &
Roberts 1983). It is probably leakage from these waves which
leads to the fast modes seen near the loop apex of Fig. 4.

4. Summary

In this paper we have studied numerically the impulsive ex-
citation of oscillations of a highly magnetised solar coronal
loop that is embedded in a two-dimensional magnetic arcade.
In the applied model we have neglected several important fac-
tors such as: the three-dimensional geometry of loops and the
flare site, radiative losses, and gravitational stratification. A 2-
D model may be more apropriate for the excitation of vertical
oscillations than of other transverse oscillation modes, since
the source of the initial pulse must be located in or near the
loop plane. Of particular interest is the influence of gravity,
which will be studied in a future investigation. Among loop
oscillations two scales were distinguished: (a) long period
(496 s) oscillations were interpreted as standing fast kink
modes and (b) short period (140 s) oscillations we associate
with leaky sausage waves. The observational signature of the
kink wave is similar to the actual TRACE observations reported
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by Wang & Solanki (2004), showing rapid damping and an
anti-correlation between displacement and density. Differences
in amplitude and period are probably due to differences in
the strength of the initial pulse, the Alfvén speed, and loop
length between modeled and the observed loop. The short pe-
riod sausage mode, although so far not observed, may play a
role in explaining the damping of the kink mode. It would be
of great interest to look for such waves in conjunction with
transverse loop oscillations.

The conjecture made here regarding the damping of the ex-
cited waves is that it is due to leakage. However, it cannot be
explained fully on the basis of our present arguments. The is-
sue of damping of loop oscillations is a rather intricate one and
requires farther studies.
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