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ABSTRACT

Many diatomic molecules present in the atmospheres of the Sun and cool stars exhibit the Paschen-Back effect at field strengths typical of
sunspots and active cool stars. Here we present a complete theoretical description of the molecular Paschen-Back efect in Hund’s cases (a), (b)
and all cases intermediate to them. This description allows us to compute the splitting of levels of any multiplicity and the transitions between
them. We also introduce a generalized description of the effective magnetic Landé factor applicable not just in the Zeeman regime, but also
in the Paschen-Back regime. We find that in the regime of the partial Paschen-Back effect strongly asymmetric Stokes profiles are produced,
whose strengths and asymmetries depend sensitively on the magnetic field. In the regime of the complete Paschen-Back effect the profiles
become symmetric again (although they may be strongly shifted). The strength of the forbidden and satellite transitions increases rapidly with
field strength in the partial Paschen-Back regime, while the strength of the main branch transitions decreases. These signatures hold promise to
form the basis of new diagnostics of solar and stellar magnetic fields.
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1. Introduction

This is the third in a series of papers aimig at a systematic study
of the molecular Zeeman effect and its diagnostic capabilities
for measuring magnetic fields on the Sun and cool stars. In our
first paper (Berdyugina & Solanki 2002, hereafter Paper I), we
presented an overview of the theory of the Zeeman effect in di-
atomic molecules for the limiting Hund’s cases (a) and (b) and
developed a numerical approach for the intermediate coupling
case (a, b) which is valid for terms of any multiplicity. We also
deduced general properties of the Zeeman splitting in molec-
ular lines and calculated Landé factors for prominent molecu-
lar bands in sunspot and cool-star spectra. In the second part
(Berdyugina et al. 2003, hereafter Paper II), we described the
Stokes radiative transfer of Zeeman split molecular lines and
computed Stokes profiles of those transitions previously stud-
ied in Paper I that represent important diagnostics of sunspot
and starspot magnetic fields.

Thanks to the recent theoretical developments, molecular
spectropolarimetry becomes a rapidly developing field in as-
trophysics. The first successful calculation of molecular Stokes
profiles and comparison with observations (TiO and MgH

transitions in sunspots) was presented by Berdyugina et al.
(2000). Peculiar Stokes profiles of CN and OH transtions ob-
served in sunspots were modelled and explained by Berdyugina
et al. (2001), Berdyugina & Solanki (2001) and Asensio Ramos
et al. (2005). A study of the Zeeman effect in the G-band
CH transitions was carried out by Uitenbroek et al. (2004) and
Asensio Ramos et al. (2004).

In the present paper we extend our theoretical investiga-
tion started in Paper I to the Paschen-Back regime (PBR), i.e.
when the perturbation due to an external magnetic field be-
comes comparable with internal interactions in the molecule.
The Paschen-Back effect plays a much more dominant role for
diatomic molecular transitions than for their atomic counter-
parts, since energy levels in molecules are closer to each other
due to, e.g., rotational or multiplet splitting. In such a case the
Paschen-Back regime is reached for lower field strengths than
typically found on the Sun and other cool stars (Paper I).

A theory of the molecular Zeeman effect in the
Paschen-Back regime was first considered by Hill (1929), who
described splitting of molecular doublet levels for the inter-
mediate case (a, b) using the Hund’s case (b) wavefunctions.
He did not succeed though in calculations of theoretical line
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strengths for this case. The latter problem was resolved much
later by Schadee (1978), who repeated the analytical calcu-
lation by Hill using the Hund’s case (a) wavefunctions. He
did not give details on line strength calculations, however, as
the corresponding analytical expressions would be too compli-
cated. Both above approaches were limited to doublet states
and for the Paschen-Back effect (PBE) on the fine structure of
molecular levels, i.e. when spin becomes uncoupled from other
momenta by an external magnetic field.

Here we present a more general numerical approach to the
molecular PBE which is valid for terms of any multiplicity and
accounts for interactions of all rotational levels in a molecule.
In Sect. 2 we introduce the magnetic perturbation on the molec-
ular Hamiltonian and explain how the theoretical line strengths
are computed in the PBR. We also define a generalized effec-
tive Landé factor which is applicable in both the Zeeman and
Paschen-Back regimes. In Sect. 3 we present calculations of
molecular levels and of different multiplicity in the PBR when
the magnetic splitting becomes comparable with the fine struc-
ture. This is further extended for the rotational structure in
Sect. 4. Pecularities of the transitions between magnetic sub-
levels in the Paschen-Back regime and their Stokes profiles are
discussed in Sect. 5. We summarize our results and conclusions
in Sect. 6.

2. Magnetic perturbation of the molecular
Hamiltonian

2.1. Energy levels

In the presence of a magnetic field the Hamiltonian of a
molecule in an intermediate coupling case is described by
the sum of the internal interaction energies and the magnetic
energy:

H = Hint +HH. (1)

Here the main contribution to the internal energyHint is due to
the spin-orbitalHSL and rotationalHrot energies. The energies
due to spin-rotation HSR, orbit-rotation HLR, spin-spin HSS

and other interactions as well as the correction due to centrifu-
gal distortionHc can be added:

Hint = HSL +Hrot +Hc +HSR +HLR +HSS + . . . (2)

In the present paper we limit ourselves to interactions within
one electronic state. The Zeeman and Paschen-Back effects for
interacting electronic states is the subject of a forthcoming pa-
per. The energy of the interaction of the molecular magnetic
moment µ with the external magnetic field H is a scalar prod-
uct of the two vectors:

HH = µ · H = µ0(L + 2S) · H, (3)

where µ0 is the Bohr magneton, S is the spin, and L is the or-
bital momentum. If the magnetic moments due to spin and or-
bital motion of electrons are zero, the contributions from the
rotation and spins of nuclei need to be taken into account.

In the Zeeman regime, when the internal coupling of the
momenta is larger than the interaction with the external mag-
netic field, the diagonalisation of the internal Hamiltonian can

be first performed, while the interaction with the magnetic field
can be treated as a perturbation. This approach has been devel-
oped in Paper I and applied to many astrophysical molecules
(see also Paper II).

In the strong-field regime, a transition to the Paschen-Back
effect occurs, i.e. the magnetic interaction becomes comparable
to or even larger than the internal interactions. Then, the diag-
onalisation of the full Hamiltonian given by Eq. (1) should be
performed. For an increasing magnetic field strength, the PBE
will first occur on neighbouring interacting levels and then on
the whole level structure.

The full Hamiltonian H can be expressed in both Hund’s
case (a) and (b) wavefunctions. The choice can be made de-
pending on a particular transition. Matrix elements of the in-
ternal Hamiltonian Hint in the basis of the Hund’s case (a)
and (b) wavefunctions are given in Tables A.1 and A.2, re-
spectively, according to Kovàcs (1969). In the tables, A, B,
D, γ and λ denote constants of spin-orbital coupling, rota-
tional splitting, centrifugal distortion, spin-rotational and spin-
spin coupling, respectively. Molecular quantum numbers have
their conventional meaning. Matrix elements of the magnetic
perturbation HH expressed in the basis of the Hund’s case (a)
wavefunctions are given in Table A.3, according to Schadee
(1978), but with a correction to match the sign convention
for the spin operator by Kovàcs (1969). In Table A.4 corre-
sponding magnetic matrix elements are given for the Hund’s
case (b) wavefunctions, according to Hill (1929). In these ta-
bles, ∆σ0 = µ0H, where H is the magnetic field strength.

Non-zero elements of the perturbation matrix indicate pairs
of levels interacting with each other. As the magnetic field
strength increases, the values of such elements also increase,
indicating that the levels approach each other in energy. Mixing
of levels occurs however in such a way that interacting lev-
els cannot intersect. Instead, the levels experience “repulsion”,
i.e. the higher level is displaced upward and the lower level
downward. In addition, since wavefunctions become mixed,
each of the interacting levels assumes properties of the other.
As seen from Table A.3, the selection rules for the interacting
levels within the same electronic state described in the Hund’s
case (a) wavefunctions are as follows: ∆M = 0, ∆J = 0, ±1,
and ∆Σ = 0, ±1. In the Hund’s case (b) wavefunctions, the
same rules hold (as seen from Table A.4) with the latter condi-
tion being replaced by ∆N = 0, ±1.

Eigenvalues of the full Hamiltonian H represent magnetic
sublevels of a molecule in a given electronic state for the inter-
mediate Hund’s case (a, b) in the PBR. Corresponding eigen-
vectors define new wavefunctions ΨH as linear combinations
of the basis wavefunction Ψa or Ψb:

ΨH
M =

∑
Σ,J

Ca
Σ JMΨ

a
ΣJM =

∑
N,J

Cb
NJMΨ

b
NJM . (4)

A number of mixing basis wavefunctions depend on the
strength of the magnetic field. If only levels with different spin
projections are mixed, the PBE occurs on the fine structure.
This was previously analytically described by Hill (1929) and
Schadee (1978) for doublet states. In Sect. 3 we present results
of our numerical calculations for doublet, triplet and quartet
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states with various spin coupling constants. If levels with dif-
ferent J in case (a) or N in case (b) are mixed, the PBE occurs
on the rotational structure. Both Hill and Schadee neglected
this interaction for the sake of simplicity. When carrying out
numerical diagonalisation of the Hamiltonian, this interaction
can be easily taken into account. This is the subject of our dis-
cussion in Sect. 4.

2.2. Transition probabilities

Strengths of transitions between Zeeman sublevels are ex-
pressed via matrix elements of the electric dipole operator µe.
Generally, the transition probability is a product of the square
of the electronic transition moment, the Franck-Condon factor
and the Hönl-London factor (HLF). Leaving out the first two
factors, one can determine the magnetic Hönl-London factor as
the square of the matrix element of the electric dipole operator
in the new wavefunctions:

SH
M′′M′ =

∣∣∣∣〈ΨH
M′′ |µe|ΨH

M′
〉∣∣∣∣2 (5)

=

∣∣∣∣∣∣∣
〈∑
Σ′′J′′

Ca
Σ′′J′′M′′Ψ

a|µe|
∑
Σ′J′

Ca
Σ′J′M′Ψ

a

〉∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣
〈∑

N′′ J′′
Cb

N′′ J′′M′′Ψ
b|µe|

∑
N′J′

Cb
N′ J′M′Ψ

b

〉∣∣∣∣∣∣∣
2

.

Here the single and double primes correspond to the upper and
lower level, respectively. To make the equation more compact
we neglected subscripts for the wavefunctions. The subscripts
are the same as for corresponding eigenvectors. The new am-
plitude of the transition 〈ΨH

M′′ |µe|ΨH
M′ 〉 is thus a specific sum

of the transition amplitudes in the basis wavefunctions, either
case (a) 〈Ψa

Σ′′J′′M′′ |µe|Ψa
Σ′J′M′ 〉 or case (b) 〈Ψb

N′′ J′′M′′ |µe|Ψb
N′J′M′ 〉.

The matrix elements of the electric dipole operator in Hund’s
case (a) are well known expressions (e.g., Hougen 1970;
Schadee 1978). In terms of the rotation group they can be pre-
sented in a general form (cf., Berdyugina et al. 2002).

In the Hund’s case (a) wavefunctions the unperturbed tran-
sition amplitude is as follows:〈
Ψa
Σ′′J′′M′′ |µe|Ψa

Σ′J′M′
〉
= (−1)J′+M′′+1

√
2J′′ + 1

(
J′ J′′ 1
−M′M′′−∆M

)

× (−1)J′+Ω′′+1
√

2J′ + 1

(
J′′ J′ 1
−Ω′′Ω′−∆Ω

)
. (6)

Here, the first term describes the dependence of transition am-
plitudes on J and M, while the second one is a reduced matrix
element providing the dependence on Ω.

In the Hund’s case (b) wavefunctions the expression for the
unperturbed transition amplitude is as follows:

〈Ψb
N′′ J′′M′′ |µe|Ψb

N′J′M′ 〉 =
(−1)J′+M′′+1

√
2J′′ + 1

(
J′ J′′ 1
−M′M′′−∆M

)

× (−1)N′′+S+J′+1
√

2J′ + 1
√

2N′′ + 1

{
N′′N′ 1
J′ J′′S

}

× (−1)N′+Λ′′+1
√

2N′ + 1

(
N′′ N′ 1
−Λ′′Λ′−∆Λ

)
. (7)

Here the first term is the same as in Eq. (6). The second term
arises due to the vector sum of S and N. The third term is the
reduced matrix element providing the dependence on Λ. In
the Zeeman regime the first term remains unchanged also for
the intermediate Hund’s case (a, b), as was shown in Paper I.
This implies that in the weak field regime the total line strength
depends on the perturbation due to spin uncoupling, while rel-
ative intensities of the Zeeman components are preserved. In
the strong field regime, the Paschen-Back effect results in al-
teration of both the total line strength and relative intensities of
the Zeeman components.

2.3. Landé factors

Knowing shifts and strengths of Zeeman transitions, one can
calculate the effective Landé factor of a given spectral line. In
the Zeeman regime, it is defined as follows:

geff =
∑
M′′
S̃M′M′′ (g′M′ − g′′M′′), (8)

where g′ and g′′ are Landé factors of the upper and lower
level, respectively, and the sum should be calculated only for
∆M = 1. The strengths of Zeeman transitions S̃ M′M′′ are nor-
malised as follows:∑
∆M=k

S̃M′M′′ = 1, k = +1, 0,−1. (9)

We can further obtain expressions for the effective Landé fac-
tors of the transitions belonging to three rotational branches R,
Q and P (∆J = 1, 0, −1, respectively):

geff(R) =
1
2

[g′(J′ + 1) − g′′J′′],

geff(P) =
1
2

[−g′J′ + g′′(J′′ + 1)],

geff(Q) =
1
2

[g′ + g′′]. (10)

Note that these formulae differ from the corresponding ones
in Paper I by the factor 1/2, because of the different definition
of the effective Landé factor used in Paper I, where it repre-
sented the mean weighted difference between transitions with
∆M = +1 and −1 (so-called σ+ and σ− components). Here we
use the conventional definition that it is the mean weighted shift
of one of the sigma transitions with respect to the zero-field po-
sition.

The effective Landé factors are useful for the so-called
weak-field approximation, when the magnetic splitting is
smaller than the spectral line width broadened by other pro-
cesses. For most molecular transitions under solar conditions
this approximation is acceptable. However, the above defini-
tion is only useful in the Zeeman regime, when the magnetic
splitting is symmetrical and Landé factors of levels are inde-
pendent of magnetic field strength (see Paper I).

In the case of the PBE, the weak-field approximation can
still hold for almost all molecular transitions involving Σ states
at moderate field strengths. However, the splitting is no longer
symmetrical and line strengths are modified due to the mag-
netic interaction. We suggest therefore a generalised defini-
tion of the effective Landé factor. First, we define the partial
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strengths of the σ+, σ− and π components corresponding to
∆M = +1, −1, 0 as follows:

S+ =
∑
∆M=+1

SH
M′M′′ , (11)

S− =
∑
∆M=−1

SH
M′M′′ , (12)

S0 =
∑
∆M=0

SH
M′M′′ . (13)

Then, we define the effective Landé factors for σ+, σ− and π
components:

g+ =
1
µ0H

∑
M′′ ,∆M=+1

SH
M′M′′

S+ (∆E′ − ∆E′′), (14)

g− =
1
µ0H

∑
M′′ ,∆M=−1

SH
M′M′′

S− (∆E′ − ∆E′′), (15)

g0 =
1
µ0H

∑
M′′ ,∆M=0

SH
M′M′′

S0
(∆E′ − ∆E′′), (16)

where ∆E is the energy shift for a given magnetic sublevel.
Finally, we can define the effective Landé factor in the PBR:

geff =
1
2

(g+ − g−). (17)

It is easy to see that in the Zeeman regime g+ = −g−, and
the above definition coincides with the conventional one. In the
following we use the above new definitions for studying devia-
tions from the Zeeman regime.

3. Paschen-Back effect on the fine structure

3.1. Intermediate Paschen-Back regime

In this section we consider the PBE on the fine structure,
when only levels with different spin projections are mixed. For
doublet states with weak spin coupling this was previously an-
alytically described by Hill (1929) and Schadee (1978) and dis-
cussed in detail by Illing (1981). Our numerical calculations re-
produce exactly the examples calculated by Schadee and Illing
for doublet transitions of MgH and CN. In this section, in ad-
dition to doublet states, we present examples of our numeri-
cal calculations for triplet and quartet states with the projec-
tion of the orbital angular momentum on the internuclear axis
Λ = 0, 1, 2, i.e. Σ, Π and ∆ states.

The behaviour of the electronic states in a magnetic field
depends on how strongly the electron spin is coupled to the in-
ternuclear axis and the orbital moment. In case when Λ = 0
the spin is completely uncoupled from the internuclear axis
(spin-orbital interaction constant A = 0) and only weakly cou-
pled to the rotation (spin-rotation interaction constant γ � 1).
This implies that even a very weak magnetic field can signifi-
cantly perturb the fine structure of molecular levels. This effect
is demonstrated for 2Σ, 3Σ and 4Σ states in Fig. 1. The level
structure becomes significantly perturbed when the magnetic

Fig. 1. The PBE effect on the fine structure of 2Σ,3Σ and 4Σ states for
N = 6, 5, 4, respectively. The spin-rotational interaction constant γ is
0.026 cm−1 and the rotational constant B is 5.736463 cm−1. The tran-
sition to the PBR occurs at field strengths below 1 kG. The complete
PBE in the 2Σ state occurs at about 2 kG, in 3Σ and 4Σ at about 3 kG.

splitting µ0H becomes comparable to the fine structure split-
ting γN. If γ is of the order of 10−2, the perturbation becomes
noticeable at field strengths well below 1 kG.
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In case when Λ � 0, the fine structure is defined by the
spin-orbital interaction. Examples of the level splitting for 2Π,
3Π and 4∆ are shown in Fig. 2. Here the field strength at which
the PBE becomes significant is defined by the spin-orbital in-
teraction constant A: the magnetic splitting µ0H should be of
the order of AΛ. For A ∼ 1−10 the transition to the PBR occurs
at few kG fields.

3.2. Complete Paschen-Back effect on the fine
structure

When the spin is completely uncoupled from both the internu-
clear axis and the rotation, the complete Paschen-Back effect
on the fine structure occurs. The spin and the angular momen-
tum N are independently quantised in the field direction with
component MS and MN . The splitting in this case is described
by the known asymptotic expression (e.g., Herzberg 1950):

∆E = µ0H

[
Λ2MN

N(N + 1)
+ 2MS

]
. (18)

This formula is valid as long as the Zeeman splitting is large
compared to the multiplet splitting but still smaller than the ro-
tational splitting. Note that the first term is of the same form
as for the singlet transitions in Hund’s case (a) (see Paper I).
The first term decreases rapidly as N increases, whereas the
second term is independent of N. For higher N there is practi-
cally only a splitting into components corresponding to MS =

−S ,−S + 1, ..., S , with a separation of µ0H. For Σ states, when
Λ = 0, the first term is zero, and there remains only a split-
ting independent of N. A more detailed calculation, when the
spin-rotation interaction is taken into account, reveals that each
component with a given MS splits into 2N + 1 components
with splitting of the same order of magnitude as the multiplet
splitting without magnetic field. The level splitting in the com-
plete PBR is thus reminiscent of the multiplet structure. This is
clearly visible in Figs. 1 and 4 for Σ states at moderately strong
fields and in Fig. 2 for states with Λ � 0 at stronger fields.

4. Paschen-Back effect on the rotational structure

In this section we consider the PBE on the rotational structure,
when levels with different J in case (a) or N in case (b) are
mixed. This interaction has not been discussed in detail so far.

4.1. States closer to Hund’s case (a)

In this case, the electronic angular momenta are strongly cou-
pled to the line joining the nuclei and only weakly with the ro-
tation of nuclei. The electronic term structure is characterised
by larger multiplet splitting compared to the rotational split-
ting. When magnetic shifts become comparable with the rota-
tional splitting, levels corresponding to the same M numbers
and ∆J = ±1 start to interact. This is illustrated in Fig. 3
for a 2Π3/2 state with strong spin-rotational interaction. The
repulsion of levels with ∆J = ±1 becomes significant when
magnetic splitting become comparable to rotional one, i.e.
µ0H ∼ 2B(J + 1). In this example, the second state in the

Fig. 2. The PBE effect on the fine structure of 2Π, 3Π and 4∆ states
for N = 6, 5, 4, respectively. The spin-orbital interaction constant A
is 12 cm−1 for the Π states and 3 cm−1 for the ∆ state. The rotational
constant B is 5 cm−1 and 3 cm−1, correspondingly. The transition to
the PBR occurs at field strengths of a few kG. The complete PBE in
the 2Π state occurs at about 10 kG, in 3Π at 15 kG and in 4∆ at about
30 kG.

doublet, 2Π1/2, is separated by about 100 cm−1 and remains
magnetically insensitive, in accord with Hund’s case (a).
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Fig. 3. The PBE effect on the rotational structure of a 2Π3/2 state in
Hund’s case (a) for J from 1.5 to 8.5. The spin-orbital interaction con-
stant A is 100 cm−1, and the rotational constant B is 0.3 cm−1. The PBE
is significant already at 15 kG field strengths, when µ0H ∼ 2B(J + 1).

The interaction of the two substate becomes significant only
at very large field strengths. Then, the PBE occurs on the fine
structure as well. A similar behaviour is found for other states
with Λ � 0 and S � 0. Note that rotational levels of singlet
states do not perturb each other and split according to the con-
ventional Zeeman effect, unless perturbations due to other elec-
tronic states are significant and should be taken into account.

4.2. States closer to Hund’s case (b)

In this case, the spin is only weakly coupled to the internuclear
axis, orbital momentum and the rotation of nuclei. The elec-
tronic term structure is characterised by larger rotational split-
ting compared to the multiplet splitting. As discussed above,
for an increasing magnetic field strength, the PBE occurs first
at the fine structure, i.e. levels with the same M and N numbers
and J = ±1 start to interact. When magnetic shifts exceed the
multiplet splitting and become comparable with the rotational
splitting, levels with N = ±1 start to interact. This is illustrated
in Fig. 5 for states with Λ � 0. The increasing magnetic split-
ting and the repulsion of interacting levels lead to complete
smearing of the rotational and multiplet structure, indicating
the complete PBE within a given electronic state.

A special case represents states with Λ = 0, i.e. Σ states.
As shown in Fig. 4, the rotational structure of such states is not
further perturbed by an increasing magnetic field. The pseudo-
multiplet structure of the levels resulting from the complete
PBE on the fine structure is conserved over a wide range of
magnetic field strengths. Only additional perturbations by other
electronic states would change this picture.

5. Transitions in the Paschen-Back regime

5.1. Magnetic patterns

Selection rules for electric dipole transitions in pure Hund’s
cases (a) and (b) are immediately seen from Eqs. (6) and (7).
In the case (a), only those transition amplitudes are not zero

Fig. 4. The PBE effect on the rotational and fine structure of 2Σ, 3Σ

and 4Σ states. The spin-rotational interaction constant γ is 0.026 cm−1.
The rotational constant B is 0.5 cm−1 for the 2Σ state and 1 cm−1 for
the others. The complete PBE occurs at a few kG field strengths. The
levels with different N numbers are not interacting and can intersect
as the splitting increases.

for which ∆Ω = 0, ±1, ∆Λ = 0,±1,∆Σ = 0,∆J = 0, ±1,
∆M = 0, ±1, with ∆J = 0 being forbidden for Ω = 0→ Ω = 0
transitions. In the case (b), Ω and Σ are not defined, and the
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Fig. 5. The PBE effect on the rotational and fine structure of 2Π, 3∆

and 4∆ states. The spin-orbital interaction constant A is 5 cm−1 for
the 2Π state, 1 cm−1 for the 3∆ state and 3 cm−1 for the 3∆ state.
The rotational constant B is 0.5 cm−1 for the 2Π state and 1 cm−1 for
the ∆ states. The complete PBE on the fine structure occurs at field
strengths of a few kG. As the splitting increases, the levels with differ-
ent N mix with each other. The interacting levels cannot intersect and
deviate from the normal Zeeman splitting.

selection rules for them are replaced by those for ∆N and ∆S :
∆Λ = 0,±1,∆S = 0,∆N = 0,±1, ∆J = 0,±1, ∆M = 0,±1

with ∆N = 0 being forbidden for Λ = 0 → Λ = 0 transi-
tions. In case of weak magnetic perturbation (Zeeman regime)
the electric dipole selection rules for the case intermediate be-
tween Hund’s case (a) and (b) allow the same transitions as
in the case (b). If ∆J = ∆N, then the rotational branches R,
P and Q with ∆J = +1,−1, 0, respectively, are called main. If
∆J � ∆N, satellite branches appear, e.g. PR,Q P, etc., where the
left superscript denotes the branch type according to the value
of ∆N.

Strong magnetic perturbation in the PBR, as considered in
the present paper, results in mixing levels with different N,
J and S . These quantum numbers loose therefore their iden-
tity. In this case the only good quantum numbers left are Λ
and M. Thus, the selection rules for the intermediate Hund’s
case (a, b) in the PBR are ∆Λ = 0,±1 and ∆M = 0,±1. This
implies that many transitions that are forbidden in the Zeeman
regime become allowed in the PBR. For instance, transitions
with ∆J = ±2 corresponding to the rotational branches S (do
not confuse with spin) and O become stronger as the field in-
creases. Also, previously allowed but weak transitions in satel-
lite branches increase in strength.

The appearance of previously forbidden transitions and
strengthening of satellite transitions are compensated by re-
duced amplitudes of the allowed transitions. Thus, as the
strength of magnetic field increases and the level structure en-
ters the PBR, main branch transitions start to fade while giv-
ing the power to forbidden and satellite transitions. This is il-
lustrated in Fig. 6 for the MgH A2Π − X2Σ+ system. Along
with the change of the total line strength, the intensity of the
∆M = +1, 0, −1 transitions varies in different ways, so that
the line is no longer symmetric. This results in different par-
tial strengths of the σ+, σ− and π components. In other words,
the radiative properties of a molecule become dependent on the
magnetic field, which results in so-called molecular magnetic
dichroism. This is a typical behaviour of all molecular transi-
tions in strong magnetic fields.

The asymmetry between the strengths of the line Zeeman
component is accompanied by the asymmetry in its Landé fac-
tors. This is illustrated in Fig. 7, where variations of geff, g+,
g0 and g− are shown. In the Zeeman regime Landé factors of
the main branch lines are relatively small (see Paper I), while
satellite transitions are very magnetically sensitive but weak.
As the magnetic field strength increases, all lines show sig-
nificant magnetic sensitivity, especially satellite and forbidden
transitions. The most rapid changes occur in the intermedi-
ate PBR. In this case large polarisation signals are expected
from all lines. When the Landé factors are combined with
the line strengths, the satellite and forbidden transitions would
significantly contribute to the polarisation signal in the PBR.
When both upper and lower states approach the complete PBR
on the fine structure, the splitting and partial strengths of dif-
ferent Zeeman components become symmetric again. Similar
behaviour is expected for all other molecular electronic transi-
tions.

Magnetic patterns of the discussed transitions at four differ-
ent field strengths of 0.1, 1, 10 and 100 kG are shown in Figs. 8
and 9. These examples demonstrate the complex behaviour of
line strengths and splitting when only the lower state is in the
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Fig. 6. Hönl-London factors (HLF) and partial strengths of the σ+, σ−

and π components (S+, S0 and S−) for six main branch transitions
(thick lines) and six satellite transitions (thin lines) with N′′ = 6 in
the MgH A2Π− X2Σ+ system. Strengths of the satellite transition with
∆J = 0,±1 in the non-magnetic case are very small and those of the
forbidden transitions with ∆J = ±2 are zero. As the magnetic field
strength increases, lines of the main branches fade, while the satellite
and forbidden transitions increase in power. The most rapid changes
occur in the intermediate PBR. The structure is stabilised when both
upper and lower electronic states are in the complete PBR on the fine
structure. When the PBE starts to influence the rotational molecular
structure, some main branch lines become stronger again, while satel-
lite and forbidden transitions weaken. Such a behaviour is typical for
other electronic transitions as well.

PBR (0.1 and 1 kG), the upper state is in the intermediate PBR
(10 kG) and both states are in the complete PBR (100 kG).
Fading of the main branch lines and strengthening of the satel-
lite branch lines are obvious. Note also, that in the intermediate
PBR relative intensities of the σ+ and σ− of the main branch
lines become very different. This results in a net polarisation
signal in the lines which can be observed in both linear and
circular polarisation.

When the molecular structure enters the PBR on the rota-
tional structure, a great number of previously forbidden tran-
sitions with |∆J| ≥ 2 and |∆N| ≥ 2 appear in the spectrum.

Fig. 7. The same as in Fig. 6 for geff , g+, g0 and g−. In the Zeeman
regime Landé factors of the transitions are relatively small. As the
magnetic field strength increases, all lines show significant magnetic
sensitivity. Similar to the line strengths, the most rapid changes occur
in the intermediate PBR. In the complete PBR on the fine structure
the magnetic sensitivity is again reduced because of the symmetric
splitting. In practice, when line strengths are combined with Landé
factors, the satellite and forbidden transitions would dominate the po-
larisation signal in the complete PBR. Different behaviour of g+, g0

and g− reflects the asymmetry in magnetic line patterns. Again, such
a behaviour is typical for other electronic transitions.

As the level structure becomes very much perturbed (Fig. 5)
no transitions can be identified as belonging to main or satel-
lite branches. According to the selection rule ∆M = 0,±1 the
spectrum of the molecule would be a mixture of different tran-
sitions between M-sublevels. If one of the involved electronic
states is a Σ-state, some grouping of the transitions according
to a pseudo-multiplet structure (Fig. 4) is expected.

5.2. Stokes parameters

In order to calculate Stokes parameters of molecular transitions
we employ the method of polarised radiative transfer described
in Paper II. It is valid for both Zeeman and Paschen-Back
regimes when the splitting pattern of a molecular line and the
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Fig. 8. Magnetic patterns for the P1 +
P Q12 and P2 +

P O21 transitions
with N′′ = 6 for different magnetic field strengths. The components
with ∆M = −1 are plotted downward for clarity. Vertical dashed and
dashed-dotted lines indicate the positions of the main and satellite
lines, respectively, at zero magnetic field. The components shown by
thick and thin sticks correspond to the main and satellite lines, respec-
tively. In the top plot only P1 line is shown. For the field of 1 kG, P1

is shown together with Q12, which is very weak. Note that already
at 1 kG the PBE is well seen in the P1 line shape. The intensity and
splitting of the satellite lines become comparable to and even exceed
those of the main lines at fields of 10 kG and 100 kG. The R1 +

R S 12

and R2 +
R Q21 transitions show similar patterns and behaviour but of

opposite sign.

line absorption matrix are accordingly calculated. The code
STOPRO (Solanki 1987; Frutiger et al. 2000) extended to in-
clude molecular transitions (Berdyugina et al. 2000, 2003) is
used.

In Fig. 10 we present Stokes V profiles of the MgH A–
X (0,0) P1 +

P Q12 and P2 +
P O21 transitions for N′′ from 4

to 10 for a longitudinal magnetic field with a strength of 2 kG.
The most striking feature is that all individual Stokes V profiles

Fig. 9. The same as Fig. 8 for the Q1 +
Q R12 and Q2 +

Q P21 transitions
with N′′ = 6.

shown in the top plot are essentially single-lobed, which is the
most prominent signature of the PBR. When Stokes V profiles
of the main and satellite are calculated together, the profiles
look more symmetrical for lower N numbers and become very
asymmetric for higher N numbers. This occurs due to the rapid
decrease of the magnetic sensitivity of the main branch lines
with N (negative Stokes V in this example) combined with
the slower change in the magnetic sensitivity of the satellite
lines (here, positive Stokes V). Such a combination results in
increasing the net circular polarisation signal with N in the be-
ginning of the band. For larger N numbers, the signal goes to
zero because of the reduced PBE at the same field strength. A
similar behaviour is found for the R1 +

R S 12 and R2 +
R Q21

transitions. Stokes V profiles for the Q1 +
Q R12 and Q2 +

Q P21

transitions are shown in Fig. 12. Here only satellite lines ex-
hibit single-lobed profiles, while main branch lines maintain al-
most antisymmetric shapes, which are emphasised when pairs
of lines are calculated together (bottom plot).
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Fig. 10. Stokes V profiles of the MgH A–X (0,0) P1 +
P Q12 and P2 +

P O21 transitions for N′′ from 4 to 10 (left to right) for the longitudinal
magnetic field of 2 kG. In the top plot, profiles for individual lines are shown separately (shifted in the vertical scale for clarity). Note that all
profiles are single-lobed already at this field strength. In the bottom plot, Stokes V profiles are calculated including all transitions simultaneously.
Vertical dashes indicate the position of lines at zero magnetic field. The calculations are plotted on top of the Stokes V spectrum observed in a
sunspot (dotted line, from Berdyugina et al. 2000).

Fig. 11. Stokes Q profiles of the the same transitions as in Fig. 10 for a transversal magnetic field of 2 kG. Note that all individual profiles in the
top plot have nearly antisymmetric shapes. When Stokes Q profiles of the main and satellite lines are calculated together, the resulting shape is
reminiscent of a Stokes Q profile as would be observed in the Zeeman regime.

The dotted line in Fig. 10 represents observations made by
W. Livingston in a sunspot umbra (see Berdyugina et al. 2000,
for details). Obviously there is significant blending by other
lines in the data. In order to use MgH line to diagnose sunspot
and starspot magnetic fields, the blending lines will have to be
included in the analysis. This will be the topic of a separate
publication.

Stokes Q profiles in the transversal magnetic field for the
P1 +

P Q12 and P2 +
P O21 transitions are shown in Fig. 11.

Again, the individual line shapes are very different from what
is normally observed in the Zeeman regime. Instead of being
symmetric, the profiles are essentially antisymmetric and are
more reminiscent of normal Stokes V profiles. The polarisation

signal of satellite lines is larger than that of main branch lines,
although the former are still weaker in Stokes I than the lat-
ter. Also, their sign of polarisation is opposite. Because of
wavelength shifts between main and satellite lines, the resul-
tant Stokes Q signal from pairs of lines look almost symmet-
ric and very similar to that observed in the Zeeman regime.
This visible symmetry is however very sensitive to the mag-
netic field strength. Stokes Q profiles for the Q1 +

Q R12 and
Q2 +

Q P21 transitions are shown in Fig. 13. In this case the
individual line profiles are intermediate between antisymmet-
ric and single-lobed shapes. Again, the polarisation signal of
satellite lines is larger and of opposite sign as compared to main
branch lines. As a result, the polarisation pattern of line pairs
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Fig. 12. The same as Fig. 10 for the Q1 +
Q R12 and Q2 +

Q P21 transitions with N′′ from 10 to 4 (left to right).

Fig. 13. The same as Fig. 11 for the Q1 +
Q R12 and Q2 +

Q P21 transitions with N′′ from 10 to 4 (left to right).

is irregular and dominated by one polarisation sign, producing
net linear polarisation over the whole wavelength interval.

These examples demonstrate clear advantages for studying
both solar and stellar magnetic fields using molecular lines. In
sunspots, the magnetic field strength can be diagnosed not only
from the line splitting and amplitude of the polarisation sig-
nal as in the Zeeman regime but also from the analysis of line
asymmetries for different N numbers. This is qualitatively new
information which would strongly constrain the magnetic field
in sunspots, in particular in the cooler parts of the umbra. For
stars, the net polarisation signal would enable the detection of
stellar magnetic fields even at moderate spectral resolution.

6. Discussion and conclusions

In the visible and infrared (IR) parts of the sunspot spec-
trum, lines of about a dozen diatomic molecules have been
identified. In the visible and near IR they arise due to

electronic-vibration-rotational transitions, while in the far IR
and longer wavelengths the observed molecular transitions are
either ro-vibrational or pure rotational. Many of these transi-
tions and some others are observed in spectra of cool stars as
well. In Table 1 we present a list of the transitions which would
be observed in the PBR at typical sunspot and stellar magnetic
field strengths. The magnetic field strength at which the PBE
becomes significant is provided. In most cases the PBE occurs
already at field strengths below a few hundreds Gs. This in-
dicates the importance of the present theoretical study of the
molecular PBE. For degenerate stars, having stronger fields,
this list can be extended.

For the first time, we presented a self-consistent theo-
retical description of the molecular Paschen-Back effect for
the Hund’s case intermediate between (a) and (b), when the
molecular total spin becomes partly uncoupled from the or-
bital momentum, internuclear axis and rotation. Depending on
how strong the spin-orbital coupling is, the PBE occurs first
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Table 1. Transitions of diatomic molecules in the optical and IR that
are present in sunspot and stellar spectra in the PBR.

Electronic λ H(1)

transition (Å) (G)

OH A2Σ − X2Π 2800–3400 2100

CN A2Π − X2Σ 7350–11580 77

B2Σ − X2Σ 3490–4215 77

MgH A2Π − X2Σ+ 4780–5620 280

B′2Σ+ − X2Σ+ 5370–7590 280(2)

CaH A2Π − X2Σ+ 6680–7590 470

B2Σ+ − X2Σ+ 6170–6870 148

CH A2∆ − X2Π 4150–4400 135(3)

B2Σ− − X2Π 3870–4120 305

C2Σ+ − X2Π 3080–3290 535

X2Π 32920–40330 135(3)

SH A2Σ − X2Π 3250–3300 3350

NH A3Π − X3Σ− 3280–3470 970

X3Σ− 28900–35720 970

VO A4Π − X4Σ+ 10470–11970 240(4)

B4Π − X4Σ+ (5) 7330–8060 240

C4Σ+ − X4Σ+ 5730–5760 240

CrH A6Σ+ − X6Σ+ 7000–9520 44

(1) The equivalent magnetic field strength is calculated for the smallest
splitting in the state. It represents an estimate of the field strength at
which the PBE becomes significant. (2) Fine structure of the upper state
was not resolved. (3) Only some transitions are affected by the PBE.
(4) The ground state of VO shows a relatively strong spin-spin inter-
action, so that the multiplet sublevels become quickly well separated
in energy. (5) The upper state B4Π of the system is strongly perturbed
by the nearby a2Σ+ state, so that a significant magnetic sensitivity is
expected for this system.

either on the rotational structure (case a) or on the fine struc-
ture (case b) of the electronic term. As the field strength in-
creases, both structures become strongly perturbed. In Σ-states,
which are in pure Hund’s case (b) because Λ = 0, the inter-
action between the spin and the rotation moment defines the
fine structure of the electronic state. Therefore, the PBE occurs
due to the spin decoupling from the rotation. We described a
numerical approach to the problem of finding perturbed energy
levels and transition probabilities in the PBR. Our approach is
valid for terms of any multiplicity and can be used to calculate
Stokes parameters of molecular transitions presented in Table 1

and many more. The approach can be further extended for par-
tial uncoupling of the orbital momentum from the internuclear
axis, when the transition to the Hund’s case (d) occurs. This is
the subject of a forthcoming investigation.

We introduced a generalised definition of effective mag-
netic Landé factors which can be employed when assuming
the weak-field approximation in the Paschen-Back regime. It
is also useful for studying variations of the polarisation proper-
ties of molecular transitions with magnetic field strengths. The
new definition is fully compatible with the conventional one for
the Zeeman regime. It can be also applied to the PBE of atomic
lines.

To demonstrate the properties of the electronic states in the
PBR, we calculated examples of magnetic splitting of molec-
ular levels with different values of the total spin and orbital
momentum in the PBR on both fine and rotational structures of
the states. We also presented illustrative examples of the typical
behaviour of molecular line strengths and polarisation patterns
in the presence of strong magnetic fields. The calculated ex-
amples allow us to distinguish two regimes of the PBE, which
should be present in other cases as well:

– One or both involved electronic states are in the interme-
diate PBR. In this case, the total spin is only partly uncou-
pled from other molecular momenta. Therefore, magnetic
splitting and Stokes profiles are strongly asymmetric, and
line strengths and profiles are very sensitive to the magnetic
field. Forbidden and satellite transitions are comparable in
strength with main branch transitions.

– Both states are in the complete PBE on the same structure
(rotational or fine). In this case, the total spin is quantised
independently on the field direction. Thus, magnetic split-
ting and Stokes profiles become symmetric and reminiscent
of those in the Zeeman regime. Forbidden and satellite tran-
sitions are much stronger than main branch transitions.

This generalised description of the PBE on the molecular struc-
ture in cases intermediate between Hunds (a) and (b) implies a
large variety of different cases and regimes when applied to
particular electronic transitions, such as those listed in Table 1.

The presented calculations give a first indication of the re-
markable potential of the molecular PBE for new diagnostics
of solar and stellar magnetic fields. Here we calculated only
one example of transitions observed in spectra of sunspots and
cool stellar atmospheres which demonstrated typical pecular-
ities of the polarisation signal in molecular lines in the PBR.
The development of new diagnostic techniques based on these
and other transitions listed in Table 1 would require the ex-
tensive and detailed examination of each electronic state and
transition. With the present paper we now have the main tools
at our disposal to carry out such an investigation.
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Appendix A: Matrix elements

Table A.1. Matrix elements ofHint in Hund’s case (a) wavefunctions, according to Kovàcs (1969).

HSL(Λ,Σ, J;Λ,Σ, J) AΛΣ

Hrot(Λ,Σ, J;Λ,Σ, J) B[J(J + 1) −Ω2 + S (S + 1) − Σ2]

Hrot(Λ,Σ, J;Λ,Σ ± 1, J) B
√

S (S + 1) − Σ(Σ ± 1)
√

J(J + 1) −Ω(Ω ± 1)

Hc(Λ,Σ, J;Λ,Σ ± 1, J) −2D[J(J + 1) −Ω(Ω ± 1) + S (S + 1) − Σ(Σ ± 1) − 1]

−2D
√

S (S + 1) − Σ(Σ ± 1)
√

J(J + 1) −Ω(Ω ± 1)

Hc(Λ,Σ, J;Λ,Σ ± 2, J) −D
√

S (S + 1) − Σ(Σ ± 1)
√

S (S + 1) − (Σ ± 1)(Σ ± 2)√
J(J + 1) −Ω(Ω ± 1)

√
J(J + 1) − (Ω ± 1)(Ω ± 2)

HSR(Λ,Σ, J;Λ,Σ, J) γ[Σ2 − S (S + 1)]

HSR(Λ,Σ, J;Λ,Σ ± 1, J) − 1
2γ
√

S (S + 1) − Σ(Σ ± 1)
√

J(J + 1) −Ω(Ω ± 1)

HSS(Λ,Σ, J;Λ,Σ, J) λ[3Σ2 − S (S + 1)]

Table A.2. Matrix elements ofHint in Hund’s case (b) wavefunctions, according to Kovàcs (1969).

Hrot(Λ,N;Λ,N) B[N(N + 1) − Λ2]

HSL(Λ,N;Λ,N) A Λ2

2N(N+1) [J(J + 1) − N(N + 1) − S (S + 1)]

HSL(Λ,N;Λ,N + 1) A Λ
2(N+1)

√
(N + 1)2 − Λ2

√
(J + N + 1)(J + N + 2) − S (S + 1)

√
S (S+1)−(J−N)(J−N−1)

(2N+1)(2N+3)

Hc(Λ,N;Λ,N) −D[N(N + 1) − Λ2]2

HSR(Λ,N;Λ,N) 1
2γ[J(J + 1) − N(N + 1) − S (S + 1)][1 − Λ2

N(N+1) ]

HSS(Λ,N;Λ,N) −2λ 3/4 C(C+1)−N(N+1)S (S+1)
(2N−1)(2N+3) [1 − 3Λ2

N(N+1) ], C = J(J + 1) − N(N + 1) − S (S + 1)

Table A.3. Matrix elements of HH in Hund’s case (a) wavefunctions, according to Schadee (1978) with the sign changed for those elements
which are responsible for the interaction of levels with different spin projections, in order to match the sign convention for the spin operator by
Kovàcs (1969).

HH(Λ,Σ, J,M;Λ,Σ, J,M) ∆σ0
Λ+2Σ
J(J+1)ΩM

HH(Λ,Σ, J,M;Λ,Σ ± 1, J,M) −∆σ0
M

J(J+1)

√
(J ∓Ω)(J ± Ω + 1)

√
(S ∓ Σ)(S ± Σ + 1)

HH(Λ,Σ, J,M;Λ,Σ, J + 1,M) ∆σ0
Λ+2Σ
J+1

√
(J+Ω+1)(J−Ω+1)(J+M−1)(J−M+1)

(2J+1)(2J+3)

HH(Λ,Σ, J,M;Λ,Σ ± 1, J + 1,M) ±∆σ0
1

J+1

√
(J±Ω+1)(J±Ω+2)(J+M+1)(J−M+1)(S∓Σ)(S±Σ+1)

(2J+1)(2J+3)

HH(Λ,Σ, J,M;Λ,Σ, J − 1,M) ∆σ0
Λ+2Σ

J

√
(J+Ω)(J−Ω)(J+M)(J−M)

(2J−1)(2J+1)

HH(Λ,Σ, J,M;Λ,Σ ± 1, J − 1,M) ∓∆σ0
1
J

√
(J∓Ω)(J∓Ω−1)(J+M)(J−M)(S∓Σ)(S±Σ+1)

(2J−1)(2J+1)

Table A.4. Matrix elements ofHH in Hund’s case (b) wavefunctions, according to Hill (1929).

HH(Λ,N, J,M;Λ,N, J,M) ∆σ0
M

J(J+1) {J(J + 1) + S (S + 1) − N(N + 1)

+ Λ2

2N(N+1) [J(J + 1) + N(N + 1) − S (S + 1)]}
HH(Λ,N, J,M;Λ,N, J + 1,M) ∆σ0

1
J+1

√
(J+1)2−M2

(2J+1)(2J+3)

×{√(J + S + 1)(J + S + 2) − N(N + 1)
√

N(N + 1) − (J − S )(J − S + 1)

− Λ2

2N(N+1)

√
(J + N + 1)(J + N + 2) − S (S + 1)

√
S (S + 1) − (J − N)(J − N + 1)}

HH(Λ,N, J,M;Λ,N + 1, J,M) ∆σ0
M

J(J+1)
Λ

2(N+1)

√
(N + 1)2 − Λ2

√
(J + N + 1)(J + N + 2) − S (S + 1)

×
√

S (S+1)−(J−N)(J−N−1)
(2N+1)(2N+3)

HH(Λ,N, J,M;Λ,N + 1, J + 1,M) ∆σ0
1

J(J+1)
Λ

2(N+1)

√
[(N+1)2−Λ2][(J+N+1)(J+N+2)−S (S+1)]

(2N+1)(2N+3)

×
√

[(J+1)2−M2][(J+N+2)(J+N+3)−S (S+1)]
(2J+1)(2J+3)

HH(Λ,N, J,M;Λ,N + 1, J − 1,M) −∆σ0
1
J

Λ
2(N+1)

√
[(N+1)2−Λ2][S (S+1)−(J−N−1)(J−N)]

(2N+1)(2N+3)

×
√

[J2−M2][S (S+1)−(J−N−2)(J−N−1)]
(2J−1)(2J+1)
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