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ABSTRACT

Aims. The main aims of the paper are to carry out numerical simulations of the vertical oscillations in a coronal loop in order to
determine their dependence on various parameters and to compare them with recent TRACE observations.
Methods. We consider impulsively generated oscillations in a solar coronal arcade loop. The two-dimensional numerical model we
implement in the ideal MHD regime includes the effects of nonlinearity and line curvature. We perform parametric studies by varying
both the position and the width/strength of the pulse.
Results. A pulse launched below a loop is in general found to excite multiple wave modes, in particular a vertical oscillation with
many properties of a kink mode, fast mode oscillations and a slow mode pulse (or two slow mode pulses, depending on the location
of the original pulse). From our parametric studies we deduce that wave periods and attenuation times of the excited waves depend
on the position below the loop summit, as well as on the width of the pulse. Wider pulses launched closer to a foot-point and to the
loop’s apex trigger wave packets of longer period waves which are more strongly attenuated. A perturbed loop does not return to its
initial state but is instead stretched, with its apex shifted upwards. As a result the perturbations propagate along the stretched loop and
consequently stronger and wider pulses which stretch a loop more lead to longer period oscillations. A pulse located near one of the
foot-points is found to excite a distortion mode leading to asymmetric oscillations which are distinct from the vertical or horizontal
kink modes that have been identified in TRACE data.
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1. Introduction

Magnetic loops are the main ingredients of the solar corona that
sustain oscillations (e.g., Nakariakov et al. 1999; Aschwanden
et al. 1999; Wang et al. 2002; de Moortel et al. 2002). In one of
the more recent observations Wang & Solanki (2004) reported
on vertical oscillations of a 300−400 Mm long solar coronal loop
which expanded and shrank with an oscillation period of ≈230 s.
They also found that the oscillating loop was associated with
intensity variations which suggested that these oscillations were
compressible. Here we concentrate on modeling this mode of
oscillation.

Theoretical studies of loop oscillations are numerous.
Analytical studies were done by, e.g., Roberts et al. (1984),
Nakariakov et al. (1999), Nakariakov (2003), Van Doorsselaere
et al. (2004), while numerical simulations were performed by
Murawski & Roberts (1993), Smith et al. (1997), Murawski et al.
(2005a,b), del Zanna et al. (2005), Brady & Arber (2005).

In particular, Nakariakov et al. (1999) estimated for the first
time the decay time of the transverse oscillations, and its ratio to
the period. Transverse oscillations in solar coronal loops induced
by propagating Alfvénic pulses were discussed by del Zanna
et al. (2005). Fast standing waves were numerically simulated by
Murawski et al. (2005a) who found high-order standing fast kink
mode oscillations. The main drawback of their model was that
it corresponds to an unrealistically high β in the circular coro-
nal loop. Another shortcoming of this paper is a simple model

of the photosphere, described by dense plasma layer located at
the loop foot-points. Although all boundary conditions were set
open the dense layer reflected waves back into a rarefied re-
gion. This drawback was removed by Murawski et al. (2005b),
who showed that impulsively triggered fast magnetosonic waves
in a cool loop (with a temperature of 1−2 MK) have periods
which are compatible with the observational data provided by
TRACE which may be interpreted as a fast kink mode in an ar-
cade. In the adopted model line-tying boundary conditions were
set at the loop foot-points to reflect fast magnetosonic waves that
were only present in the considered system. Selwa et al. (2005b)
(hereafter Paper I) extended this model to a strongly magnetized
coronal loop with a low plasma β, allowing the slow wave to
be present in the system. They found a number of features in
common with the observations. However, they discussed only a
single example of a pulse launched centrally at the photospheric
level, while parametric studies are required to understand the
complex scenario of loop oscillations. They applied line-tying
boundary conditions at the left and right sides of a simulation
region. Such a choice of boundary conditions are not completely
physically justified.

The main goal of this paper is to perform parametric stud-
ies and improve on the models of Murawski et al. (2005a,b) and
Selwa et al. (2005b). In addition, since we employ a different
code we can also test to what extent the previous results are in-
fluenced by numerical limitations.
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The paper is organized as follows: the numerical model is
described in Sect. 2. The numerical results are presented and dis-
cussed in Sect. 3 and the paper is concluded by a short summary
of the main results in Sect. 4.

2. Numerical model

We describe coronal plasma by the ideal magnetohydrodynamic
(MHD) equations:
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∂t
+ ∇ · (�V) = 0, (1)

∂ (�V)
∂t

+ ∇ · [(�V) V
]
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∇ · B = 0. (5)

Here µ is the magnetic permeability, � is mass density, V is flow
velocity, p is gas pressure, B is magnetic field, the symbol pT
denotes the total pressure that represents the sum of the gas and
magnetic pressures:
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and plasma energy density is expressed as
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B2

2µ
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where γ is the adiabatic index.

2.1. Equilibrium configuration

We adopt and modify the coronal arcade model that was re-
cently described in Paper I. Earlier wave studies, in which this
magnetic arcade configuration was used, were performed by e.g.
Oliver et al. (1996), Cadez et al. (1996), Oliver et al. (1998),
Terradas et al. (1999). In this model the coronal arcade is settled
in a two-dimensional, gravity-free and motionless environment.
The equilibrium magnetic field Be = [Bex, 0, Bez] has two non-
zero components which are specified with the help of the vector
magnetic potential A = Aŷ as

Be = ∇A × ŷ, (8)

where ŷ is a unit vector along the y-direction and A satisfies
Laplace’s equation, ∇2A = 0, whose solution is

A(x, z) = B0ΛB cos (x/ΛB)e−z/ΛB . (9)

From Eq. (8) we obtain then

Bex = B0 cos (x/ΛB)e−z/ΛB , (10)

Bez = −B0 sin (x/ΛB)e−z/ΛB , (11)

where B0 is the magnetic field at the level z = 0 and ΛB is the
magnetic scale height such that

ΛB =
2L
π
· (12)

Here L is the horizontal half-width of the arcade, chosen
as L = 100 Mm.

Fig. 1. Initial configuration (time t = 0) with a pulse centered at x0 =
z0 = 0 with w = 0.35 L. The density (colour bar) is given in arbitrary
units (10−12 kg m−3). The loop is seen as a region of higher density.
Magnetic field lines are shown as solid white lines. Note that the loop’s
apex is denser than the foot-points due to the hot dense pulse.

For the background Alfvén speed we have chosen VAe =
|Be|/√µ�e, where �e is the background mass density. In this
case VAe decays exponentially with height z and the background
temperature Te ∼ pe/�e is constant. Here pe = const. is the
background pressure.

Next we embed a loop, i.e. a group of field lines supporting
gas with higher density, in the arcade in such a way that its edges
follow two specific magnetic field lines. We prescribe that the
inner and outer field lines cross the base of the arcade at |x| =
Lf − 2af and |x| = Lf , respectively. Inside the loop we use the
following density profile:

�(x, z) = d�e

[
H

(
A − A2

B0ΛB

)
− H

(
A − A1

B0ΛB

)]
, (13)

where A1 = A(Lf , 0) < A2 = A(Lf − 2af, 0) and H is Heaviside’s
function. The mass density in this loop varies abruptly at its
sides, leading to a density enhancement of the loop compared
to the ambient medium. We choose the mass density contrast
d = �i/�e = 10, with �i and �e corresponding to mass density
within the loop and in the ambient medium, respectively. As a
reference we set Lf = 0.7 L and af = 0.0125 L: they uniquely
specify the loop’s length l, height h and its width 2a at the sum-
mit. This loop does not have a perfect circular shape, but its av-
erage radius and length can be estimated as 70 Mm and 190 Mm,
respectively (Fig. 1; note the difference in horizontal and vertical
scale).

Due to the enhanced density, the Alfvén speed within the
loop is smaller than in the ambient medium. As a result of this
depression in the Alfvén speed the loop becomes a cavity for
fast magnetosonic waves. We denote the Alfvén speed within
the loop by VAi = VAe/

√
d.

The magnetic field at the photospheric level, B0, is connected
to the reference mass density �e through the reference Alfvén
speed VA0 = B0/

√
µ�e(0), where we assume �e = 10−12 kg m−3

and VA0 = 1 Mm s−1 for the mass density and the Alfvén speed,
respectively, at the level z = 0.

For a potential magnetic arcade the equilibrium pressure pe
has to be constant. This pressure can be evaluated from the defi-
nition of the plasma β = 2µpe/B2

e, adopted at the level z = 0. In
this model β grows from 0.012 at the loop foot-points to 0.054
at the loop’s apex. This growth is due to the absence of gravity
in the potential-field structure and is not realistic. However, the
value of β remains below unity.
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2.2. Perturbations

Perturbations in Eqs. (1)−(3) can be excited in such a loop in nu-
merous ways. As we are interested in impulsively excited waves,
we launch a hot pulse in the pressure and mass density, i.e.

δ�(x, z, t = 0) = A��e e−((x−x0)2+(z−z0)2)/w2
,

δp(x, z, t = 0) = Ap pe e−((x−x0)2+(z−z0)2)/w2
, (14)

where w is the initial pulse width and (x0, z0) denotes its initial
position. We choose initial relative amplitudes of the pulse A� =
Ap/10 which corresponds to a pulse that is 6.4 times hotter than
the average, unperturbed corona. It is noteworthy that the ver-
tical oscillations seen by TRACE (Wang & Solanki 2004) are
identified in gas at around 1 MK. We have no information of the
temperature of the pulse causing this oscillation, although the
gas in the oscillating loop does not appear to get significantly
heated by the pulse. The above initial disturbance is taken to be
a hot pulse, mimicking a flare. Kink oscillations are often re-
ported to be excited by passing blast waves or nearby eruptive
events, so that a kinematic pulse (in velocity and density) could
be more suitable. We have verified that the outcome of the sim-
ulations does not significantly depend on which of the two types
of impulsive excitations is chosen. In the absence of further in-
formation we adopt the above values of the amplitudes, which
had been successfully employed in Paper I, as reference values.

3. Numerical results

The numerical code EMILY we adopt was developed by Jones
et al. (1997). This code employs an explicit-implicit algo-
rithm for solving the time-dependent, non-ideal magnetohydro-
dynamic equations. The algorithm is a finite-volume scheme that
uses an approximate Riemann solver for the hyperbolic fluxes
and central differencing applied on nested control volumes for
the parabolic fluxes that arise from the non-ideal terms (i.e., re-
sistivity and viscosity). This scheme is second-order accurate in
space and time. In our studies we used the explicit option of the
code for ideal magnetohydrodynamic equations.

Equations (1)−(5) are solved numerically in an Eulerian box
with the x- and z-dimensions (−L, L) × (0, 2 L). This box is cov-
ered by a uniform grid of 300 × 400 or 600 × 800 numerical
cells. Grid convergence studies, which are based on grid refine-
ment, are performed to show that the numerical results are not
affected by insufficient spatial resolution. We apply open bound-
ary conditions, with a zero-gradient extrapolation of all plasma
variables, at the left, right and top sides of the simulation re-
gion, thus allowing a wave signal to leave freely the simulation
region. As the adopted numerical method is based on character-
istics the open boundaries indeed let all types of MHD waves
pass through. Numerically induced reflections from such bound-
aries have been found to be small. We set line-tying boundary
conditions at the bottom of the simulation region. These bound-
aries model the interaction between the denser photosphere and
the overlying plasma layers.

3.1. Pulses of various amplitudes

We begin our parametric studies with variations of the amplitude
of the initial pulse, Ap, while holding the initial position x0 =
z0 = 0 and the pulse width w = 35 Mm fixed.

Figure 2 displays time-signatures of the mass density along
the line x = 0 at heights close to the apex of the loop
for Ap = 15 pe (top panel) and Ap = 30 pe (bottom panel).

Fig. 2. Time-signatures of the mass density (colour scale; arbitrary
units: 10−12 kg m−3) along a vertical cut through the loop’s apex for
pulse amplitude Ap = 15 pe (top panel) and Ap = 30 pe (bottom panel).
Spatial coordinates and time are measured in units of L and in seconds,
respectively.

The moment t = 0 corresponds to the time at which the pulse
is released. As a result of their higher energies stronger pulses
lead to more significant initial shifts of the loop summit. The
loop’s apex is initially displaced upward by ∼0.06 L (top panel)
and ∼0.12 L (bottom panel) which for the chosen value of
L = 102 Mm correspond to ∼6 Mm and ∼12 Mm, respectively.
The observed displacement of 7.9 Mm (Wang & Solanki 2004)
lies between these values. Thus, in contrast to the event sim-
ulated in Paper I, we can obtain similar displacements as ob-
served.

Except for the amplitude of the displacement the strength
of the pulse does not have a qualitalively different effect in the
two cases, although there are some quantitative differences, as
discussed later in this section. Both loops display a similar re-
duction in density at the apex. It is noteworthy that the apex po-
sition along the z-axis and density at the apex are anticorrelated
(with correlation coefficient −0.71) in general agreement with
the observations. Note also the rapid oscillations with smaller
amplitude, which are also partly visible in the density (mainly in
the upper frame). These were identified as sausage mode oscil-
lations in Paper I. This identification is confirmed by our simu-
lation based on a different numerical code.

It is noteworthy that the loop does not return to its initial po-
sition, once the oscillations have subsided, displaying an offset
which is larger for larger pulses (top panel of Fig. 3), being ap-
proximately 0.02 L in the top panel and approximately 0.05 L in
the bottom panel (Fig. 2). This offset is probably a consequence
of the loop in the simulations reaching a final equilibrium that
is different from the initial one due to the non-potential shape
component added by the pulse (the apex goes up and foot-points
draw together as the density follows the Gaussian shape of the
pulse). However, since the open upper boundary is not capable
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Fig. 3. Final shift of the loop’s apex (top panel), period P (middle
panel), and the ratio of attenuation time τ to period, τ/P (bottom panel)
vs. pulse amplitude Ap.

of conserving magnetic tension, this does not allow the initial
state to be exactly restored. We therefore cannot rule out that the
offset, or a part of it, is due to this effect.

The oscillations seen in Fig. 2 represent the response of
the loop summit to the initial perturbation. They correspond to
a packet of waves among which kink waves exhibit the main
contribution (Murawski et al. 2005a,b, Paper I). As the signal
in Fig. 2 decays with attenuation time τ, the wave period also
evolves with time. However, it is instructive to measure the pe-
riod when the signal is strongest, P. Values of P and of the ra-
tio τ/P are presented in the middle and bottom panels of Fig. 3.
These periods and attenuation times are obtained by fitting the
time-signatures of the simulated kink mode (i.e. vertical loca-
tion of the loop’s apex vs. time) with attenuated sine functions
(Paper I). For pulse amplitude Ap = 15 pe the period of the ex-
cited vertical oscillation P � 500 s, while a pulse with double
the amplitude leads to P � 530 s. As a consequence of stronger
pulses, larger amplitude and slightly larger period waves are
excited. Such larger amplitude pulses shift the loop’s apex to-
wards higher altitudes (Fig. 2). As a result the loop becomes
stretched, its effective length becomes larger and consequently
the wave period attains a higher value. As τ/P declines from 0.49
for Ap = 15 pe to 0.34 for Ap = 30 pe we conclude that larger
amplitude or longer period waves are more strongly attenuated.
A detailed study of the cause of this behaviour of the attenuation
will be given elsewhere.

The top panel of Fig. 2 is very similar to Fig. 1 of Paper I.
However, there are a few differences due to the fact that we use
another code. The apparent filamentation of the loop seen in

Fig. 4. Mass (measured in total mass units) enclosed in the area bounded
by field lines (the position of field lines is indicated by the location on
which they cross the z = 0 line) for a pulse launched at x0 = z0 = 0,
w = 0.35 L, Ap = 15 for t = 0 (blue curve) and t = 1400 s (red curve).

Fig. 1 of Paper I is absent in Fig. 2. This supports the conclusion
in Paper I that this filamentation is a numerical artifact. The wave
profiles, however, appear to be more smoothed by numerical dif-
fusion in Fig. 2 than in Fig. 1 of Paper I: the loop gets wider and
less dense. However, this effect is not excessively large, as we
have found from several tests. Thus, Fig. 4 shows the mass en-
closed in the area bounded by field lines starting from the outer
most one to the one located in the middle of the simulation re-
gion. For the initial moment (t = 0, blue curve) and the end of
simulations (t = 1400 s, red curve) we do not observe much dif-
ference in the distribution of mass in this plot. This shows that
the numerical diffusion of mass across field lines (recall that we
restrict our computations to ideal MHD) is minimal.

Henceforth we choose and hold fixed Ap = 15 pe.
Some clarification of the difference between the final and ini-

tial states may be useful here. The final magnetic field is nearly
current-free, as ∇ × B remains close to zero. The departure of
this value from zero grew with time but remained at an accept-
able level. Similarly, ∇ · B remained close to zero everywhere
except at the bottom boundary. We specify the normalized di-
vergence error by computing the value |∇ · B (l0/B) |, where l0 is
the spatial scale unit. It allows us to state that the average value
throughout the domain is ∼10−4 with two peak values (minimum
and maximum) located close to the line x = 0. The larger value
of ∇ · B occurs only at the boundary, as the line-tying bound-
ary conditions are adopted there. These boundary conditions are
inconsistent for the magnetic field as we use a zero-gradient ex-
trapolation for it. The underlying assumption is that B is smooth,
and accurately computed at the interior points. We have found
that grid refinement leads to decreasing the divergence errors
without altering the results of the simulation.

As a consequence of the peak value in ∇·B we observe some
numerical errors developing close to the line x = 0. These errors
are particularly apparent in temperature and density profiles for
t > 1000 s and are hardly noticeable prior to that. As these errors
arise in the final stage of our simulations, they do not play any
significant role in the time signatures of the vertical oscillations,
which are attenuated before that time.

As a consequence of the initial hot pulse the plasma was
heated up, with most of the excess heat remaining below the
loop so that the plasma became compressed in this hot region.
This results from the application of the ideal MHD equations
in the present model. Thermal conduction, if applied, would be
able to redistribute this heat more efficiently along magnetic field
lines.
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Fig. 5. Time-signature of the mass density (colour scale; arbitrary units:
10−12 kg m−3) triggered by the initial pulse launched at x0 = −0.42 L,
z0 = 0. Compare with the top panel of Fig. 2 for which x0 = 0.

3.2. Dependence on pulse position: pulses along horizontal
line z0 = 0

In this part of the paper we discuss the influence of pulses
launched along a horizontal line that joins the two foot-points
of the loop, i.e. pulses with initial location z = 0, but different x.
The width of the pulse is fixed as w = 0.35 L. Figure 5 shows the
time-signature of a vertical cut at x = 0, encompassing the height
of the loop apex in response to a pulse launched in the neigh-
borhood of the left foot-point which is located at x0/L = −0.7.
Figure 5 shows some similarities but also considerable differ-
ences compared to Fig. 2. A kink oscillation, corresponding ba-
sically to a single pulse, is visible at 250 s < t < 600 s. This
pulse results from fast magnetosonic waves which reached the
detection region while initially propagating outside the loop in
the ambient medium. This corresponds to the same excitation
mechanism as for the pulses discussed in Sect. 3.1.

For x0 � 0 the kink mode is excited non-symmetrically (not
as a simple “breathing-like” motion) and a so-called distortion
oscillation is set up. The loop is distorted while nearly main-
taining its length. Figure 6 shows three snapshots of a loop for
t = 200 s, t = 300 s and t = 375 s. It reveals that the main per-
turbation is a sideways motion of the upper part of the loop, in
contrast to the breathing motion found in Sect. 3.1. At later times
the loop is more symmetric. Figure 7 shows the shift of the apex
along the x-axis for a pulse launched at x0 = −0.42 L, z0 = 0.
The shift denotes the horizontal displacement of the loop’s apex.
It is noteworthy that the horizontal motion of the loop does not
decay as fast as its vertical motion (compare Figs. 5 with 7).
Also, the period of horizontal distortion oscillations is slightly
shorter (452 s in the case of x0 = −0.42 L, Fig. 7) than the period
of vertical ones, so that the ratio of horizontal attenuation time to
the period of horizontal oscillations is ∼3 compared to ratios <1
for vertical oscillations. Wave period P and ratio τ/P of the ver-
tical oscillation is plotted vs. normalized pulse position |x0/Lf | in
Fig. 8. It is noteworthy that P grows and τ/P decreases with |x0|.
Hence, an initial pulse launched along z0 = 0 farther out from
the symmetrical position x0 = 0 excites longer period vertical
waves which are more strongly attenuated.

The density enhancement marked by the orange-yellow spot
in Fig. 5 between t = 700 s and t = 900 s corresponds to
the slow wave that propagates within the loop from the left
foot-point towards the loop summit. This time lag is somewhat
shorter than the travel time of a slow mode from a foot-point to
the apex: the period l/2cs ≈ 950 s, where l is the loop length
and cs denotes the sound speed. Now, the pulse propagates out-
side the loop at the fast wave speed and excites the slow pulse

Fig. 6. Distribution of the mass density (colour scale in units of �e) and
magnetic field lines (white solid lines) for a pulse launched at x0 =
−0.42 L, z0 = 0 for t = 200 s (top panel), t = 300 s (middle panel)
and t = 375 s (bottom panel). Vertical dashed yellow line corresponds
to x0 = 0.

somewhat above the foot-point, leading to roughly a 15% reduc-
tion in propagation time for the slow mode. Due to the finite
width of the pulse the first disturbance at the loop’s apex is seen
at around (0.9l − w/2cs) ≈ 700 s. Comparing with Fig. 5 we
find these estimates to be in good agreement with the compu-
tations, confirming the identification of this density pulse in the
loop with the slow mode.

Whereas for a pulse launched at x0 = 0, z0 = 0 the main
force exerted on the loop is perpendicular to the field lines (so
that predominantly transverse waves are excited, see below), a
pulse launched close to one foot-point also accelerates gas along
the field lines, giving rise to a slow-mode pulse traveling along
the loop from the foot-point nearest to the initial location of the
pulse. As demonstrated by Selwa et al. (2005a) an initial pulse
launched asymmetrically inside a 1-D loop and closer to one
foot-point efficiently generates the fundamental mode of slow
standing waves, while a pulse launched symmetrically or almost
symmetrically within a loop generates mainly the first harmonic
of slow standing waves.
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Fig. 7. The displacement of the apex along the x-axis for a pulse
launched at x0 = −0.42 L, z0 = 0 (solid line) together with a best-fit
attenuated sine function (dotted line).

Fig. 8. Period P (top panel) and the ratio of attenuation time τ to pe-
riod, τ/P (bottom panel) of vertical oscillations vs. normalized pulse
position |x0|/Lf .

It is noteworthy that mass is redistributed due to the slow
wave from the location where the pulse hits the loop to the other
end of the loop, i.e. from one foot-point to the other for asym-
metric excitations, and from the apex to the foot-points for sym-
metric excitations. Such redistributions for symmetric and asym-
metric pulses are confirmed by our 2-D simulations, as can be
seen from Fig. 9. The material flows to the foot-points, also in
the symmetric case (top panel of Fig. 9), is the slow mode speed.

A slow mode-like pulse is more clearly identified for larger
values of |x0|, for which the pulse propagates along the loop from
one foot-point to another, rarefying one part of the loop and com-
pressing another. For symmetric excitations (x0 = 0) basically
mass is seen sliding from the apex to the foot-points. Another in-
teresting feature is a density antinode (depression) located along
x = 0 only for a symmetric excitation (which is clearly visible
as a lower density region in the top panel of Fig. 9 and is the
cause of the density reduction with time in Fig. 2). In the case of
asymmetric excitation such an antinode is observed as a rarefied
region at one foot-point. As a consequence of the low value of
the slow wave speed long numerical runs are required to set up
a standing slow wave. Due to numerical instabilities which set
in after some time the code crashed and we were not able to run

Fig. 9. Distribution of the mass density (colour scale in units of �e) for
a pulse launched at x0 = z0 = 0 (top panel) and x0 = −0.42 L, z0 = 0
(bottom panel) for t = 1400 s.

the simulation for a sufficient time to set up standing slow mode
oscillations. However, we do see a reflection of the pulse at a
foot-point in some simulations. This, together with the fact that
the pulse propagates at the slow-mode speed, supports the con-
clusion that a slow mode may be excited by the external pulse.
Note the increase of density of such a mode comparing to initial
configuration (Fig. 1).

3.3. Dependence on pulse position: pulses along
the vertical line x0 = 0

Now we fix the horizontal position of the initial pulse at x0 = 0
and change its vertical position, i.e. we vary z0. The top panel of
Fig. 10 shows time-signatures of the loop’s apex produced by an
initial pulse launched at x0 = 0 and z0 = 0.25 L. By comparing
this figure with the top panel of Fig. 2, which shows oscillations
excited by a pulse that is identical except for its location, we infer
that more oscillation periods are visible in the case of a pulse
launched above the line z0 = 0. This does not a priori mean that
the wave is less strongly attenuated. As we shall see later in this
section the opposite is the case. More peaks are seen because
the amplitude of the excited oscillation is larger compared with
the thickness of the loop and the amplitude of the fast mode (see
Sect. 3.5). This is caused by wave reflection from the bottom
boundary, which is line-tied, so that a larger amount of energy
is deposited in the loop. In fact, the oscillation shown in the top
panel of Fig. 10 looks rather similar to that in the lower panel
of Fig. 2 (and both turn out to have a very similar τ/P ratio). In
general, a pulse launched closer to the loop causes a larger initial
shift of the loop (top panel of Fig. 11), although at large z0/L the
excited oscillation amplitude saturates.

Middle and bottom panels of Fig. 11 display wave pe-
riod P and ratio P/τ vs. normalized pulse position z0/Lf . The



M. Selwa et al.: Impulsive waves in coronal loops 659

Fig. 10. Time-signature of the mass density (colour scale; arbitrary
units: 10−12 kg m−3) for an initial pulse launched on the line x0 = 0
at z0 = 0.25 L with a width of w = 0.35 L (top panel) and x0 = z0 = 0
with w = 0.28 L (bottom panel). Compare with the top panel of Fig. 2
for which z0 = 0 and w = 0.35 L.

position of the loop’s apex corresponds to 0.343 Lf . The general
trends in P and P/τ are similar to those seen in Fig. 8: P grows
while τ/P essentially declines with z0. The growth of P with z0
follows from the fact that a pulse launched closer to the loop’s
apex transmits more energy into the loop, stretching it more and
shifting its summit to higher levels. As a result the loop does
not return to its initial position with an offset higher for pulses
launched closer to the apex. Such stretched loops oscillate with
longer waveperiods. The decrease of τ/P with increasing P is in
qualitative agreement with the behaviour seen in bottom panels
of Figs. 3 and 8.

3.4. Pulses of various widths

We consider now pulses launched at x0 = z0 = 0, but allow
their width w (and strength since the amplitude is constant) to
vary. Bottom panel of Fig. 10 illustrates the corresponding time-
signatures of the mass density for a pulse width of w = 28 Mm.
Comparing this figure with the top panel of Fig. 2 which corre-
sponds to w = 35 Mm we conclude that the apex is shifted to
higher levels for wider pulses due basically to the larger pulse
energy. The shift increases with the amount of energy deposited
in the loop (top panel of Fig. 12).

Middle and bottom panels of Fig. 12 show wave pe-
riod P and P/τ of the vertical kink mode vs. normalized pulse
width w/Lf . Again, this may serve as evidence that the attenua-
tion mechanism is due to energy leakage: wider (and therefore
stronger) pulses stretch the loop more and increase its curva-
ture. The fundamental mode vertical oscillations are then less
efficiently trapped by the loop structure, resulting in energy leak-
age into the ambient medium.

Fig. 11. Initial vertical shift of the loop’s apex (top panel), period P
(middle panel) and the ratio of attenuation time τ to period, τ/P (bottom
panel) of vertical oscillations vs. normalized pulse position z0/Lf .

3.5. Fast propagating modes

In all the studied cases a fast propagating mode is set up. The
initial amplitude of fast propagating waves is about 0.0022 L for
all tested pulse amplitudes and widths. Thus the fast mode am-
plitude appears to be relatively independent of the energy of the
external pulse, whereas the standing kink mode amplitude de-
pends strongly on these parameters. Consequently, the ratio of
fast mode amplitude to the vertical kink mode amplitude, which
is Afast/Akink = 0.043 for a pulse initially located at x0 = z0 = 0,
with w = 0.35 L, Ap = 15 pe, also depends on the energy of the
external pulse. This explains why the fast mode is better seen in
figures with lower kink amplitudes (bottom panel of Fig. 10 and
top panel of Fig. 2) than in those with large amplitude vertical
kink modes (top panel of Fig. 10 and bottom panel of Fig. 2). As
the location of the initial pulse is moved away from x0 = z0 = 0
towards one of the foot-points of the loop, the amplitude of the
excited fast mode decreases and becomes increasingly difficult
to separate from the signals due to the other modes. Fast mode
oscillations can be more clearly seen in mass density (Fig. 13)
than in displacement. Note that density changes due to the stand-
ing kink mode and the slow mode/longterm trend were removed
prior to plotting Fig. 13.

We can determine the period (plotted in the top panel of
Fig. 14 vs. pulse width) and the attenuation time of the fast
oscillations (bottom panel of Fig. 14) by fitting attenuated sine
functions to the fast oscillations time signatures (e.g. shown in
Fig. 13). Like the period of the vertical kink oscillations, the pe-
riod of the fast oscillations grows with pulse width, i.e. pulse
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Fig. 12. Initial shift of the loop’s apex (top panel) period P (middle
panel) and the ratio of attenuation time τ to the period, τ/P, (bottom
panel) vs. normalized pulse width w/Lf .

Fig. 13. Fast oscillations seen in mass density at the loop’s apex (solid
line) together with the best fit attenuated sine function (dotted line) for
the pulse launched at x0 = z0 = 0 with w = 0.35 L.

energy (top panel of Fig. 14), while the attenuation time of fast
oscillations generally decreases with pulse width (bottom panel
of Fig. 14), although this dependence is less clear.

3.6. Attenuation of vertical oscillations

We expect that larger period waves are more weakly attenuated
by a classical attenuation phenomenon like viscosity. As the ap-
plied MHD equations are ideal and numerical diffusion is small,
viscosity is practically not present here and the mechanism of
wave attenuation acting in these simulations differs from viscous

Fig. 14. Period of the fast oscillations Pfast (top panel) and the ratio of
attenuation time of the fast oscillations τfast to the period of the fast
oscillations, τfast/P, (bottom panel) vs. normalized pulse width, w/Lf .

attenuation. Here we briefly explore the conjecture that attenua-
tion is due to energy leakage. Longer wavelength waves experi-
ence more difficulties in fitting into a curved loop structure and
as a result they leak energy into the ambient medium (Wentzel
1974). This process leads to a decrease of the wave amplitude
– a process which is characteristic of wave attenuation. These
findings are in general agreement with the results of Murawski
& Roberts (1993), who studied energy leakage of normal modes
in coronal structures.

Evidence of energy leakage from the loop is provided by per-
turbed energy density profiles (Fig. 15). The position of the loop
corresponds to the white contour at the bottom of each frame in
this figure. The first maximum from the top, represented by a
pink-white patch, results from the initial pulse, but other max-
ima are a consequence of the energy leakage (red areas outside
the loop). Additional evidence that energy leaks from the loop
via fast magnetosonic waves is provided by the fact that the per-
turbations in the thermal and magnetic pressures are in-phase
outside the loop. A more detailed analysis and discussion will
be given in a separate paper (Selwa et al. 2006).

4. Summary and discussion

The results we obtained in this paper can be summarized as fol-
lows. Firstly, an external pulse emitted below a loop embedded
in an arcade excites different wave modes, with the properties
of these waves depending on the location of the pulse and on its
strength.

The most prominently visible mode is a vertical kink-like
standing mode, which bears many of the properties of the verti-
cal oscillation observed by Wang & Solanki (2004). In particular,
the simulation reproduces both the observed period and ampli-
tude (thus improving on the work of Murawski et al. 2005a,b;
and Selwa et al. 2005b). In addition, higher frequency fast mag-
netosonic waves are excited in most cases, although their signa-
tures are less clear when the pulse is located close to a foot-point
of the loop. Finally, a slow mode pulse is excited in the loop
when the external pulse is located close to a loop foot-point.
The slow-mode pulse propagates towards the other foot-point,
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Fig. 15. Evolution of perturbed energy beyond the loop showing energy
leakage (t = 300 s – top panel, t = 1300 s – bottom panel) in the case
of Ap = 15 pe and x0 = z0 = 0.

similar to the pulses seen by Wang et al. (2005) in SUMER
observations and by Selwa et al. (2005a) in 1-D simulations.
Interestingly, when the exciting pulse is located directly below
the loop’s apex, matter flows down both legs of the loop (until
being reflected), consistent with the setting up of the first har-
monic slow mode in the loop. This agrees well with the findings
of Selwa et al. (2005a), that the first harmonic is excited when
the excitation occurs close to the loop’s apex.

The vertical kink mode is associated with an asymptotic net
displacement of the plasma column, which persists until the end
of the simulations, well after the vertical kink oscillations have
died away. The column is displaced as the whole loop structure
attains a different equilibrium.

It is noteworthy that irrespective of the pulse position only
the fundamental mode of vertical kink oscillations is excited.
According to Roberts et al. (1984) the period of the kink mode,
P, depends of the Alfvén speed and the length of the loop, l:

P =
2l

nVA
, (15)

where VA denotes the average Alfvén speed such that VAi ≤
VA ≤ VAe and n is the number of the mode. As the reference
value we use the fundamental mode with centrally located pulse.
As the Alfvén speed varies with height, we can estimate aver-
age VA along the loop from Eq. (15). Note, that for the centrally
located pulse P ∼ 500 s, so if we suppose that the length of the
loop remains unchanged, the period of the first harmonic should
be P/2 ∼ 250 s and of the second harmonic P/3 ∼ 167 s, respec-
tively. As time-signatures we studied are rather smooth (there
are no signs of ∼250 s oscillations) and damped sine function
can be easily fit, we conclude that no first harmonic is observed,
even in the case of asymetrically located initial pulse.

There are also further conclusions: τ/P remains smaller than
observed, irrespective of the chosen parameters. This suggests
that there are still some significant differences between observed
and modeled loops. We find that a pulse near x0 = 0 is needed
to produce vertical loop oscillations that can be clearly ob-
served. Since the pulse must be launched below the loop itself (in
3-D geometry) for a vertical oscillation, the choice of location of
the pulse is quite limited. This may well be one reason why ver-
tical oscillations of loops were not discovered earlier: they may
be rare. We find, however, that for large |x0| the loop oscillates
with a distortion mode, which to our knowledge has not been
seen before in numerical simulations of loop oscillations.

A number of improvements to this study are possible. The
most obvious is the inclusion of gravity (as studied for slow
modes by Mendoza-Briceño et al. 2004). This will remove
the artificial decrease of the Alfvén speed with height, which
plagues the current model. The detailed study of different atten-
uation mechanisms will be given in a separate paper.
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