
A&A 456, 665–673 (2006)
DOI: 10.1051/0004-6361:20064865
c© ESO 2006

Astronomy
&

Astrophysics

Vector tomography for the coronal magnetic field

I. Longitudinal Zeeman effect measurements

M. Kramar, B. Inhester, and S. K. Solanki

Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany
e-mail: [kramar;inhester;solanki]@mps.mpg.de

Received 16 January 2006 / Accepted 13 April 2006

ABSTRACT

Aims. We study the possibility of applying tomographic techniques in order to reconstruct the 3D magnetic field configuration in the
solar corona. Our simulations are based on data which can be obtained from longitudinal Zeeman-effect (or from Faraday rotation)
measurements obtained during a solar rotation.
Methods. The Zeeman effect provides essentially the integrated line-of-sight component of the magnetic field. The reconstruction
problem relates to a family of similar problems termed vector tomography. For inversion of this type problems it is known that the
curl-free part of a vector field cannot be reconstructed from the integrated along line-of-sight data. To remove the resulting ambiguity
of the reconstruction we include the additional constraint, ∇ · B = 0, into the inversion similar to smoothing constraints in Tikhonov
regularization problems.
Results. It is shown that Zeeman data obtained from vantage points in the ecliptic plane alone is sensitive only to certain magnetic
field structures. For a full reconstruction it is necessary either to have also observations from viewing directions at higher heliographic
latitudes, or to combine the longitudinal Zeeman-effect data with observations that provide the transverse component of the field, e.g.
from the Hanle effect.
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1. Introduction

The magnetic field of the solar corona plays a key role in both
static and dynamic processes in the corona, e.g., formation of
loops and filaments, coronal heating, solar flares and filament
eruptions. A great obstacle in our understanding of these pro-
cesses is our inability to properly determine this magnetic field.

The conventional way to estimate the coronal field is by
extrapolation from measurements of the line-of-sight field com-
ponent at the solar surface using the potential field approxima-
tion. But the potential field extrapolation does not take into ac-
count any electric current in the corona and, therefore, misses
an important part of the physics. Since the potential magnetic
field is the field with the minimum energy for a given pho-
tospheric radial boundary condition (Sakurai 1989), it cannot
account for dynamical processes such as eruptions and flares,
where very probably magnetic energy is converted into plasma
kinetic energy without a marked change in the boundary flux on
the same fast time scale. Indeed, soft X-ray observations of ac-
tive regions often show a non-potential structure of the magnetic
field (Jiao 1997). Recently, vector magnetograms from the pho-
tosphere have become available which in principle supply all the
information necessary for a non-linear force-free field extrapola-
tion of the surface data (Wiegelmann 2005). The more realistic
force-free field extrapolation, however, is highly ill-posed and
yields less reliable results, the larger the distance from the sur-
face and the stronger the currents (Demoulin 1992).

Direct, though line-of-sight (LOS) integrated information
about the coronal magnetic field can be obtained from the

Zeeman and the Hanle effects applied to coronagraphically ob-
served lines of highly ionized species. In the past most such
information has been obtained by observations of resonantly
scattered coronal lines above the limb, e.g., the coronal emis-
sion lines at λ = 530.3 nm and λ = 1074.7 nm scattered
by Fexiv and Fexiii, respectively (House et al. 1982; Querfeld
1982; Arnaud 1982; Arnaud & Newkirk 1987). For these “for-
bidden” lines, the life time in the excited state is much longer
than the Larmor period, conditions usually referred to as the
“strong field” regime. The method makes use of the Stokes-Q
and -U components (linear polarization) of the line produced by
resonant scattering modified by the Hanle effect. The polariza-
tion plane of the scattered line radiation is for “strong field” con-
ditions related to the orientation of the magnetic field in the plane
normal to the LOS. The method was first investigated by Charvin
(1965) and later developed in more detail by Sahal-Brechot
(1974a,b, 1977), House (1977), Casini & Judge (1999, 2000),
Raouafi et al. (2002), Landi Degl’Innocenti & Landolfi (2004)
and many others authors.

Recently, promising measurements of the longitudinal
Zeeman effect have been achieved for infrared coronal lines
(Judge 1998; Lin et al. 2000). In the infrared the ratio between
the Zeeman splitting and the line width is more favorable than in
the visible. Lin et al. (2000, 2004) could even determine both the
line-of-sight magnetic flux density from the Stokes-V and and
the transverse field orientation from an observation of the Hanle
effect in the Stokes-Q and-U components of the Fexiii line
at λ = 1075 nm. Even though these measurements were re-
stricted to heights below about 0.45 R� above an active region,
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they demonstrate that the measurement technique has the po-
tential for scanning the whole corona on a regular basis with a
sensitivity of about 1 G.

The interpretation of the results of both the Zeeman and
Hanle measurements, however, is complicated by the fact that
they are obtained above the limb. Thus they represent quanti-
ties that are LOS integrated through an optically thin corona.
Changes in the polarity of the LOS component or of the direc-
tion of the transverse component of the field along the LOS can
strongly reduce the value of such measurements if the structure
along the LOS cannot be disentangled. In this and a follow-
up paper we therefore investigate whether these measurements
can be used to reconstruct a valid model of the 3D coronal field
distribution and thereby overcome the shortcomings of the raw
measurements and pure photospheric field extrapolation.

The inversion of LOS data to a 3D distribution usually is
referred to as tomographic inversion. Unlike the conventional
scalar tomography (Natterer 1986), we here aim to reconstruct
a vector field and therefore have to employ methods of vec-
tor tomography (Sparr & Strahlen 1998), an extension of ordi-
nary scalar tomography. The fields which can be reconstructed
depend strongly on the component observed along the line of
sight. We will therefore treat the reconstruction of longitudinal
Zeeman or Faraday data and essentially transverse Hanle data
separately. This paper is devoted to Zeeman data, a similar study
for saturated Hanle data will be given in a follow-up paper.

The plan of the present paper is as follows. In Sect. 2 we dis-
cuss the integration kernel for longitudinal Zeeman data which
is needed to properly interpret the observations quantitatively. In
Sect. 3 we briefly outline some basics of vector tomography and
define the inversion problem we have to deal with. The inversion
method and test results are given in Sects. 4 and 5, respectively.
A discussion in the light of present experimental restrictions is
given in the final section.

2. Integration kernel for longitudinal Zeeman data

The physics of line formation in the presence of a magnetic field,
in particular the Zeeman effect, has been widely described in
the literature (see the textbooks Sobel’man 1972; Stenflo 1994;
Thorne et al. 1999; Landi Degl’Innocenti & Landolfi 2004). We
reiterate here only the key points of the effect which are essen-
tial for the coronal plasma and which are needed to derive the
tomography inversion formulae.

The ratio of the Zeeman splitting to the thermal line width
in the coronal plasma is very small due to the small field
strength (∼10 G) and the large thermal broadening (106 K).
Consequently, a first order Taylor expansion of the Zeeman-
shifted left and right hand polarized line profiles can be used
to express the emission coefficients for the Stokes-I and-V
components emitted during a dipole transition of atomic states
(α0 J1) → (α0J0). For dipole transitions, |∆J| = 1 and α0 stands
for the quantum numbers of the the electronic ground state ex-
cept for the total angular momentum J. The expressions for the
local emissivity are (Casini & Judge 1999, 2000)

εI(ω, r, êLOS) =
�ω

4π
Nα0 J1 A φ(ω)

(
1 + Dσ2

0
3 cos2 θ − 1

23/2

)
(1)

εV (ω, r, êLOS) = −�ω
4π

Nα0 J1 A ωL cos θ
dφ(ω)

dω

(
ḡ + Eσ2

0

)
. (2)

The coefficients in these expressions which depend on spatial
coordinates either via their dependence on B or in another man-
ner are the Larmor frequency ωL, the local angle θ between B
and the direction to the observer defined by the unit vector êLOS,
the population density Nα0 J1 of the excited electronic state of the
line transition and the alignment factorσ2

0. The remaining coeffi-
cients are purely atomic constants like the Einstein coefficient A
for the spontaneous recombination for the transition and the ef-
fective Landé factor ḡ of the transition. The factors D and E are
dimensionless functions of the angular moment J1 and J0 and
are of the order of unity. The spectral variation of the line is usu-
ally expressed through the Voigt profile function φ(ω) in terms
of the observing wave frequencyω = 2πc/λ.

The coefficients which have direct or indirect spatial depen-
dence are the more important for the inversion of the data, like,
e.g., the population density of the excited level Nα0 J which de-
pends on the local plasma density, temperature and the local in-
tensity of the primary solar radiation. The alignment factor, σ2

0,
characterizes the inequality in population of the π and σ mag-
netic sublevels of the excited J1 state. It depends on the distance
from the Sun and also through the factor (3 cos2 γ − 1) on the
angle γ between B and êSun. Here êSun is the unit vector directed
from the center of the Sun to the observing volume. The abso-
lute value ofσ2

0 varies between values�1 close to the Sun where

the solar radiation is almost isotropic to a value of 1/
√

2 at large
distances. A more detailed description and ways of calculating
the σ2

0, as well as other parameters involved in (1)−(2), can be
found in Casini & Judge (1999, 2000) and Landi Degl’Innocenti
& Landolfi (2004).

From (1)−(2) one can obtain magnetograph formula (Casini
& Judge 1999, 2000):

εV (ω, r, êLOS) = kḡ
∂εI(ω, r)
∂ω

ωL cos θ, (3)

where the correction factor k describes the influence of a fi-
nite σ2

0 on εV in (3):

k =
1 + σ2

0E/ḡ

1 + σ2
0D

(
3 cos2 θ − 1

)
/
(
2
√

2
) · (4)

For the J = 1→ 0 transition, the maximal value of k is 2 in case
of no collisions and maximum anisotropy of the incident radia-
tion. In the other limit of completely isotropic incident radiation,
σ2

0 → 0 and as consequence k = 1. In the corona, especially in
the lower corona, we have partially anisotropic incident radiation
and isotropic collisions which reduce value of σ2

0, and the values
of k are distributed near unity. How wide this distribution is de-
pends on the magnetic field configuration, anisotropy factor and
collisions. In this study, we will restrict the investigated coro-
nal volume to a height below one solar radius where most of the
Fexiii emission comes from and σ2

0 stays well below its max-
imum value. So, in the remainder of this paper we will assume
that σ2

0 vanishes in (1)−(4), and therefore take k = 1. Finally,
this assumption amounts to linearizing the tomographic inver-
sion problem because in (3) the magnetic field now only enters
through ωL cos θ. The full, weakly nonlinear inversion problem
will be investigated later. We are convinced that this lineariza-
tion does not fundamentally change the nature of the inversion
problem.

With assumption of vanishing alignment factor and ignor-
ing instrument dependent coefficients and sensitivities, the LOS
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Fig. 1. The 3D view of the tomography geometry. (x, y, z) is the ref-
erence system fixed to the Sun. The results of the reconstruction are
presented in this reference system. (xp, yp) is the reference system indi-
vidual to every image in which the image data is defined. The LOS di-
rection, êLOS, are defined by the angles ϕLOS and θLOS.

integrated Stokes-I and Stokes-V signals for an image i and im-
age pixel p (Fig. 1) can be written as

Ip,i =
�ω

4πR2
A

∫
LOSp,i

Nα0 J1φ(ω)d� =
1

R2

∫
LOSp,i

εI(ω, r)d� (5)

Vp,i =
ḡ

R2

∫
LOSp,i

∂εI(ω, r)
∂ω

ωL cos θd�

=
1

R2

∫
LOSp,i

K(ω, r)(B · êLOS)d�. (6)

Here, R ∼ 1 AU is the distance to the observer. We will refer to

K(r, ω) =
eḡ
m
∂εI(ω, r)
∂ω

(7)

as the integration kernel. As pointed out above, its major spatial
variation stems from the rapidly decreasing plasma density and
hence from the population density NαJ1 . A finite alignment fac-
tor will slightly modify the spatial variation and introduce a mild
dependence of K on the Van Vleck factor and hence on the mag-
netic field direction. Note that index p refers to different spatial
locations of image pixels, while index i refers to different times
of observation, i.e. to different observation angles.

An integrand similar to (6) is obtained also for observations
of the Faraday rotation of the polarization plane (Stelzried et al.
1970). In this case, the kernel K is directly proportional to the
electron density. The practical disadvantage of these observa-
tions is that they usually cover only a small part of the plane of
the sky.

With the assumption σ2
0 � 1, the value of εI does not de-

pend on the magnetic field, and we can in principle invert (5)
for εI(ω, r) first by means of ordinary scalar tomography applied
to Stokes-I intensity line profile observations at different values

of ω. If we rather invert ∂Ip,i/∂ω, we obtain directly ∂ε(ω, r)/∂ω
needed for the kernel (7). We can therefore assume that the ker-
nel K(r, ω) is known. The nice property of using the magneto-
graph formula (3), in contrast to the Faraday-effect (in this case
kernel K is the electron density), is that it is therefore not neces-
sary to assume a model distribution of the ion density, temper-
ature and plasma velocity over the corona to find the respective
kernel K(r, ω). In practice, however, the influence of stray light
will have to be carefully accounted for.

In general, (6) depends on wavelength and the data from a
whole line scan should be used. For the test calculations pre-
sented here, we assume that data for a single wavelength is used
only and we omit the wavelength dependence in the follow-
ing. The spatial variation of K for a single wavelength depends
largely on the density variation. However, the spatially varying
width of φ(ω) due to a variable coronal temperature or shifts due
to a finite plasma motion may also be folded in.

If the above approximation of a vanishingly small alignment
factor had not been made, we would have retained some mag-
netic field dependence in εI and K. Provided the factorsσ2

0, D, E
in (1) and (2) are known, we then could not solve (5) and (6) suc-
cessively anymore but would have to solve them simultaneously.
Moreover, in this case it is necessary to calculate the alignment
factor using statistical equilibrium equations for the populations
of all levels involved in the formation of the line. We believe that
the conditions for solvability for the magnetic field of this more
complicated system do not greatly differ from the approximate
system investigated here as the principal problem is the limita-
tion of the observations to the LOS component of B in (6).

3. Basics of vector tomography

Scalar tomography has been applied in solar physics for
the reconstruction of the coronal electron density (Davila &
Thompson 1992; Davila 1994; Zidowitz 1997, 1999). It uses
measurements of the LOS integral of white light scattered by
coronal free electrons (Thomson-scattering). For the inversion,
a rigid rotation of the coronal density structures with the Sun
about the ecliptic normal is usually assumed. Coronagraph data
from half a solar rotation then is necessary as input. As a conse-
quence, only structures which are stationary over about 14 days
can reliably be reconstructed. A detailed description of scalar to-
mography can be found in Natterer (1986), including a descrip-
tion of the “exterior tomography problem” which is typical for
coronagraph data. This data have a gap in its center, which for
coronagraph data is due to the occultation of the Sun.

In the case of vector tomography, the scalar in the integrand
of the LOS integral is replaced by a function which depends on
some component of the vector field B to be reconstructed. The
essential complication introduced here is that this field compo-
nent depends explicitly on the LOS direction êLOS. Hence the
contribution a volume element makes to an observation now de-
pends explicitly on the direction it is looked at. This is an essen-
tial difference with respect to scalar tomography where the scalar
integrand does not depend on the view direction. Vector tomog-
raphy has been applied for the reconstruction of fluid flows in
ordinary fluids and plasmas (Sparr & Strahlen 1998; Osman &
Prince 1998) but not to our knowledge to the reconstruction of a
magnetic field.

We argued in the previous section that for the Zeeman and
Faraday effect observations the data obtained during the mea-
surements at pixel p in image i can within the assumptions de-
scribed above be expressed in the form (6) where we can assume
that the kernel K is a known function of r.
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A fundamental limitation of vector tomography has been
pointed out by Norton (1989): with observations of the type (6)
and in the case K = const. only the divergence-free part of B can
be reconstructed. We may combine K(r)·B(r) to a new field V(r)
so that (6) becomes

Vp,i =

∫
LOS of p,i

(V · êLOS) d�. (8)

We then may Helmholtz-decompose V into an incompressible
part V′ and a potential field

V(r) = V′(r) − ∇φ(r) , ∇ · V′ = 0. (9)

Insertion into (8) yields

Vp,i =

∫
LOS of p,i

[
(êLOS(p,i) · V′) − (êLOS(p,i) · ∇)φ

]
d�

=

∫
LOS of p,i

(êLOS(p,i) · V′) d� − φ|�=+∞�=−∞ . (10)

This reveals that Vp,i does not depend on the details of φ and
hence on the potential part of V along the LOS.

Therefore with data which are only sensitive to the
LOS component of a vector field we are unable to resolve the
curl-free part of the field V, independent of how good the reso-
lution of our instrument (number of indices p) or how densely
we choose the sampling of the view directions (number of in-
dices i). The space of curl-free vector fields therefore represents
a null space to our inversion problem. A similarly fundamental
null space does not exist in scalar tomography.

The presence of this null space is also one of the reasons why
vector tomography is usually applied to incompressible flow
fields for which the contribution from this null space is known
to vanish a-priori. For the field V = KB we cannot expect in-
compressibility to hold, but we can make use of the divergence-
free condition of the magnetic field to constrain the solution
and hopefully reduce the null space. Given a known variation
for K(r), the null space fields BNS satisfy K · BNS = ∇φ. We
rewrite this as ∇ × (KBNS) = 0 or

BNS × ∇(ln K) = JNS, ∇ · BNS = 0, (11)

where JNS is the associated current density. We speculate
that the additional restriction to force-free fields for which J
and B are parallel may make this part of the null space van-
ish. However, in this paper we restrict ourselves to enforc-
ing ∇ · B = 0.

To which extent we can reconstruct the divergence-free
part V′ in (9) depends on the geometry of the view directions
available. Schuster (2001) has shown that V′ can be recon-
structed from observations from all three space directions. In our
case, we have to expect that the solvability is limited by the fact
that we usually have observations only from the ecliptic plane
and in addition even from the ecliptic plane certain directions
onto a given coronal volume element are missing due to the oc-
cultation of the Sun.

4. The inversion approach

From the discussion of the previous chapter it is clear that the
constraint ∇ · B = 0 should be incorporated into the inversion

procedure in order to stabilize the inversion. Therefore, we tried
to solve the problem by minimizing the function

F(B) = µ
∑
p,i

wp(V obs
p,i − Vp,i(B))2 +

∫
corona

(∇ · B)2d3x

= µFtomo(B) + FdivB(B) (12)

where Vp,i(B) is the theoretically expected Stokes-V signals (6)
in pixel p of image i for an assumed magnetic field distribu-
tion B(r) and Vobs

p,i are the corresponding observed data. The dis-
crepancies between the observed and calculated Stokes-V signal
in different pixels p of each image are weighted according to a
weight wp to be discussed below.

Second term, FdivB, in (12) is treated like a regularization
constraint (Tikhonov & Arsenin 1977). It was added because the
first term Ftomo insufficiently constrains the divergence of B. The
calculation of this term in (12) allows us to incorporate magnetic
field boundary conditions into the inversion procedure. For real
observations, the radial magnetic field component observed in
the photosphere could serve as boundary condition on the in-
ner surface of the corona. Usually, the regularization term is
weighted with a regularization parameter. Instead we multiply
the tomography term, Ftomo, with parameter µ.

Our ultimate goal is to bring both terms in (12) to zero by
varying the magnetic field B. The field thus obtained would then
comply with the coronal Zeeman observations, it would be di-
vergence free and, if the inner coronal boundary condition is in-
cluded in the calculation of ∇ · B, it would also comply with the
photospheric field observations. As a minimization algorithm we
will use an iterative Krylov scheme, e.g., conjugate gradients,
which has the additional advantage that it minimizes the energy∫

(B−B(0))2d3x of the different magnetic field relative to the ini-
tial field B(0) from which the iteration is started. Hence, if we
use (12) without any tomography data or with µ → 0 we expect
to obtain the potential field which complies with the observed
photospheric observations if we start the iteration with B(0) = 0.
We use the potential field approximation as starting point for our
iterations. According to the structures it is sensitive to any coro-
nal Zeeman observation included in (12) will drive the resulting
coronal magnetic field away from the potential field towards the
real coronal field configuration.

The weighting functionwp in (12) is employed to balance the
signals received in different parts of the Zeeman images. Due to
the very strong radial decrease of the electron density, the signal
on LOS at a great distance from the Sun is much weaker than
close to the Sun. From (6), we can roughly estimate this effect by

Vp,i ∼ Bavr

4πR2

∫
LOSp,i

K(r) d� (13)

where Bavr is the average coronal magnetic field strength. To in-
crease the contribution of signals from distant lines-of-sight and
to stabilize the numerical reconstruction of B at larger distances
from the Sun, a weight function

wp ∝ 1∫
LOSp,i

K(r) d�
(14)

would be appropriate. For the conjugate gradient iteration this
weighting effectively acts like a Jakobi precondition. However
in practice, in case of real noisy data, the weight function (14)
should be modified by setting it’s value to zero when signal in
LOS measurements of the kernel function is about of a noise
level.
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(a) (b) (c)

Fig. 2. Model I. Panel a) shows the view from the x =
+∞ direction, panel b) shows the view from the y = −∞
direction, and panel c) shows the view from the z = +∞
direction. The perturbing current loop is shown by the
thick grey lines.

(a) (b) (c)

Fig. 3. Model II. Panel a) shows the view from the x =
+∞ direction, panel b) shows the view from the y = −∞
direction, and panel c) shows the view from the z = +∞
direction. The perturbing current loop is shown by the
thick grey lines.

5. Numerical setup of the test calculations

In order to test our inversion approach, we applied it to simulated
data from artificial magnetic field configurations. In a successful
test, the field configuration should be retrieved from the artificial
data.

5.1. Magnetic field configuration for the test calculations

We used two model field configurations to test the possibility of
the reconstruction. Both models consist of a main dipole field
and a non-potential perturbation. In both cases, the axis of the
main dipole is inclined in the x−z plane by 10◦ with respect to
the Sun’s rotation axis (z-axis). In the first model (Model I) an
additional perturbation due to a circular current in the meridian
x−z-plane with radius R�/2 is superposed onto the dipole. The
center of the circular current is located at (R�/2; 0; 0) inside the
solar sphere (Fig. 2). In the second model (Model II) the per-
turbation is again due to a circular current which, however, is
confined in the equatorial x−y-plane. The radius of the current
loop and its center are again R�/2 and at (R�/2; 0; 0), respec-
tively (Fig. 3).

The non-potential field perturbations on the Sun’s surface
due to these current loops are small and hence we presume that
these perturbations are difficult to be reconstructed purely by ex-
trapolation methods from the surface data. The reconstruction of
this perturbations from tomography data therefore represents a
critical test of our method.

The field lines in the perturbed region (Model I) are twisted,
and as seen from the top some of the field lines display an
S-shape (Fig. 2a). This deformation is very similar to observed
sigmoid loops.

From these test fields the Zeeman data and also the radial
magnetic surface field data were calculated as input for our in-
version procedure by a simple forward step. Random noise was
added to the Zeeman and surface magnetic field data by multi-
plying the exact data with (1 + δ), where δ is a uniformly dis-
tributed random number in the range (−εn,+εn) with εn = 0.05.

5.2. Model for the kernel function K(r)

In the case of Faraday-effect data, the kernel K(r) is simply the
electron density. In the case of Zeeman-effect data, K(r) is de-
fined by (7) from the magnetograph formula (3) if the effect
of a finite alignment factor is neglected. The radial dependence
of K(r) in this case is largely due to the population density Nα0 J1 .
It can be related to the coronal electron density ne by

Nα0 J1 =
Nα0 J1

NIon

NIon

ne
ne (15)

where the first term on the right and side is the excitation ratio of
the ion and the second term its abundance ratio. Both these terms
may depend on the local solar radiation intensity and on the am-
bient electron temperature. In our test calculations for simplicity
we assume both these terms to be constant and that the density
varies only with radial distance from the Sun according to the
electron density model by Newkirk (1970). Hence

K(r) ∝ ne(r) ∝
⎡⎢⎢⎢⎢⎢⎣755

(
r

R�

)−5.353

− 168

(
r

R�

)−14.738

+103 800

(
r

R�

)−20.446⎤⎥⎥⎥⎥⎥⎦ · (16)

Also, instead of (14) we use a slightly different weight function
which can be calculated more faster but serves the same purpose
as (14):

wp =
r4

p

ne(rp)
, (17)

where rp =
√

x2
p + y

2
p is the projected distance of the line-of-

sight from image pixel p to the center of the Sun (see Fig. 1).

5.3. Discretization

In our test simulations we represent the corona by a spherical
shell with inner and outer radial boundaries at R� and 2 R�, re-
spectively. The magnetic field is determined at the centers of
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square grid cells with a grid size of 40 × 40 × 40. Hence the
grid size is h = 0.1 R�. Similarly, our Zeeman images have
40 × 40 pixels with an equivalent grid size of 0.1 R�. The num-
ber of pixels is therefore less (in twice) than the optimal number
needed to reconstruct structures with size about 0.1 R� (Zidowitz
1997).

The LOS integrals in (12) are evaluated by line integrals of
the linearly interpolated magnetic field values. The line of inte-
gration is defined by the projection of the respective pixel center
along the line of sight. The integration error introduced in this
way is O(h3).

All rays from the same image are assumed to be parallel as
in affine projections as shown in Fig. 1. Hence we neglect the
divergence of the observing rays from different pixels which is of
the order of 10−2 if the observations are made from about 1 AU
distance from the Sun.

The observations are assumed to be made at a time when
the Sun’s rotation axis is perpendicular to the view direction
(θLOS = π/2 in the Fig. 1). We associate the z-axis of our coronal
coordinate system with the Sun’s rotation axis. All lines of sight
then are parallel to the x−y plane and from the Zeeman effect ob-
servations we do not have any information about z-component of
the magnetic field vector. Observations are assumed to have been
made every 10◦ for half a solar rotation. The interval in ∼10◦
could be practically reached by having 1−2 ground based ob-
servations per day. However, this interval does not allow us to
reconstruct patterns with scale equals to the chosen grid size
(0.1 R�) from only tomography data (Zidowitz 1997). We hope
that ∇ · B = 0 condition introduced as regularization constraint
in the minimization function (12) allows to overcome this reso-
lution limit.

The discretization of the divergence term is obtained assum-
ing that ∇ · B is a constant inside every grid cell. Its value can
then be calculated from

∑
faces sΦi,s/vi whereΦi,s is the magnetic

flux out of grid cell i through its face s and vi is the volume of
the cell. Then
∫

corona

(∇ · B)2d3x �
∑

cells i

1
vi

⎛⎜⎜⎜⎜⎜⎝
∑

faces s

Φi,s

⎞⎟⎟⎟⎟⎟⎠
2

. (18)

The discretization error obtained this way is again O(h3) and is
comparable to the discretization error of the LOS integration.

6. Results of the test calculations

With ideal data one might expect to minimize F(B) in (12) to
zero in which case the minimizing field B would not depend on
the parameter µ introduced in (12). For real data contaminated
with noise the minimization of F below a characteristic value
which depends on the noise level is not meaningful because then
the reconstructed B starts to be fitted to the noise in the observa-
tions (Mozorov’s criterion). For ill-conditioned problems, such
as the one we deal with here, this results in a strongly amplified
noise in the reconstruction.

For our test calculations, the characteristic noise value for
the tomography term Ftomo is approximately given by

Etomo =
∑
p,i

wp(V obs
p,i − Vp,i(B0))2 � 0.5ε2n

∑
p,i

wpV2
p,i(B0), (19)

where B0 is the model field to be reconstructed. For the diver-
gence term FdivB we use as a characteristic noise estimate the
finite divergence which results in (18) if the magnetic flux val-
uesΦi,s through the solar boundary cell surfaces are perturbed by

noise while the field values in the interior of the corona remain
unperturbed. Then

EdivB �
∑

boundarycells i

1
vi
δΦ2

i,boundaryface (20)

� 0.5ε2n
∑

boundarycells i

1
vi
Φ2

i,boundaryface. (21)

The two parameters which control that Ftomo and FdivB reach
about the levels Etomo and EdivB, respectively, during the mini-
mization are the regularization parameter µ in (12) and the num-
ber of iteration steps performed.

Conventionally, minimization problems comparable to (12)
are analyzed in a diagram which shows the limiting values
of ln Ftomo versus ln FdivB for various values of the regulariza-
tion parameter. The optimal values of µ are then determined
by means of the L-curve method (Hansen & O’Leary 1993). In
our case we have to proceed differently because firstly the di-
vergence is not a proper regularization operator due to its large
nullspace and secondly the noise level Etomo turned out to be
much larger than the value of Ftomo at the inflection point of
the L in the L-curve diagram. In this case the value of µ found
from the L-curve analysis is not optimal (Hansen 1993; Hanke
1996).

Figure 4a shows the evolution of the logarithm of the data
error, Ftomo, versus the logarithm of the divergence term, FdivB,
during iterations for different values of µ, starting from a po-
tential field solution. The noise levels lnEtomo and lnEdivB are
marked by dashed lines in the diagram. For values of µ in the
range from 10−5 to 105 we performed more than 5000 iteration
steps with the result that in all cases the final value of Ftomo
was about a factor 3 below the data noise level Etomo. For an
optimal reconstruction we could stop the iteration already af-
ter approximately 50 iterations when Ftomo just fell below Etomo.
For µ slightly above 10−3, FdivB would at the same time just have
crossed EdivB.

The reconstructed three-dimensional magnetic field over a
large part of the corona corresponds to the original dipole field.
In Fig. 5 we show for the model I the equatorial cross section of
the reconstructed field through the perturbing current loop. The
current loop intersects the cross section plane in the normal di-
rection. Since also the dipole field is more or less normal to the
equatorial plane (the dipole axis is tilted by 10◦), the field pertur-
bation can clearly be seen in panel (a) which displays the cross
section for the original field from which the inversion data was
calculated. In panel (b) the same cross section is shown for the
potential field reconstruction, while panels (c) and (d) display
the reconstruction results for µ = 10−3 after 47 and 99 iterations,
respectively. Clearly, the main features of the current loop are re-
solved in the reconstruction but not, as expected, in the potential
field.

A problem with our model is that the region perturbed by
the current loop fills only a small portion of the coronal vol-
ume. Both, Ftomo and Etomo are however integrals over the whole
corona. Therefore, the reconstruction obtained on the relative
magnitudes of Ftomo and Etomo may not be optimal for the per-
turbed region. In a second reconstruction attempt, we there-
fore seek the optimal µ and the stopping condition from F′tomo
and E′tomo which differ from the respective prior expressions in
that they only include those rays which pass through the region
where the magnetic field is markedly perturbed by the current
loop. We define the perturbed region by the conditions x > 0,
x tan(± π18 ) < y < x tan(± π18 ), R2� < x2 + y2 + z2 < (2 R�)2,
and −R� < 2z < R�.
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(a) (b)

Fig. 4. The evolution of the logarithm of the data error Ftomo versus the logarithm of the divergence term FdivB during the iterations for different
values of µ. The numbers near the lines are the number of iterations which were done to reach the data noise level Etomo (dashed horizontal line).

(a) (b) (c) (d)

Fig. 5. Model I, the cross-section through the z = 0.05 plane: original field a), potential field approximation b), tomographic reconstruction for
µ = 10−3 obtained after 47 iterations c) and after 99 iterations d).

Figure 4b shows the decrease of ln F′tomo and ln FdivB for
these calculations for iterations with the different values of µ.
Again, the value of the E′tomo is marked by a dashed horizontal
line in Fig. 4b. To reach the noise level E′tomo for F′tomo, it is now
necessary to perform about 100 iterations, the optimal regular-
ization parameter again is about µ = 10−3. Figure 5d shows the
reconstruction obtained for µ = 10−3 after 99 iterations. The per-
turbed region now is reconstructed indeed better than in the pre-
vious case after only 47 iterations. The stopping criterion there-
fore is not strict: the more iteration steps were performed, the
more small scale features were included into the reconstructed
magnetic field. Together with these small scales the noise also
grows until it eventually dominates the result. This is not yet the
case in Fig. 5d, although the noise in the reconstructed field is
indeed larger than in Fig. 5c.

A similar minimization procedure has been performed for
the second model using similar rules for the selection of µ and
stopping the iteration. A meridional cross section of the recon-
structed magnetic field of the second model is shown in Fig. 6.
Again the current loop, now in the equatorial plane, intersects
the cross section plane in normal direction. Since the field per-
turbation is superposed on the background dipole field, the per-
turbation can only marginally be seen even in the original field
displayed in panel a.

In the reconstructions shown in panels c and d which take
into account the Zeeman data the field perturbations are absent.
The Zeeman-effect observations seem to be insensitive to current
loops in a plane normal to the vertical axis. As a first, intuitive

explanation of this result we may take the fact that the perturbed
magnetic field lies more or less in the meridional planes while
the longitudinal Zeeman effect is to lowest order sensitive to the
field component normal to these planes. For a more precise argu-
ment we have to recall that all view directions lie in x−y planes
and the field perturbation of a current loop projected onto these
planes is almost irrotational. In agreement with the basic features
of vector tomography stated in Sect. 3 the irrotational compo-
nent of the vector field cannot be reconstructed from this type of
measurements. Even the regularization by the divergence term
does not help because the tomography data involves only x- and
y-components of the field, but the divergence term involves all
three components. The reconstruction would be possible if we
had information about the z-component of the field. These may
be obtained from coronal Hanle-effect measurements. A less re-
alizable alternative would be out-of-ecliptic Zeeman observa-
tions which are also sensitive to the z-component.

7. Discussion

The goal of the paper is to investigate the possibility of using the
observations of the longitudinal Zeeman effect in coronal emis-
sion lines for a reconstruction of non-potential features of the
coronal magnetic field by means of a tomographic inversion.

The reconstruction of vector fields by tomographic means is
much more difficult than to reconstruct scalar fields. The LOS in-
tegrals of LOS field components, as obtained from longitudinal
Zeeman data, are known to be insensitive to the rotation-free
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(a) (b) (c) (d)

Fig. 6. Model II, the cross-section by y = 0.05 plane: original field a), potential field approximation b), tomographic reconstruction for µ = 5×10−4

obtained after 21 iterations c) and after 47 iterations d).

part of the field. In order to limit these deficiencies we com-
bined the inversion scheme with the requirement to produce a
divergence-free field. In this way the observed normal magnetic
field component at the solar surface can be included into the in-
version procedure with the result that the scalar potential which
is invisible in the longitudinal Zeeman data is uniquely specified.

The approach bears some similarity with the procedure sug-
gested by Wheatland et al. (2000) to extrapolate force-free fields
from photospheric field data. In their scheme the tomography
data term Ftomo is replaced by

∫
corona

|J × B|2. Currently we are

investigating whether the combination of both terms, i.e., the
tomographic reconstruction confined to force-free fields yields
more stable results. The fact that the tomographic reconstruction
requires stationarity of the coronal magnetic field during the ob-
servation lends some justification to the assumption that the field
is also force-free.

The input data necessary for our inversion are a set of
Zeeman-effect observations of a coronal line for at least half a
solar rotation and a photospheric synoptic chart obtained from
magnetograms recorded over the same time interval. While the
latter are regularly produced by ground-based and space-borne
instruments, the former observations are difficult to perform. The
experimental efforts to observe the magnetically sensitive coro-
nal lines needed for our inversion have, however, increased in
recent years. Especially the infrared spectral range is suitable
for the detection of the Zeeman-effect under coronal conditions
than observations at optical wavelengths. This is due to the fact
that Zeeman splitting is proportional to the square of the wave-
length, but thermal broadening increases only proportional to the
wavelength itself. Moreover, the disturbing scatter of the infrared
radiation by the Earth’s atmosphere is less than in the optical
wavelength range. Recent progress in spectropolarimetric obser-
vations of infrared coronal lines (Lin et al. 2000, 2004) gives
hope that in the near future data will be available for a recon-
struction of the 3D structure of the coronal magnetic field as
proposed here.

Since the purpose of the present paper is to find out to which
extent the inversion problem is solvable in general, we applied
it only to artificially generated data and neglected the alignment
factor which does not affect the conditioning of the inversion
problem. This may easily be improved when our method is ap-
plied to real data. The inclusion of the alignment factor into the
inversion comes at the expense of more computational complex-
ity, however.

The assumption about stationarity of the corona is more fun-
damental to tomography and limits the use of our method to sit-
uations with low solar activity. In addition, the spatial resolution
of the tomographic inversion is limited to scales ∼0.1 R� close

to the solar surface and we expect that B on these scales evolves
slower than at smaller scales.

In the present paper, we investigated two illustrative model
field configurations. These models comprised a background so-
lar dipole field with an embedded coronal current loop. While
the potential field component (essentially the dipole field) can
be reproduced from the photospheric surface observations alone,
e.g., by use of Green’s theorem, it is practically impossible to re-
construct the field perturbations due to the current loops by ex-
trapolation methods. The main test of our calculations therefore
was to find out the quality with which these perturbation fields
were reproduced.

Good agreement between the model field and our field re-
construction were obtained for the first model where the current
loop has north-south orientation. For the second model with a
current loop in east-west direction the reconstruction based on
Zeeman data failed. We anticipate that fields with an orienta-
tion as in the second model can be reconstructed more favor-
ably with the Hanle-effect data which yield information about
the magnetic field in the plane of the sky. Detailed results of the
corresponding test calculations are deferred to a follow-up pa-
per where we investigate inversions of the Hanle-effect data and
their combination with the Zeeman-effect data.

The results presented here are only a first demonstration of
the possibilities and limitations of using coronal observations in
magnetically sensitive lines to reconstruct the 3D structure of the
coronal magnetic field. Our results demonstrate that it is in prin-
ciple possible to reconstruct at least some non-potential configu-
rations of the coronal magnetic field from coronal Zeeman-effect
data. However, some more steps need to be performed before our
method can be applied to real data which will be addressed in fu-
ture publications:

i) Different and more realistic coronal magnetic field configu-
rations, e.g., the field above active regions or more realistic
streamer-type field structures should be studied to find out
which details of the field can or cannot be reconstructed.

ii) With the code we have developed, we can systematically
study in test calculations how much noise is tolerable to
achieve a certain precision in the reconstruction. Since the
integration time to obtain the longitudinal Zeeman data is
about an hour for state-of-the-art instruments (Lin et al.
2004), this information about tolerable data noise levels
could be very helpful to limit the integration time.

iii) It is also important to investigate how data gaps reduce the
quality of the reconstruction results.

iv) An additional constraint to produce only force-free fields
could stabilize the reconstruction and partly compensate for
noise or data gaps. The problem which results then is similar
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to the Wheatland algorithm, except that tomography terms
are added. Since the Wheatland algorithm together with
appropriate boundary values on all outer boundaries is
known to yield a unique result, the inclusion of tomogra-
phy data, even an incomplete data set over a few view direc-
tions, could help to eliminate ambiguities which arise from
the Wheatland extrapolation due to unknown lateral bound-
ary values.

v) Observations of the Faraday rotation of the linearly po-
larized radio signals traveling through the corona give in-
formation very similar to the longitudinal Zeeman effect.
However, the data is obtained at a given time only along
a single line of sight rather than on a whole set of lines of
sight corresponding to the pixels of an image. It would be
interesting to study how useful these sparse measurements
are for the reconstruction of the coronal field. An example
of coronal Faraday-rotation observations are the measure-
ments of Jensen et al. (2005), who used the radio signal of
the Cassini spacecraft during its passage behind the Sun as
the radio source.

vi) The present work could be considered as a first step towards
a systematic inversion of the observation of all four Stokes
parameters from coronal emission lines to obtain a coronal
magnetic field model.

Acknowledgements. Many thanks to N.-E. Raouafi and T. Wiegelmann for the
helpful discussions during the work. The authors also thank referee A. Lopez for
useful comments.
The presented work was supported by the International Max-Planck Research
School on Physical Processes in the Solar System and Beyond at the Universities
of Braunschweig and Göttingen.

References

Arnaud, J. 1982, A&A, 116, 248
Arnaud, J., & Newkirk, G., Jr. 1987, A&A, 178, 263
Casini, R., & Judge, P. G. 1999, ApJ, 522, 524
Casini, R., & Judge, P. G. 2000, ApJ, 533, 574

Charvin, P. 1965, Ann. Astrophys., 28, 877
Davila, J. M. 1994, ApJ, 423, 871
Davila, J. M., & Thompson, W. T. 1992, ApJ, 389, 91
Demoulin, P., Cuperman, S., & Semel, M. 1992, A&A, 263, 351
House, L. L. 1977, ApJ, 214, 632
House, L. L., Querfeld, C. W., & Rees, D. E. 1982, ApJ, 255, 753
Jensen, E. A., Bird, M. K., Asmar, S. W., et al. 2005, Adv. Space Res., 36, 1587
Jiao, L., McClymont, A. N., & Mikić, Z. 1997, Sol. Phys., 174, 311
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