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ABSTRACT

Aims. We study wave leakage as a possible attenuation mechanism of coronal loop oscillations in the ideal MHD regime.
Methods. We consider impulsively generated oscillations in solar coronal magnetic wave guides such as a straight slab and a curved
arcade loop. The two-dimensional numerical model we implement includes the effects of nonlinearity and line curvature on attenuation
of fast magnetosonic kink waves.
Results. We show that these waves are more strongly attenuated in the arcade loop than in the slab and provide evidence that the
curvature of magnetic field lines results in excess energy leakage. For parameters appropriate for a coronal loop the kink oscillation is
too efficiently attenuated by energy leakage, suggesting that in the solar atmosphere wave leakage must be reduced compared to our
simulations. We conclude that energy leakage is an efficient source of attenuation of coronal loop oscillations.
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1. Introduction

The good spatial resolution of highly sensitive instruments such
as SUMER (SOHO) and TRACE resulted in the detection of
various oscillations in solar coronal loops. These include propa-
gating (De Moortel et al. 2002) and standing (Wang et al. 2002)
slow magnetosonic waves. There are also observations of dif-
ferent polarizations of fast magnetosonic waves: horizontal kink
(Aschwanden et al. 1999; Schrijver et al. 2002), vertical kink
(Wang & Solanki 2004), and fast sausage waves (Nakariakov
et al. 2003; Aschwanden 2004). We refer to the vertical and
horizontal polarizations of kink waves separately as vertical and
horizontal kink waves, since they show somewhat different prop-
erties (e.g. signs of compressibility are displayed by the vertical
kink oscillations only).

Oscillations of magnetic loops have been studied analyti-
cally over the last few decades by Edwin & Roberts (1982,
1983), Roberts et al. (1984), Cally (1986), Nakariakov (2003),
Van Doorsselaere et al. (2004a,b), but restricted to idealized
situations. Numerical simulations are required to tackle more
complex models and both excitation and attenuation of coro-
nal loop oscillations have been extensively studied by numeri-
cal means. Oscillations in curved coronal loops were considered
for the first time by Smith et al. (1997). More recent studies were
made by Murawski et al. (2005a,b), del Zanna et al. (2005),
Brady & Arber (2005), and (Selwa et al. 2005b – hereafter
Paper I, Selwa et al. 2006 – hereafter Paper II).

The current work is motivated by the observed rapid at-
tenuation of magnetohydrodynamic (MHD) waves. A num-
ber of attenuation mechanisms have been studied theoreti-
cally. For instance, Ofman & Wang (2002) and Selwa et al.
(2005a) considered attenuation of oscillations of hot loops
by thermal conduction. Resonant absorption was studied by

Ruderman & Roberts (2002) and by Goossens et al. (2002).
De Moortel et al. (2004) discussed the effect of attenuation
of slow waves due to mode coupling. Ofman & Aschwanden
(2002) studied phase mixing as an attenuation mechanism of
transverse oscillations, while Zaqarashvili et al. (2004) sug-
gested that global kink modes may be attenuated by reso-
nant generation of slow waves at half the frequency of the
kink wave. Ofman (2002) discussed chromospheric leakage of
Alfvén waves and Selwa et al. (2005a) showed that slow waves
can be efficiently attenuated by foot-point leakage. Attenuation
of quasi-modes in curved loops was recently considered by
Van Doorsselaere et al. (2004b).

Another mechanism which may be responsible for wave at-
tenuation is energy leakage. In this context, Murawski & Roberts
(1993a,b) showed by numerical simulations that for a smooth
coronal slab there is energy leakage from the slab, associated
with the propagation of sausage and kink waves. Wave energy
leakage in the kink wave is generally small, whereas the energy
in sausage waves leaks more strongly for long wavelengths and
smoother slabs. For fast oscillations leakage was proposed to be
very efficient only for high harmonics (Smith et al. 1997; Cally
2003; Díaz et al. 2004). Smith et al. (1997) examined the ef-
fect of curvature on fast magnetoacoustic waves in dense coro-
nal loops situated in a potential coronal arcade. They showed
that due to the curvature of the structure, leaky waves occur.
The sausage mode is more affected by curvature and is more
leaky than the kink mode. An increase in loop length, width,
and gas density ratio reduces the leakage. Odd modes of oscilla-
tions (zero velocity at the loop summit) are more strongly con-
fined than even modes. Brady & Arber (2005) found that leak-
age is more efficient for higher wavelengths (lower harmonics).
However, they limited their studies to harmonics higher than
four. Verwichte et al. (2006a) showed that for a circular loop

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20065122

http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20065122


1128 M. Selwa et al.: Attenuation of kink oscillations in coronal wave guides

only an equilibrium Alfvén frequency, whose cross-section is
modeled by a top-hat profile, leads to trapped modes. Other pro-
files result in energy leakage into the ambient medium through
wave tunneling. The authors also found a similar behavior for a
straight slab model of a coronal loop. Díaz et al. (2006) showed
that in an arcade loop with constant density all fast modes are
leaky and attenuation times correspond to their observed values.

Since there is no convincing observational evidence of en-
ergy leakage as the main mechanism that is responsible for at-
tenuation of global fast modes, the goal of this paper is to per-
form detailed studies of leakage as an attenuation mechanism for
vertical kink oscillations.

This paper is organized as follows. The numerical models
are described in Sect. 2. The numerical results are presented and
discussed in Sect. 3. This is followed by a discussion of the main
results in Sect. 4.

2. Numerical models
Our model system is taken to be composed of a magnetized
plasma with polytropic index γ = 5/3. We neglect gravitational
stratification and non-ideal MHD effects. As kink oscillations
are mainly observed by TRACE in cold (∼1 MK) loops we will
model them using the ideal MHD equations:
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where µ is the magnetic permeability, � is mass density, V is
flow velocity, p is gas pressure, B is a divergence free, ∇·B = 0,
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E =
�V2

2
+

p
γ − 1

+
B2

2µ
· (5)

2.1. Equilibrium configurations

We limit our discussion to a two-dimensional magnetically
structured atmosphere for which the plasma quantities are in-
dependent of the spatial coordinate y, ∂/∂y = 0, as well as we
neglect the polarization along the y-direction by setting Vy =
By = 0. To study energy leakage as an attenuation mechanism
of vertical kink oscillations we use two models of coronal loops:
(a) an arcade model and (b) a slab model for a straight magnetic
field topology. The model (b) will serve for comparison purposes
to discuss curvature effects on wave attenuation in the model (a).

2.1.1. A coronal arcade model

We adopt the coronal arcade model that was recently described
in Papers I and II. In this model the coronal arcade is settled
in a two-dimensional, gravity-free and motionless environment
(V = 0). From the momentum Eq. (1) it follows for a constant
pressure that at the equilibrium the Lorentz force must vanish.

This condition is satisfied by the equilibrium magnetic field
components

Bex = B0 cos (x/ΛB)e−z/ΛB , (6)

Bez = −B0 sin (x/ΛB)e−z/ΛB , (7)

Fig. 1. Initial configurations for a curved arcade loop (top panel) and
a straight slab (bottom panel). The density (color bar) is given in arbi-
trary units (10−12 kg m−3). The loop and the slab are seen as regions of
condensed plasma. Magnetic field lines are shown as solid white lines.
Note that the loop apex and the middle of the slab are denser than the
surrounding plasma as a consequence of hot dense initial pulses, which
due to their finite width protrude into loop/slab.

where B0 is the magnetic field at the level z = 0 and ΛB is the
magnetic scale height taken as

ΛB =
2L
π
· (8)

Here L = 100 Mm is the horizontal half-width of the arcade.
As in Papers I and II a background mass density �e is assumed
constant. With such assumption the background Alfvén speed is
chosen as: VA = VA0e−z/ΛB , where VA0 = const. is the Alfvén
speed at the reference level z = 0. In this case VA decays expo-
nentially with height z but as ΛB = 200/π Mm, the decay rate is
small.

We consider a loop which is embedded in the arcade in such
a way that its edges follow two specific magnetic field lines. A
cut along the loop does not have a perfect circular shape, but
its average radius and length can be estimated as 70 Mm and
190 Mm, respectively. The equilibrium structure of the loop is
shown in the top panel of Fig. 1. The mass density is enhanced
in the loop comparing to the ambient medium. We choose the
mass density contrast d = �i/�e = 10, where �i denotes the
mass density within the loop and �e corresponds to the ambient
medium. This density contrast has been chosen in order to re-
main consistent with our earlier computations (Papers I and II).
In Sect. 4 we also estimate the density contrast between the back-
ground and the TRACE loop actually exhibiting the oscillation
and discuss its implications. Note that the Alfvén speed within
the loop is smaller than in the ambient medium (VAi = VAe/

√
d).

This depression in the Alfvén speed forms a wave guide for fast
magnetosonic waves. For a potential magnetic arcade the equi-
librium pressure pe = �ec2

se/γ has to be constant. Here cse is the
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Table 1. Scale and Equilibrium and normalization parameters.

�e

[
kg
m3

]
VA0

[
m
s

]
cse

[
m
s

]
B0 [G] T0 [MK]

10−12 106 105 11 0.44

sound speed in the ambient medium. All equilibrium parameters
are listed in Table 1.

2.1.2. A slab model

For a straight slab model we choose a value of the Alfvén speed,
VAs, which is the same as at the curved loop apex:

VAs = VA0 · e−zapex/ΛB , (9)

where zapex = 48 Mm is the position of the curved loop apex.
The slab half-width, a = 2.5 Mm, is chosen equal to the half-
width of the curved loop at its apex. The slab is centered at z = 0.
Within such a slab a mass density, �i, is d times higher than in the
ambient medium, �e. The value of the gas pressure is the same
both for the curved loop and the straight slab. Magnetic field has
only the x-component equal to Bxs = VAs

√
µ�e. In such a model

the Alfvén speed does not vary along the slab. The length of the
straight slab is chosen as 2L, which is close to the curved loop
length. The initial configuration of the straight slab is shown in
the lower panel of Fig. 1.

2.2. Perturbations

As our interest is in impulsively excited waves, we set perturba-
tions in Eqs. (1)–(2) by launching a hot pulse in the pressure and
mass density, i.e.

δ f (x, z, t = 0) = f0 e−[(x−x0)2+(z−z0)2]/w2
, (10)

where δ f = (δ�/�0, δp/p0) and f0 = (0.1, 1)Ap. The initial posi-
tion of the pulse is denoted by (x0, z0) and its width is w. For such
a choice the amplitude of the pressure pulse is ten times higher
than the amplitude of the mass density pulse. As a result of that
the pulse is 6.4 times hotter than the ambient corona. Both for
the curved loop and the slab we set Ap = 7.5, w = 35 Mm
and choose the same pulse position with respect to the loop:
x0 = z0 = 0 (x0 = L, z0 = −0.5 L) in the case of the curved
loop (slab). As a consequence of the same powers of the initial
pulse, the initial shifts for the curved loop and the slab are close
one to each other.

3. Numerical results

Numerical simulations are performed with the code EMILY
(Jones et al. 1997). This code adopts a finite-volume TVD
scheme which uses an approximate Riemann solver for the hy-
perbolic fluxes. The scheme is second-order accurate in space
and time.

Equations (1)–(4) are solved numerically in Eulerian boxes
with the x- and z-dimensions (−L, L) × (0, 2L) and (0, 2L) ×
(−L, L) in the case of the curved loop and the slab, respectively.
These boxes are covered by uniform grids of 600 × 800 and
300 × 400 numerical cells, respectively. Grid convergence stud-
ies based on grid refinement were performed to show that the
numerical results are not affected by insufficient spatial resolu-
tion.

Fig. 2. Time-signatures of the mass density (color scale; arbitrary units)
at the loop apex for the curved loop (top panel) and the straight
slab (bottom panel). Spatial coordinates and time are measured in units
of L and in seconds, respectively. Note the difference in time scale be-
tween the top and bottom panels.

Open boundary conditions, with zero-gradient extrapolation
of all plasma variables, were applied at the left, right and top
sides of the simulation region in the case of the curved loop, and
at the bottom and top sides of the simulation region in the case
of the slab. Such a choice allows a wave signal to freely leave
the simulation region at the sides of the simulation region where
the open boundary conditions are imposed. Line-tying boundary
conditions are implemented by imposing V = 0 at the bottom of
the curved loop and at the left and right sides of the slab simula-
tion region. These boundary conditions model wave reflections
from the denser photospheric regions. We have also tested the
case when the bottom boundary of the slab box is also closed.
The results remained relatively unchanged.

3.1. Wave attenuation mechanisms

Let us first contrast the behaviour of the loop apex with the centre
of the slab. In Fig. 2 we plot the density along z/L near the loop
apex (x = 0) in the upper panel and at the centre of the slab
(x/L = 1) in the lower panel. The difference between the
behaviour between the loop and the slab is striking. Whereas
the kink mode excited by the initial pulse in the curved loop de-
cays in less than a full wave period, the kink mode excited in the
slab exhibits little sign of any decay. In the following we con-
sider the cause of this difference. First of all we note that the
periods of kink oscillations are not the same for the curved loop
(P = 499 s) and the slab (P = 929 s). The difference in the pe-
riods results from the fact that the Alfvén speed in the slab is
different than in the loop and that the lengths of these features
are slightly different. In the case of the slab the Alfvén speed
is uniform along the slab and is equal to the Alfvén speed at the
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Fig. 3. Total mass in the loop with a given threshold of 3 (solid line)
and 7 (dotted line) vs. time.

loop apex (VA,slab = 2.2×105 ms−1), which is its minimum value
within the loop. The average Alfvén speed in the curved loop is
VA,loop = 6.1 × 105 ms−1. As the period of standing kink oscil-
lations, P, in 2D geometry is determined by the loop length l,
and the Alfvén speed inside the loop, VAi: P = 2l/VAi, for sim-
ilar loop length P is larger for loops with lower Alfvén speeds
(slab case). In our further studies we consider Ap = 15 in case
of the curved loop case to emphasize more details. The derived
properties are practically independent of the amplitude of the os-
cillation.

We note that for the curved loop the ratio of the attenuation
time, τ, to the period, P, is τ/P ∼ 0.5. For the straight slab we
do not observe significant attenuation and τ is very large; τ could
not be reliably evaluated for the slab case.

One possibility for the strong decay displayed by the loop
is numerical diffusion in the loop model. This is unlikely for
two reasons. Firstly, the same code is used for both geometries,
which otherwise have similar properties. Secondly, the numer-
ical diffusion is small. We estimate the numerical diffusion by
measuring the total mass in the curved loop above a given den-
sity threshold value. The total mass is evaluated by numerical
integration of the mass density at each grid point inside the loop
above the chosen threshold value. We compare the time depen-
dence of the total mass computed with a density threshold of 3
(in arbitrary units) to that with a threshold of 7. The higher
threshold value lies close to the minimum density attained in-
side the loop. The lower threshold value lies slightly above the
maximum density reached in the ambient region. Comparing the
total mass for the two threshold values we estimate that ∼17% of
the mass moves out of the central part of the loop during the sim-
ulation time (dotted line, corresponding to the higher threshold
value in Fig. 3). This makes the loop broader and its boundaries
become smoothed. The total mass in the loop remains roughly
constant, however (solid line in Fig. 3). Another proof of the low
level of diffusion is given in Paper II (Fig. 4).

Our simulation results described in Paper II clearly show that
the ratio of attenuation time τ to wave period P decreases with
P. Values of P and τ are obtained by fitting the attenuated sine
function to the appropriate time-signature. As the applied MHD
equations are ideal and numerical diffusion is small, dissipative
effects are not present in this system. We infer that the mecha-
nism of wave attenuation acting in these simulations differs from
viscous attenuation.

Another mechanism, which might be responsible for the at-
tenuation of kink oscillations is resonant absorption of Alfvén
and slow magnetosonic waves. However, since our models are
2D and there is no variation in the y-direction, we have no Alfvén

waves in the system. Moreover, it is rather unlikely that cusp
resonances are important in a low β plasma. Such a mechanism
cannot play any important role in attenuation of kink oscilla-
tions for the chosen geometries. Consequently, we conclude that
attenuation is due to energy leakage. Longer wavelength waves
experience more difficulties in fitting into a curved loop struc-
ture and as a result they leak energy into the ambient medium
(Wentzel 1974). Brady et al. (2006) showed that the ability of
waves to leak is intrinsically Alfvén speed profile. Energy leak-
age can also result from wave tunneling which is present (absent)
for the considered curved loop (straight slab). Wave tunneling
was recently discussed by Verwichte et al. (2006a) in the con-
text of normal modes in the limit of cold plasma (β = 0) approx-
imation. Verwichte et al. (2006b) dealt with the leaking waves
for non top-hat Alfvén frequency profiles and showed the be-
haviour of tunneling modes and “straight” leaky modes (leaking
without tunneling). Verwichte et al. (2006c) showed how such a
model can be implemented for coronal seismology. This process
leads to a decrease of the wave amplitude – a process which is
characteristic of wave attenuation. These findings are in general
agreement with the results of Murawski & Roberts (1993a,b),
Verwichte et al. (2006a), Díaz et al. (2006) and Zaqarashvili
(2006) who studied energy leakage of normal modes in coronal
structures.

Evidence of energy leakage from the curved loop is provided
by perturbed energy density profiles (Fig. 4). Perturbed energy
density is defined as ∆E = E(t) − E(0), where E is given by
Eq. (5). The position of the loop corresponds to the black contour
lines near the bottom of the panels. The maximum at around
z/L = 1.2 in the top frame, represented by a red-yellow patch,
results from the initial pulse (also the maximum at the top of
the central frame), but other local maxima (e.g. at z/L = 0.9 in
the top frame) result from energy leakage (red areas above the
loop). Compare with Fig. 5 which illustrates the same system but
without the loop.

While in Fig. 4 we observe a series of wave fronts leaking
from the loop, Fig. 5 reveals essentially a single wave front.
When this wave front leaves the simulation region there are no
more wave fronts present in the system (bottom panel of Fig. 5)
except some signatures of weak reflections at the side edges of
the numerical box (which are also present in the bottom panel of
Fig. 4). The difference between the figures results from the fact
that some energy is trapped in the loop, while in the loop-less
case the pulse propagates freely through the corona. It is note-
worthy that waves leaving the loop in Fig. 4 do not have their
origin in multiple reflections between the loop and the bottom
boundary, as such reflections would cause periodical shifts of
the loop apex or compression at this place, that is not observed
in the top panel of Fig. 2.

Evidence that energy leaks from the loop via fast magne-
tosonic waves is provided by their propagation across the field
lines. Also, perturbations in the thermal and magnetic pressures
are in-phase outside the loop (shown along x = 0 line for three
consecutive times in Fig. 6). The position of z ∼ 0.5 L (where
thermal and magnetic pressures are in antiphase) corresponds to
the position of the loop. Since the initial pulse is quite strong
and the fast speed is non-uniform along x = 0 we do not observe
regular periodic sine waves. Similar patterns are visible in the
mass density and z-component of velocity.

To identify the fast mode which leaks from the loop, we
study mass density profiles outside the loop, where leaky waves
are able to propagate. Figure 7 shows the mass density and x-
component of velocity profiles plotted in flux coordinates for
t = 800 s. For such a choice of coordinates the pulse was
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Fig. 4. Evolution of perturbed energy density for the curved loop present
in the system (t = 300 s – top panel, t = 800 s – middle panel, t = 1300 s
– bottom panel). The perturbed energy density is given in arbitrary units
(initial energy of the loop apex). The position of the loop corresponds
to the black contour lines at the bottom.

launched at a ψ = 1 line. In the flux coordinate system (χ, ψ),
which covers the whole arcade, the unperturbed curved loop in
Cartesian coordinates becomes a straight slab. These coordinates
were used by Oliver et al. (1996) to study linear waves in coro-
nal arcades. The pattern outside the loop in Fig. 7 shows a sim-
ilar behaviour to the right panels of Figs. 2 and 3 from Cooper
et al. (2003), who illustrated the transversal component of veloc-
ity and mass density profiles for the sausage mode.

It is noteworthy that wave attenuation is stronger for longer
period kink oscillations (top panel of Fig. 8). Such a behavior
was found by Selwa et al. (2006). Longer period oscillations re-
sult from a stronger pulse which stretches the loop more and
causes a larger displacement of the loop. A stretched loop is
more curved (supposing that positions of the loop foot-points
are fixed in time). As a consequence of that a loop leaks more
energy, resulting in a smaller attenuation time. Top panel of

Fig. 5. Evolution of perturbed energy density in a case when the curved
loop is absent in the system (t = 300 s – top panel, t = 800 s – middle
panel, t = 1300 s – bottom panel). The perturbed energy density is
given in arbitrary units (initial energy of the loop apex).

Fig. 8 shows also two fits to the numerical data: linear a1 + b1 · P
and polynomial a2 · P−b2 function. Best fits lead to the follow-
ing values of the parameters: a1 = 1.31066, b1 = −0.00166,
a2 = 721673, b2 = 2.29382. Note, that according to Ofman &
Aschwanden (2002) τ ∼ P in the case of resonant absorption of
Alfvén waves and τ ∼ P4/3 in the case of phase mixing, while
in contrast to their findings energy leakage exhibits a decreasing
trend.

However, for more energetic pulses the period grows by
about a factor of 1.5, but the ratio of attenuation time to the pe-
riod differs by a factor of 2.7 (see Fig. 8, top panel). It is possible
that in such a case non-linear effects play some role in the atten-
uation of the kink oscillations.

The same argument can explain the decrease of τ/P for
longer loops with higher curvature obtained by varying the po-
sition of the foot-point, xf (bottom panel of Fig. 8). Varying the
foot-point position, xf , with the fixed half-width of the arcade,
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Fig. 6. Evolution of magnetic pressure perturbations (solid line) and
thermal pressure perturbations (dashed line) along the line x = 0 above
the curved loop (t = 300 s – top panel, t = 800 s – middle panel,
t = 1300 s – bottom panel).

L, allows us to switch between different field lines of the arcade
bounding the loop and change curvature of the loop defined as
the ratio of the height of the loop’s apex to the position of its
foot-point.

Another indication that the vertical kink oscillations are at-
tenuated as a result of energy leakage comes from a comparison
of the attenuation rate, τ/P, for different loop densities, widths
and lengths. Figure 9 shows τ/P vs. the density ratio between
the loop and the ambient corona, d (top panel), vs. half-width of
the loop measured at the foot-point, a (medium panel), and vs.
half-width of the arcade, L (bottom panel), that corresponds to
different lengths of the loops. It is noteworthy that τ/P grows
with d, a and L. As loops with different lenghts in the poten-
tial arcade modelled with the various positions of the foot-point
(bottom panel of Fig. 8) have different parameters, e.g. average
Alfvén speed, curvature and β, we change the length of the loop
by varying the half-width of the arcade, L, that allows us to hold
curvature fixed by fixing field lines of the arcade bounding the
loop. Note, that there is no contradiction between bottom panels
of Figs. 8 and 9. The former one shows mainly the role of the
curvature (by varying xf), although the loop length also changes,

Fig. 7. Top panel: mass density outside the loop (colour scale, units of
�e) at t = 800 s plotted in flux coordinates. The white area corresponds
to the position of the loop. Compare with the right panel of Fig. 3 from
Cooper et al. (2003). Bottom panel: x-component of velocity (colour
scale, units of VA0) at t = 800 s. The white contour corresponds to
the position of the loop. Compare with the right panel of Fig. 2 from
Cooper et al. (2003).

while the latter one presents only the role of loop length (by
varying L) on τ/P. Also, from the bottom panel of Fig. 8 it fol-
lows that τ/P grows with L for fixed xf . These findings serve as
evidence of weaker wave attenuation for higher values of these
parameters. These results are in good agreement with the find-
ings by Smith et al. (1997) who showed that increase of the loop
length, loop width or the density ratio reduces the leakage.

4. Discussion

We now compare with observations. Wang & Solanki (2004)
presented evidence for vertical kink oscillations of a coronal
loop observed in the 195 Å bandpass by TRACE. Following
the method of Aschwanden et al. (2003) we estimate the den-
sity contrast of the loop. By fitting the flux profile (Fig. 10)
we obtain the loop radius a = 3.9 Mm and the skin depth
l = 3.6 Mm. Hence we evaluate the mean loop width wloop =
4.3 Mm (Aschwanden et al. 2003, Eq. (2)). For the loop flux
Fsubtr = 0.34 DN s−1 pix−1 (where DN = data number) we get
according to Eq. (14) in Aschwanden et al. (2003):
√

n2
i − n2

e ≈ 3.9 × 108 cm−3. (11)

By assuming a hydrostatically stratified atmosphere we ob-
tain the equivalent column depth zeq = 32.7 Mm at the loop
apex for a plasma temperature T = 1.5 MK. With the back-
ground flux Fback = 11 DN s−1pix−1 and the altitude of the
oscillating loop segment hosc = [98.2, 100.1, 99.7] Mm re-
spectively. We get ne = [1.98, 1.93, 1.94] × 108 cm−3 and
ni = [4.37, 4.35, 4.36]×108 cm−3 for three types of loop shapes
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Fig. 8. Top panel: the ratio of attenuation time τ to period P, τ/P of
vertical loop oscillations vs. period. The solid (dotted) line corresponds
to the best quadratic (linear) fit. The different periods were obtained by
changing the total energy of the initial pulse (Selwa et al. 2006). Bottom
panel: τ/P vs. position of the right foot-point of the loop, xf .

(Table 1, Wang & Solanki 2004). As a consequence, the density
enhancement is d = ni/ne ≈ 2.3.

Suppose that resonant absorption is the main attenuation
mechanism. Then, τ/P ∼ 0.98 for the measured density contrast
of 2.3 (Eq. (4), Aschwanden et al. 2003). Wang & Solanki (2004)
measured τ/P = 3.05, but this value could be too large with the
uncertainty due to only 1.5 visible wave-periods (interrupted by
a data gap), since it means 4–5 visible periods of oscillations,
i.e. we should still see oscillations after the gap, but actually we
did not. Therefore, the resonant absorption could also explain
the observed damping of vertical loop oscillations as shown by
Aschwanden et al. (2003) for the horizontal kink oscillations.

As indicated by the top panel of Fig. 9, a lower density con-
trast leads to stronger attenuation by wave leakage. For the den-
sity ratio d = 3 the simulation provide τ/P < 0.2 (see Fig. 11
for the corresponding time series). As the attenuation is very
strong the vertical oscillations are hardly seen, which is incon-
sistent with the observations (Wang & Solanki 2004). Since the
observed oscillations are less strongly damped, wave leakage
must be reduced in the solar atmosphere compared to our simple
model.

We stress, however, that the measurement of the loop density
contrast with the method of Aschwanden et al. (2003) is based on
an a priori assumption that the loop density profile is monolithic.
If, e.g., the loop consists of multiple unresolved threads or the
loop has a low filling factor, the density contrast could be higher
than the present estimate. Such a finely structured loop would be
more vulnerable to phase mixing (Ofman & Aschwanden 2002)
and wave scattering (Gruszecki et al. 2006).

As was shown by Smith et al. (1997), a lower density con-
trast leads to a stronger attenuation. From the top panel of Fig. 9
we infer that τ/P < 0.2 for the density ratio d = 3 that is close

Fig. 9. Top panel: the ratio of attenuation time τ to period P, τ/P, of
vertical loop oscillations vs. density ratio between the loop and the am-
bient medium, d. middle panel: τ/P vs. half-width of the loop at the
foot-point, a. bottom panel: τ/P vs. half-width of the arcade L.

to the observational value, which is obtained by the simulations
for the case of d = 3.

The numerical simulations we performed provide some in-
sight into the attenuation of the vertical kink oscillations. The
literature on wave attenuation is vast (e.g., Ye et al. 1993;
Ofman & Aschwanden 2002; Ruderman & Roberts 2002;
Van Doorsselaere et al. 2004a; Van Doorsselaere et al. 2004b;
Andries et al. 2005). The proposed models differ to various ex-
tents in the boundary conditions (bc) they use. For instance, Ye
et al. (1993) applied bc that sets the radial electric field Er = 0
on the loop’s surface. This is proper for the Toroidal Alfvén
Eigenmode (TAE). The main conclusions are that the Alfvén
continuum modes of the non-curved structure (a cylinder) are
attenuated due to curvilinear perturbations. However, the atten-
uation rates were not calculated. Ofman & Aschwanden (2002)
showed that phase mixing leads to rapid dissipation of Alfvén
waves due to the variation of the Alfvén speed across the wave
front which results in the formation of small scales. However,
they suggested that the loop oscillations are dissipated by phase
mixing with anomalously high viscosity. Ruderman & Roberts
(2002) dealt with continuum attenuation due to resonant absorp-
tion. The model was a straight cylinder with smooth edges and
a homogeneous central core. In the limit where the edges be-
come discontinuous, the kink modes of Edwin & Roberts (1983)
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Fig. 10. Estimation of the density contrast of the loop observed by Wang
& Solanki (2004) (their Fig. 2a): observed flux profile obtained by av-
eraging 31 images before the oscillation started (top panel) with lin-
ear background (dotted line); normalized flux profile together with the-
oretical fit (middle panel); density profile (bottom panel, Eq. (1) in
Aschwanden et al. 2003). The dashed lines in bottom panel represent
the inner/outer loop radius.

were retrieved. The attenuation rate was calculated (their
Eq. (56)) in the limit of thin edges and it is, of course, small.
Van Doorsselaere et al. (2004b) built on Ruderman & Roberts
(2002) and found the roots of the dispersion function without the
thin edge constraint, i.e. allowing for a diffuse edge. The attenu-
ation rate by resonant absorption increased by 20% at best with
respect to the one calculated by Ruderman & Roberts (2002).
Van Doorsselaere et al. (2004b) added the effects of curvature
and showed that the attenuation rate increased by 12% at best
with respect to the value calculated by Ruderman & Roberts
(2002). Andries et al. (2005) implemented a longitudinal strat-
ification along a cylindrical loop and pointed out that this can
significantly alter both the real and imaginary parts of the quasi-
mode frequency. This statement was validated by Arregui et al.
(2005) for non-thin edges who showed that the period and atten-
uation of coronal loop oscillations essentially depend on the den-
sity contrast and the inhomogeneity length-scale. Both Andries
et al. (2005) and Arregui et al. (2005) show that the ratio of

Fig. 11. Time-signatures of the mass density (color scale; arbitrary
units) at the loop apex for the curved loop with the density contrast
d = 3. Compare with top panel of Fig. 2.

attenuation time to the period based on resonant absorption is
almost not affected by gravitational stratification.

We note the following: (a) in Ye et al. (1993) TAEs have a
different boundary condition than the one we implemented; (b)
Ruderman & Roberts (2002), Van Doorsselaere et al. (2004a),
Van Doorsselaere et al. (2004b), and Andries et al. (2005) ba-
sically deal with kink modes and their work can be related to
what we observe. Our conclusion that energy leakage from the
loop into the ambient medium is an efficient mechanism respon-
sible for attenuation of vertical kink oscillations complements
the results of these studies. The conclusion that kink oscillations
are attenuated stronger in a curved loop is consistent with find-
ings of Van Doorsselaere et al. (2004b) for quasi-modes which
show similar behavior and are more attenuated in curved config-
urations. However, there is no explanation of such a behavior in
terms of energy given in their paper.

A comparison with observed vertical oscillations clearly
shows that, as a damping mechanism, wave leakage is too ef-
ficient in our simulations. Leakage can be reduced by improving
the wave-guiding properties of a loop. Indeed, the relative atten-
uation time τ/P grows with mass density, width and length of the
loop (Fig. 9). Another possibility is to implement a twisted mag-
netic field, which requires a 3D computation. Implementation of
different Alfvén speed profiles which eliminate wave tunneling
(Verwichte et al. 2006a) that takes place in the discussed curved
loop configuration can reduce energy leakage out of the loop.
Finally, a different excitation mechanism than the single pulse
used here may also have the potential of reducing wave atten-
uation. An example is the excitation by a train of pulses which
mimics better impulsive waves that result from natural sources
(flares, EIT waves), exhibiting finite life time scales.

It is worthwhile to discuss briefly the relevance of the re-
cent results of Díaz et al. (2006) to our paper. Díaz et al. (2006)
studied linear fast magnetosonic waves in a semi-circular loop
in the limit of the cold and linear MHD approximations. They
derived the dispersion relation for various modes. As a result of
energy leakage these modes are characterized by a complex fre-
quency,ω. The imaginary parts of ω are usually small compared
with the real parts. As a result of that wave attenuation due en-
ergy leakage is weak and the oscillations typically last for 2–5
wave periods, which is about twice longer than in our simula-
tions. Spatial structures of these oscillations exhibit exponential
growth with height far away from the arcade (their Figs. 5, 6),
which is similar to the results of our Fig. 6. The normalized at-
tenuation time, τ/P, lies in the range of values found in our stud-
ies, and it grows for denser loops (their Fig. 9).
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A number of improvements to this study are possible. The
most obvious is switching to 2.5-D geometry in order to study
also other mechanisms, such as resonant absorption of Alfvén
waves. It is also not clear to what extent the inclusion of gravity
will affect the results.
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