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ABSTRACT

Aims. We consider impulsively generated Alfvén waves in coronal loops to investigate the role of energy leakage on wave attenuation,
which includes lateral leakage, leakage into dense photospheric regions and nonlinear driving of magnetosonic waves.
Methods. A coronal loop is modelled either as a straight magnetic slab or as a curved slab of smooth mass density profiles. We
perform numerical simulations of 2.5D ideal magnetohydrodynamic equations to determine the signatures of Alfvén waves.
Results. The numerical results show that lateral leakage of Alfvén waves is significant in comparison to leakage into the photospheric
regions for realistic corona to photospheric density ratios. Energy leakage is enhanced by curvature of magnetic field lines and for
large amplitude Alfvén waves for which nonlinear driving of magnetosonic waves is more significant than in the linear regime.
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1. Introduction

The good spatial resolution of highly sensitive instruments such
as SUMER (SOHO) and TRACE resulted in the detection of
various oscillation modes in solar coronal loops. The observed
oscillations include propagating (De Moortel et al. 2002) and
standing (Wang et al. 2002) slow magnetosonic waves. There are
also observations of a branch of fast magnetosonic waves: hor-
izontal kink (Aschwanden et al. 1999; Nakariakov et al. 1999;
Schrijver et al. 2002; Aschwanden et al. 2002), vertical kink
(Wang & Solanki 2004), and fast sausage (Pascoe et al. 2007). It
has been suggested that velocity fluctuations that are associated
with torsional Alfvén waves can be observed through variations
of the Doppler shifts (e.g., Zaqarashvili 2003), although a direct
detection still has not been made.

Magnetic loop oscillations were studied analytically over
the last few decades by Edwin & Roberts (1982, 1983),
Roberts et al. (1984), Cally (1999), Nakariakov (2003), Ofman
(2002), Van Doorsselaere et al. (2004). As analytical studies are
amenable only to highly idealized situations, numerical simula-
tions are often required to tackle more complex models. Such
a numerical approach was undertaken by a number of authors.
For instance, Mendoza-Briceno et al. (2004), Nakariakov et al.
(2004) and Selwa et al. (2005) studied slow modes in a one-
dimensional magnetic field. More complex models were devel-
oped for fast magnetosonic oscillations. For instance, in their
early studies, Murawski & Roberts (1994) considered impul-
sively generated linear and nonlinear fast magnetosonic waves
in a two-dimensional coronal slab. Selwa et al. (2004) per-
formed numerical simulations of propagating slow, fast sausage,
and fast kink waves in a three-dimensional geometry. Ofman
(2002) studied leakage of Alfvén waves from coronal loops into
the chromosphere using a 1.5D MHD model. He found that
the leakage time of long-wavelength oscillations is five times
longer than that obtained from observational data recorded by
the TRACE satellite (e.g., Del Zanna et al. 2005). Attenuation of

kink oscillations by energy leakage and resonant absorption in
curved coronal loops was discussed recently by Terradas et al.
(2006). Various wave damping mechanisms were reviewed by
Roberts (2000). The mechanisms include resonance absorption,
non-ideal effects, loop curvature, and phase mixing.

Despite significant achievements in the development of real-
istic models, there are still considerable gaps in our understand-
ing of wave phenomena in coronal loops. A goal of this paper
is to extend the 1.5D model of Ofman (2002) into its 2.5D ana-
log in which straight and curved plasma slabs are considered.
Our work also aims towards obtaining a better insight into the
observed transverse loop oscillations (Aschwanden et al. 1999;
Nakariakov et al. 1999; Schrijver et al. 2002; Aschwanden et al.
2002), and the possible mechanisms of their damping. This pa-
per is organized as follows. Numerical models are described in
the following section. Numerical results are presented and dis-
cussed in Sect. 3. This paper is concluded by a summary of the
main results in Sect. 4.

2. Numerical models

In our models we neglect non-ideal effects and the gravity force.
To describe coronal plasma we use the ideal magnetohydrody-
namic (MHD) equations:

∂�

∂t
+ ∇ · (�V) = 0, (1)

�
∂V
∂t
+ �(V · ∇)V = −∇p +

1
µ

(∇ × B) × B, (2)

∂B
∂t
= ∇ × (V × B), (3)

∂p
∂t
+ ∇ · (pV) = (1 − γ)p∇ · V, (4)

∇ · B = 0. (5)
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Here � is mass density, p is gas pressure, B is magnetic field,
V = [Vx,Vy,Vz] is flow velocity, µ is the magnetic permeabil-
ity and γ = 5/3 is the adiabatic index. We limit our discussion to
a 2.5D magnetically structured medium in which the equilibrium
magnetic field is polarized in the x− z plane and all plasma vari-
ables are invariant in the y-direction, ∂/∂y = 0, but perturbed ve-
locity and magnetic field y-components are not identical to zero.
In such an idealized medium Vx and Vz correspond to magne-
tosonic waves which are coupled. The y-component of velocity,
Vy, is associated with the Alfvén wave which decouples from
the magnetosonic waves. However, the Alfvén wave is able to
drive the magnetoacoustic waves through nonlinear terms (e.g.,
Murawski 1992; Nakariakov et al. 1997). Driven in this way,
magnetosonic waves do not react back on the Alfvén wave, and
there is no resonant absorption.

2.1. A straight slab model

We consider an equilibrium which corresponds to a simple
straight slab model. For a straight slab the magnetic field can be
chosen to be uniform over the whole space and directed along
the x-direction, B0 = B0 x̂. The equilibrium plasma quantities
represent an enhanced mass density over a width 2a in an other-
wise uniform medium, viz.

p(z), �(z), B(z) =

{
p0, �i, B0, |z| ≤ a,
p0, �e, B0, |z| > a.

Here the width of the slab, 2a, is chosen equal to 2.5 Mm and the
length of the slab is about 2L = 200 Mm. The initial configura-
tion of the slab is shown in Fig. 1 (top panel). We take the mass
density within the slab to be 3 times larger than in the ambient
medium, d = �i/�e = 3, following Aschwanden & Nightingale
(2005). Additionally, dense plasma layers are implemented at
0 ≤ x ≤ 0.05L and 2.05L ≤ x ≤ 2.1L (Fig. 1, top panel). These
represent the dense photospheric layer at the loop footpoints.

For comparison, B0 is chosen to be equal to the average value
of the magnetic field within the curved slab which we describe
in the next part of the paper.

2.2. An arcade model of a curved slab

We adopt the coronal arcade model (e.g., Oliver et al. 1998)
which was recently used by Gruszecki et al. (2006) in their stud-
ies of vertical oscillations of a multi-stranded loop.

We assume that in equilibrium the coronal arcade is settled
in a motionless environment (Ve = 0). As a consequence of
this approximation we use the current-free magnetic field con-
dition (∇ × Be/µ = 0) which is satisfied by a magnetic poten-
tial A = Aŷ:

A(x, z) = B0ΛB cos (x/ΛB)e−z/ΛB . (6)

The components of the corresponding potential magnetic field
are given by:

Bex = B0 cos (x/ΛB)e−z/ΛB , (7)

Bez = −B0 sin (x/ΛB)e−z/ΛB . (8)

Here B0 is the magnetic field at the reference level z = 0, ΛB =
2L/π is the magnetic scale height and L is the horizontal half-
width of the arcade, which we choose as L = 100 Mm.

From Eq. (2) we infer that for current-free magnetic field
there is no pressure gradient, ∇pe = 0. As a result of that pe =
const. and mass density can be chosen as constant, �e = const.

Fig. 1. Equilibrium mass density profiles representing straight (top
panel) and curved (bottom panel) coronal slabs. Note the dense pho-
tospheric layers at x � 0 and at x � 2L (top panel) and at z � 0 (bottom
panel).

For this choice of the plasma parameters the Alfvén speed
VAe(z) = |Be(z)|/√µ�e decays exponentially with height z. From
the definition of the plasma beta, β = pe/(B2

e(z = 0)/2µ) =
2(cs/VA(z = 0))2/γ, we can find the value of gas pressure. For
typical coronal magnitudes of the sound and Alfvén speeds,
cs = 300 km s−1 and VA(z = 0) = 1000 km s−1, we obtain
β = 0.108 at the reference level z = 0.

We set a curved slab by using the following mass density
profile:

�(x, z) = d�e exp

(
A(x, z) − Ak

2a

)2

, (9)

where Ak = A(Lf − ak, 0). We choose and hold fixed 2a = 0.02L,
Lf = 0.7L and ak = 0.0125L. For this choice of the parame-
ters the curved slab does not have ideal circular shape. The av-
erage radius and length of this slab are equal to ∼70 Mm and
∼190 Mm, respectively.

We implement a dense photospheric layer (Fig. 1). This layer
is modeled as

�(x, z) = �e(κ − 1)

[
1 − tan

(
z
σph

)]
(10)

where κ = �ph/�e denotes mass density contrast of the pho-
tosphere and σph is a steepness of the mass density along the
z-direction at the photosphere. We choose σph = 0.0025L and
�ph = 1000�e. Such a dense plasma layer results in wave
reflection.
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2.2.1. Perturbations

We are interested in the impulsively excited Alfvén waves. For
the straight slab we launch the initial pulse in Vy, i.e.

Vy(x, z, t = 0) =

{
V0e−(x−x0)2/w2

, |z| ≤ a,
0, |z| > a,

(11)

where x0 denotes the pulse’s initial position,w is its width and V0
is its amplitude that is expressed in units of the Alfvén speed, VA.
We set the width of the initial pulse, w = 50 Mm. For this choice
of the parameters the pulse is placed exactly in the slab center,
at x0 = L.

For the curved slab we launch a pulse in Vy. We choose
a pulse that is confined to the curved slab, similar to the straight
slab case.

3. Numerical results

To obtain numerical results we use the code ATHENA. This code
was developed by Gardiner & Stone (2005). Athena is a grid-
based code for astrophysical plasma dynamics applications. The
numerical algorithm in the code is based on a higher-order
Godunov method with a single-step Eulerian update. Numerical
fluxes are computed using a linearized Riemann solver and the
divergence-free condition is satisfied with the use of a con-
straint transport method. This code can be adopted to solve the
equations of compressible hydrodynamics and ideal MHD prob-
lems in one or two spatial dimensions. In our studies we use
the code for ideal MHD equations in 2D space. To represent
a physical region we use a Eulerian box (0, 2.1L) × (−L, L)
((−L, L)× (−0.2L, 1.3L)) in the case of the straight (curved) slab.
This box is covered by 500 × 500 grid points. We set transparent
boundary conditions at all boundaries of the simulation region
allowing a wave signal to freely leave the simulation area. We
perform convergence studies in order to check the influence of
grid size on numerical results. We choose a finer grid and com-
pare results for two different grids. From the obtained results we
infer that numerical results are not affected by numerical diffu-
sion and they are well represented by the chosen grid.

3.1. The straight slab

We discuss now the case of the straight slab. First we perform
a simulation for an infinitely dense photospheric layer for which
�ph → ∞. In practise, this case is realized by removing the pho-
tospheric layers from the system and implementing reflecting
boundary conditions at x = 0 and x = 2L.

As our goal is to study linear waves first we launch a pulse
with a small amplitude, V0 = 0.01VA. Figure 2 sketches the tem-
poral behaviour of Vy at a spatial point x/L = 1 and z/L = 0.
Alfvén wave signal is essentially constant in time. A more de-
tailed analysis can be done using Alfvén wave energy, which
consists of kinetic and magnetic energies, viz.

EAl(t) =
∫

S

∫ ⎛⎜⎜⎜⎜⎜⎝�V
2
y

2
+

B2
y

2µ

⎞⎟⎟⎟⎟⎟⎠ dxdz. (12)

Here the integration is performed over the slab area S . As EAl
decays in time it is discernible from Fig. 3 that the Alfvén wave
experiences attenuation due to lateral leakage into the ambient
coronal medium. However, as at t = 10 000 s (corresponding
to 11 wave periods, where the wave period is defined as P =
2L/VA) the Alfvén wave has lost only 0.73% of its initial energy;

Fig. 2. Time signature of the Alfvén wave signal, collected at z/L = 0,
for the case of �ph → ∞ and V0 = 0.01VA.

Fig. 3. Time-signatures of the normalized Alfvén wave energy,
EAl(t)/EAl(0), within the slab for the case of Fig. 2.

we infer that the lateral leakage of Alfvén waves is negligibly
small. It is noteworthy that the Alfvén wave gradually loses its
energy and there is no initial transient phase at which the energy
decreases significantly. Such a phase was observed in the case of
fast sausage (Pascoe et al. 2007) and slow (Ogrodowczyk et al.
2006) magnetosonic oscillations.

We consider now different values of the amplitude of the ini-
tial pulse, V0. Figure 4 shows the temporal evolution of energy
loss for: V0 = 0.01VA (crosses), V0 = 0.05VA (stars), V0 = 0.1VA
(triangles) and V0 = 0.2VA (squares). Here the energy loss, Eloss,
is defined as:

Eloss =
EAl(t = 0) − EAl(t)

EAl(t = 0)
· 100%. (13)

From Fig. 4 we infer that for a larger value of V0 the Alfvén wave
loses energy at a higher absolute and fractional rate. This sce-
nario is in agreement with our expectation that for larger V0 the
Alfvén waves become more nonlinear and drive higher ampli-
tude magnetosonic waves (Nakariakov et al. 1997) and as a con-
sequence of that lose more energy (Murawski 1992).

We evaluate now the attenuation time, τ, for four different
values of the amplitude. Here, τ is determined by fitting the fol-
lowing formula:

Vy(t) = Vy(t = 0) exp (−t/τ) (14)

to the corresponding wave signal. The results are displayed in
Fig. 5. We see that τ/P declines rapidly with V0. Here P is
the wave period. It means that a larger amplitude Alfvén wave
loses a given fraction of its energy faster than a pulse with
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Fig. 4. Energy loss of Alfvén waves within the slab for four different
amplitudes of the initial pulse: V0 = 0.01 (triangles), V0 = 0.05 (stars),
V0 = 0.1 (crosses) and V0 = 0.2 (squares) in units of VA.

Fig. 5. The ratio of the attenuation time to the wave period, τ/P, vs.
amplitude of the initial pulse, V0.

smaller V0. Figure 6 shows the profiles of Vx for two different
values of V0. It is clearly visible that for V0 = 0.2VA, Vx attains
higher magnitudes than in the case of V0 = 0.01VA. This serves
as evidence that higher amplitude Alfvén waves efficiently drive
higher amplitude magnetosonic waves. As a result of this pro-
cess Alfvén waves lose their energy faster for larger values of V0.

Up to now the photospheric layers have been removed from
the system and their action was replaced by reflecting bound-
ary conditions. Figure 7 shows energy loss of the Alfvén waves,
Eloss, within the slab for the straight slab case with the photo-
spheric layers present in the system. We launch a pulse with
V0 = 0.01VA. At t = 2000 s the Alfvén wave lost almost 70%
of its initial energy. A comparison with Fig. 4 suggests that this
energy loss results from energy leakage into the photospheric
layers. The case when the Alfvén speed jumps discontinuously
from the photospheric to the coronal value, the reflection coeffi-
cient can be approximated as (Ferraro 1950)

R =
VAs − VAp

VAs + VAp
· (15)

For example for the case �ph = 1000�c, where �c denotes the
density of the corona, VAs = 456 km s−1 (VAp = 25 km s−1) is
the Alfvén speed in the slab (photosphere). For these values we
get R = 0.896 which means that at every reflection about 10%
of Alfvén wave energy is lost due to energy leakage into a single
photospheric layer. As wave reflections occur at both slab ends
the total amount of energy, which is lost during a partial reflec-
tion, is about 20%. Indeed, Fig. 7 (triangles) shows that at the
first reflection, which takes a place at t = 300 s, the Alfvén wave

Fig. 6. Spatial profiles of Vx at t = 150 s for V0 = 0.01VA (first panel)
and V0 = 0.2VA (second panel).

Fig. 7. Energy loss of Alfvén waves within the slab with the photo-
spheric layers for V0 = 0.01 and the width of the pulse w = 5 Mm. We
estimate energy loss for three different values of the photospheric mass
density: �ph = 1000�c (triangles), �ph = 5000�c (stars), �ph = 10 000�c

(squares).

lost about 20% of its initial energy. We also estimate values of R
for the cases �ph = 5000�c (R = 0.95) and �ph = 10 000�c
(R = 0.96), which agree with the result of Fig. 7. From Eq. (15)
we also estimate a value of R for the realistic case �ph = 109�c.
We get R = 0.99989. As a result we infer that energy loss at the
photospheric regions is much less significant than lateral leak-
age and leakage due to nonlinear driving of magnetosonic waves
for the real value of density gradient between photosphere and
corona.

3.2. The curved slab

We now consider the curved slab model of an arcade loop.
Figure 8 shows energy loss of Alfvén waves within the curved
slab for V0 = 0.01VA. Similarities between straight and curved
slabs are discernible (compare Figs. 8 and 7). Note that the
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Fig. 8. Energy loss of the Alfvén waves within the curved slab for V0 =
0.01VA.

Fig. 9. Relative energy loss of Alfvén waves within the curved slab for
different slab lengths.

Alfvén wave loses its energy while being partially reflected
from the photospheric region. The first three reflections occur at
t � 300 s, t � 700 s, t � 1100 s. At the intermediate times, when
the Alfvén wave propagates along the curved slab, energy de-
creases at a significantly lower rate. This energy loss results from
energy leakage into the ambient corona as a result of the curva-
ture of magnetic field lines. To analyze this effect we evaluate
energy loss for five different lengths of the curved slab. The cor-
responding results are displayed in Fig. 9. Note that for a longer
slab, magnetic field lines are bent more than for a shorter slab.
As a consequence we expect that curvature effects are stronger
for longer slabs. Indeed, we see in Fig. 9 that energy loss of
Alfvén waves, Eloss, within the curved slab grows with the length
of the slab. Thus, Alfvén waves that propagate along the slab of
higher curvature lose energy at a higher rate than Alfvén waves
in less curved slabs.

4. Summary and conclusions

In this paper, attenuation of Alfvén waves in straight and curved
coronal slabs is studied in a 2.5D Cartesian geometry. In the
present simulation the Alfvén waves are triggered by a sudden
energy release within a slab in the form of a velocity pulse and
then the system is allowed to evolve in time. As a result of
energy leakage Alfvén waves decay in time. For small amplitude

(linear) Alfvén waves the decay rate is negligibly small due
to lateral leakage as it reaches a level of 3% energy loss after
10 000 s. Larger amplitude Alfvén waves excite the fast magne-
tosonic waves nonlinearly, and show stronger damping. For real-
istic values of photospheric and coronal density ratios the energy
leakage rate is small compared to lateral losses. We find that
wave attenuation is enhanced by about a factor of 2 by curva-
ture effects and it is stronger for larger amplitude Alfvén waves,
which are able to drive magnetosonic waves more efficiently
than small amplitude Alfvén waves.

Comparing the 1.5D case that was discussed by Ofman
(2002) with the 2.5D simulations of the present study, we in-
fer that lateral leakage of Alfvén waves, that is absent in the
1.5D case, provides another mechanism for Alfvén wave dissi-
pation. However, the 1.5D model describes sufficiently well the
attenuation of Alfvén waves by photospheric losses.
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