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ABSTRACT

Aims. The latitude-distribution of solar activity as represented by sunspots is studied.
Methods. We first determined the latitudinal distribution of a sunspot cycle by integrating the butterfly diagram at each latitude over
the length of each cycle. We then formed the five lowest moments of the latitudinal distribution of all complete sunspot cycles since
1874 and compared these moments with each other.
Results. The three lowest moments correlate remarkably well with each other. For example, the mean latitude of the sunspots during
a cycle and the latitude range are correlated at the 0.96 level. A clear asymmetry is seen between the two hemispheres, with the
southern solar hemisphere showing consistently stronger and more positive correlations than the northern hemisphere. When applied
to different simple dynamo models, the same analysis reveals significant differences between the models and demonstrates that such
moments are a useful diagnostic in distinguishing between dynamo models. Remarkably, dynamos without a meridional flow provide
results closer to those of the Sun’s northern hemisphere, while a dynamo with a meridional flow produces fields more like those in the
Sun’s southern hemisphere. This may provide a clue to the cause of the well-known north-south asymmetry of solar activity.
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1. Introduction

The cyclic behaviour of solar magnetic activity and its cause, the
Sun’s dynamo, are widely studied facets of the Sun (see the vol-
umes edited by Harvey 1992; Wilson 2002; Ferriz-Mas & Núñez
2003; and the reviews by Ossendrijver 2003; Charbonneau
2005). Nonetheless, the origin of the Sun’s cyclic behaviour is
not fully understood. One aspect which complicates the study
and analysis of the solar cycle is that the activity cycle is not
a periodic phenomenon, but rather every cycle is different from
all others, with its own amplitude, length and shape. There have
been numerous attempts to find relations between the different
parameters of a cycle in order to constrain various dynamo mod-
els of magnetic field generation. Particularly well known is the
strong relation found by Waldmeier (1935) between the ampli-
tude of a cycle and the length of its rising phase (with weaker
relations existing for the length of the descending phase and the
whole cycle; cf. Hathaway et al. 2002). Relations have also been
found between the amplitude of a given cycle and the length of
an earlier cycle (e.g. Solanki et al. 2002). Differences in the am-
plitudes of even and odd sunspot cycles (Gnevyshev & Ohl 1948;
Wilson 1988; Mursula et al. 2001) and the asymmetry of the rise
to maximum and fall to minimum (Hathaway et al. 1994) are
other interesting properties of the sunspot cycle. An overview of
sunspot cycle properties has been given by Usoskin & Mursula
(2003), while the cycle properties deduced from Zürich sunspot
number (Waldmeier 1961) and group sunspot number (Hoyt &
Schatten 1998) records have been compared by Hathaway et al.
(2002).

All of these investigators adopted sunspots as proxies of so-
lar activity, which is reasonable, given that sunspot observations
provide the longest running direct records of solar activity (Wolf
1852; Waldmeier 1961). They considered the cycle as a time se-
ries and in general neglected the latitudinal distribution of solar
activity (for exceptions see, e.g. Antalova & Gnevyshev 1983;
Pelt et al. 2000).

Here we took the opposite approach and considered only the
latitudinal dependence of sunspot areas within a cycle. Sunspot
latitudes have been regularly and reliably measured for less than
2 centuries, so that this restricts the length of time over which
they can be analysed. Since 1874, measurements of sunspot ar-
eas are also available, which have the advantage that they are
proportional to the total magnetic flux contained in the sunspots
(Solanki & Schmidt 1993). In order to be independent of evo-
lution effects within a cycle we integrated over the life time of
a cycle and thereby distilled the latitudinal dependence of the
sunspot area. We then computed the moments of each such dis-
tribution and searched for relations between them.

In addition to solar data we also investigated the output of
a set of simple dynamo models in order to judge the diagnostic
capabilities of the relations between moments of the Sun’s ac-
tivity cycle. The motivation for this work was to develop a new
diagnostic of the solar cycle and of models of the generation of
the SunŠs magnetic field. Therefore, the dynamo models used
here are not meant to give a realistic representation of the real
Sun, but rather to test the extent to which the diagnostic found
in the observational data can distinguish between dynamo mod-
els with different ingredients. As causes of variability of the so-
lar cycle we considered stochastic fluctuations of the α-effect
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Fig. 1. Butterfly diagram from 1874 to 2005 based on data from the Royal Greenwich Observatory up to 1976, from the former Soviet Union
between 1977 and 1985 and from the Mount Wilson Solar Observatory from 1986 onward. The vertical dashed lines mark the official minima of
the sunspot cycle, the inclined solid lines our estimates of the boundaries between individual cycles. Cycle numbers are marked at the top of each
cycle.

(Ossendrijver et al. 1996), the interplay between the dynamo
at the base of the convection zone and magnetic fields inside
it (Schmitt et al. 1996), and, finally, a variation of the meridional
circulation (Charbonneau & Dikpati 2000).

Some preliminary results, based on a simpler analysis and
a different data set, were presented by Solanki et al. (2000). A
somewhat similar analysis was also published by Li et al. (2003),
who, however, did not use moments and basically considered
only peak sunspot areas, sunspot areas at high latitudes (>35◦)
and cycle mean latitudes.

The paper is structured as follows. In Sect. 2 we describe
the solar data, in Sect. 3 the technique, while in Sect. 4 re-
sults obtained from the solar data are presented. In Sect. 5 we
present some simple dynamo calculations which are analysed in
the same way as the historical sunspot data. The results of the
analysis of the models are given in Sect. 6. Finally, we outline
our conclusions in Sect. 7.

2. Sunspot data

The analysed data are the sunspot positions and areas collected
by the Royal Greenwich Observatory (RGO) between 1874 and
1976 and by other observatories since then. The exact data set
used has been described by Balmaceda et al. (2005). For the pe-
riod 1977–1985, after the end of the Greenwich observations
up to the official minimum of cycle 21, it is based on data
from the former Soviet Union (called Russian data in the fol-
lowing) and for the period 1986–2004 on the Mount Wilson
Solar Observatory record, which is composed of a collection
of data from different sources. Data from Yunnan, Catania and
Rome were used to fill gaps in the above-mentioned data sets
wherever possible. One problem when combining, in partic-
ular, sunspot areas from different sources is that sunspot ar-
eas measured at different observatories often differ systemati-
cally (e.g. Fligge & Solanki 1997; Foster 2004; Hathaway, priv.
comm.; see http://science.nasa.gov/ssl/pad/solar/
sunspots.htm). Balmaceda et al. (2005, 2007) have therefore
intercompared the various data sets and normalized all sunspot
areas to the RGO record in order to form a homogenous data set.

3. Technique

In a first step of the analysis we found the boundary between
consecutive cycles. We considered the latitudes between 4◦ and
24◦ where there are a sufficient number of sunspots. 2◦ wide bins
were made over this range. For each set of these latitude bins
we found the boundary between two cycles by looking for the
one year wide interval for which the number of sunspots in that
bin was smallest. In numerous cases the minimum within a lati-
tude bin was broad and flat. Then the boundary between cycles
was estimated by eye near the middle of this interval. Finally,
a straight line was fit to the minimum times determined for a
hemisphere. This line was subsequently employed as the bound-
ary between cycles. In Fig. 1 we plot the sunspot butterfly di-
agram for the analysed period. The identification of cycles and
of the boundaries between them (the inclined straight lines) are
indicated. The data from the incompletely covered cycles 11 and
23 were not analysed, but were used to determine the boundaries
of cycles 12 and 22, respectively. The results of the subsequent
analysis turned out to be unaffected by the exact positions of
these boundaries.

In a second step, once each sunspot group had been assigned
to a given solar cycle, we added together (over time) the areas
of all the sunspots belonging to that cycle and lying within a
given latitude bin (bin width 0.1◦). In this way we obtained for
each cycle a two-lobed profile as a function of latitude, with one
lobe each on the southern and the northern hemisphere of the
Sun. The resulting latitude profiles of cycles Nos. 12 and 19, the
weakest and strongest of the analysed cycles, respectively, are il-
lustrated in Fig. 2. These are the data which we analysed further.
Note that in step 3 we considered each hemisphere individually
and compute the 0th to 4th moments, m0 to m4, defined as fol-
lows:

m0 =

∫ |lmax |

0
A(l)dl, (1)

m1 =
1

m0

∫ |lmax |

0
A(l)l dl, (2)

m j =
1

m0

∫ |lmax |

0
A(l)(l − m1) jdl, with j = 2, 3, 4. (3)
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Fig. 2. Two examples of the latitude distribution of the cycle-integrated
sunspot area. a) cycle 12, b) cycle 19 (dots). The solid lines represent
5◦ running means.

Here l is the latitude and A(l) is the cycle-integrated sunspot area
as a function of latitude. For lmax we have chosen ±60◦, since
practically no sunspots have been known to occur at higher lati-
tudes. The integration was carried out using a five-point Newton-
Cotes integration formula. A small error may be introduced by
choosing the equator to be the boundary of the two wings of the
butterfly, since a few spot groups are known (from their polar-
ity signatures) to lie on the “wrong side of the equator”. Spots
within 2.5◦ of the equator account for less than 1.5% of the total
area covered by sunspots. Since spots of the opposite polarity
form only a fraction of the spots close to the equator, we esti-
mated a relatively small error produced by the use of the equator
to demarcate the boundary between the hemispheres. Due to the
lack of magnetic polarity data we could not improve on this in
a simple manner. The moments are related to commonly used
statistical parameters as follows:

Atot = m0, (4)

〈l〉 = m1, (5)

σ =
√

m2, (6)

s = m3/σ
3, (7)

k = m4/σ
4 − 3. (8)

Here Atot is the total solar surface area covered by sunspots over
the solar cycle and 〈l〉 corresponds to the mean latitude at which
sunspots are located during a given cycle. The moment m2 repre-
sents the variance in latitude of the sunspot distribution, so that
σ is the standard deviation, a measure of the width of the lati-
tude distribution of sunspots, s is the skewness, a measure of the
asymmetry in latitude of the cycle-integrated sunspot distribu-
tion. The skewness is zero for a symmetric profile and positive
if the profile is skewed more towards the equator. The kurtosis
k is another parameter describing the shape of a distribution. As
defined in Eq. (8) k is zero for a Gaussian profile, positive for
a sharper (more peaked) profile and negative for a more box-
like profile. It is important to consider s and k instead of m3 and
m4, since these higher order moments are intrinsically correlated
with m2. Dividing by σ3 and σ4, respectively, removes this arti-
ficial correlation, making σ, s and k a priori independent of each
other. In principle it is also possible to compute moments of still
higher order, but they are not so directly related as m0−m4 to in-
tuitively accessible quantities. In addition, the higher order mo-
ments give increasing weight to large |l − 〈l〉| values, i.e. to high
latitudes and the equator (see Eq. (3)). There are few sunspots

at these latitudes and consequently the statistical uncertainties
increase with the order of the moment.

Finally, we compared the different moments of a given cy-
cle with each other. We did this individually for the two hemi-
spheres, with the ith moment relating to the northern/southern
hemisphere being referred to as mi(N) and mi(S ), respectively.
We also formed the average of the two: mi =

1
2 (mi(N) + mi(S )).

Similarly, 〈l〉N and 〈l〉S , σN and σS , etc. refer to the values ob-
tained in the northern and southern hemisphere, respectively, of
the parameters introduced in Eqs. (4)–(8).

When analysing the data there are two points that need to
be considered particularly carefully. The first is data gaps. The
sunspots present on the solar disk on days on which no measure-
ments were carried out do not contribute to the statistics. Two
measured parameters of each sunspot enter into our analysis, its
latitude and its area. The error introduced into the mean lati-
tude, width of the latitude distribution, etc. (i.e. to m1 and higher
moments) due to missing data is a second order effect. E.g. if
the number of data gaps is not too large and reasonably evenly
distributed over a cycle, we expect the effect to be almost negli-
gible, since each integral over A(l) is normalized by dividing by
m0. Hence data gaps increase the random errors in the m1 − m4
values, but do not introduce systematic errors unless they are
concentrated at the beginning or the end of a cycle. This does
preclude the use of incompletely sampled cycles (where, e.g., the
beginning or end is missing). The situation is very different for
m0, into which the actual numerical values of A(l) enter without
normalization. Any missing sunspot data leads to a correspond-
ing decrease in m0. In order to avoid such systematic errors it is
necessary to interpolate the sunspot areas across data gaps (but
not the sunspot latitudes). We have chosen to carry out a linear
interpolation. The other moments m1 − m4 are not affected by
this treatment.

The other potential pitfall is produced when data from differ-
ent sources are combined (Fligge & Solanki 1997; Foster 2004;
Balmaceda et al. 2007). This has been carefully taken into ac-
count by Balmaceda et al. (2005, 2007) when constructing the
employed data set (see Sect. 2). Nevertheless, in order to avoid
the remaining uncertainty arising from the combination of dif-
ferent data sets, we have also carried out the analysis for the
Greenwich data alone. The results in this case are rather similar
to those obtained from the complete data set (see Sect. 4).

4. Results based on observational data

In Fig. 3 we plot the various parameters defined by Eqs. (4)–(8)
against each other, for the northern hemisphere (left), the south-
ern hemisphere (middle) and the average over both (right). Each
dot represents the values for a given solar cycle. To save space
only a selection of all the possible plots of this type is shown
(these are in general combinations showing high correlations;
see below).

Figure 3 reveals the range of variation of the different pa-
rameters. Thus, between cycles 12 and 22 the total hemispheric
sunspot area varied between 8.69 × 105 and 3.21 × 106, with an
average value of 1.72 × 106. In contrast to this factor of 3.7 be-
tween the Atot of different cycles, 〈l〉 and σ varied by less than a
factor of 1.5. From Fig. 3 it is also clear that σ < 〈l〉, which im-
plies that the N and S sunspot distributions are distinct, which is
also visible from Fig. 2 (cf. Fig. 5). Interesting is that the skew-
ness is almost always positive, i.e. the profiles are skewed such
that they peak closer to the equator, with a tail towards higher
latitudes (the only exception is the southern part of cycle 14). In
contrast, k > 0 and k < 0 values are equally common, suggesting

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20054282&pdf_id=2


626 S. K. Solanki et al.: Latitude distribution of solar activity

Fig. 3. Relationships between parameters describing the latitude dependence of the sunspot distribution. In the three columns we plot results
obtained for the northern hemisphere (left), the southern hemisphere (middle) and the parameters averaged over both hemispheres (right). From
top to bottom we plot 〈l〉 vs. Atot, σ vs. Atot, σ vs. 〈l〉, s vs. σ and k vs. s. Open circles: cycle 12, filled circles: 13, open triangles: 14, filled triangles:
15, open squares: 16, filled squares: 17, open diamonds: 18, filled diamonds: 19, pluses: 20, crosses: 21, crossed squares: 22. The solid lines are
least squares fits. The dashed lines represent fits to cycles 12–20 alone (RGO data).

that compared to a Gaussian an almost equal number of cycles is
box-shaped as is triangular. The values of these parameters av-
eraged over all cycles are given in Table 1. The “uncertainties”
listed in the table reflect the 1σ scatter from one cycle to another.

Our main interest lies in the correlations between the dif-
ferent parameters, which can also be seen in Fig. 3. The linear
correlation coefficient, rc, its uncertainty, δ+ and δ− 1 and the
probability that this correlation is due to chance (false alarm
probability), Pf , are given in Table 2, for all combinations of

1 We refer to the 1σ uncertainty in the correlation coefficients by δ
in order to avoid confusion with the standard deviation of the cycle-
integrated sunspot distribution introduced in Eq. (6).

parameters, obtained from the combined data set described in
Sect. 22. The comparisons between neighbouring moments are
marked by an X in the last column. The three lowest moments
are correlated at a remarkably high level. The false alarm prob-
ability is at or below 1% in all cases involving just Atot, 〈l〉 and
σ. Hence, a cycle with a large amplitude has sunspots on av-
erage at a higher latitude and distributed over a wider range of
latitudes. As 〈l〉 shifts poleward by 5◦, σ increases by 2◦. This
means that the area covered by sunspots at higher latitudes varies

2 A similar analysis using just Greenwich data, in order to avoid any
uncertainty introduced by imperfect intercalibration between sunspot
data sets, gives basically the same results.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20054282&pdf_id=3
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Table 1. Mean values of parameters of the solar cycles studied in this paper and their 1σ cycle to cycle scatter.

Moment N S 〈N + S 〉
Atot (1.78 ± 0.69) ×106 (1.66 ± 0.51) ×106 (1.72 ± 0.57) ×106

〈l〉 14.88 ± 1.63 15.03 ± 1.17 14.95 ± 1.34
σ 6.61 ± 0.85 6.55 ± 0.57 6.58 ± 0.66
s 0.42 ± 0.16 0.41 ± 0.28 0.42 ± 0.16
k −0.12 ± 0.35 −0.03 ± 0.38 −0.07 ± 0.31

Table 2. Correlation coefficients, 1σ uncertainties of the correlation coefficients and false alarm probability for the combined data set (1874–2004).

N S 〈N + S 〉
rc δ− δ+ Pf rc δ− δ+ Pf rc δ− δ+ Pf

〈l〉 vs. Atot 0.74 0.21 0.12 0.01 0.91 0.09 0.05 1 × 10−4 0.87 0.12 0.06 5 × 10−4 X
σ vs. Atot 0.71 0.22 0.14 0.01 0.88 0.11 0.06 3 × 10−4 0.83 0.15 0.08 1 × 10−3

σ vs. 〈l〉 0.93 0.07 0.03 3 × 10−5 0.85 0.13 0.07 1 × 10−3 0.97 0.03 0.02 1 × 10−6 X
s vs. Atot 0.22 0.35 0.30 0.52 0.57 0.29 0.19 0.07 0.52 0.30 0.21 0.10
s vs. 〈l〉 −0.15 0.32 0.35 0.65 0.41 0.33 0.25 0.21 0.39 0.33 0.25 0.24
s vs. σ 0.02 0.34 0.34 0.95 0.70 0.23 0.14 0.02 0.53 0.30 0.21 0.09 X
k vs. Atot 0.16 0.35 0.31 0.64 0.60 0.27 0.18 0.05 0.47 0.31 0.23 0.14
k vs. 〈l〉 −0.37 0.26 0.34 0.26 0.46 0.32 0.23 0.15 0.14 0.35 0.32 0.67
k vs. σ −0.17 0.31 0.35 0.61 0.42 0.33 0.24 0.20 0.16 0.35 0.31 0.64
k vs. s 0.76 0.19 0.11 6 × 10−3 0.66 0.25 0.16 0.03 0.70 0.23 0.14 0.02 X

much more strongly from one cycle to the next than the ampli-
tude of the cycle as a whole, in agreement with the results of Li
et al. (2003).

Correlations involving k and s are on the whole quite weak.
Only a few individual correlations between k and s and between
s and σ give a false alarm probability significantly below 10%
in Table 2.

Another point that can be gleaned from Table 2 and from
Fig. 3 is that the southern and northern hemispheres behave
rather differently. Thus, the range covered by a given parame-
ter differs, with Atot, 〈l〉 and σ covering smaller ranges in the
south, while for skewness the situation is reversed. Southern cor-
relations are always positive (always >0.4 for the combined data
set), while the northern hemisphere gives rise to weak (not sig-
nificant) negative correlation coefficients involving s and k. In
general, the correlations are significantly stronger for the south.
Only in 2 cases in Table 2 does the northern hemisphere exhibit
a higher correlation, namely of σ vs. 〈l〉 and for k vs. s. This can
also be seen from Fig. 4 in which differences between rc values
for N and S are plotted versus the rc of the averaged moments
(note that the symbols have a different meaning than in Fig. 3;
see the figure caption). Obviously, the difference between high
rc values is small, while for low rc values the difference is large.

Finally, there is a tendency for a stronger correlation between
neighbouring moments. Thus, the correlation between m0 and
m1, (i.e. between 〈l〉 and Atot) and between m1 and m2 (i.e. be-
tween 〈l〉 and σ) is stronger than between m0 and m2 (or Atot and
σ). Similarly, rc(s, σ) > rc(s, 〈l〉) > rc(s, Atot) (averaged over
both hemispheres). The effect is weak, however, and not univer-
sal, since for the Greenwich data the kurtosis k is best corre-
lated with m0, at least for the south and when averaged over both
hemispheres. For the northern hemisphere rc(k, s) is by far the
highest. It should be recalled, however, that k correlates poorly
with the lower moments, with the probability of a false alarm
reaching values as high as 0.67 (see Table 2).

It is difficult to determine how the latitudinal shape of the
sunspot distribution over a solar cycle changes from cycle to cy-
cle just from the data (e.g. Fig. 2) due to the scatter of the data

points from one bin to another. This scatter can be reduced by
choosing broader bins (see Li et al. 2003, who took 5◦ wide
bins). An alternative is to compute the running mean over the
data points, as illustrated in Fig. 2.

In Fig. 5 we display the profiles smoothed by computing 5◦
running means of each cycle. The profile shape varies consider-
ably from one cycle to the next. As in the case of the temporal
profiles of cycles, the latitudinal profiles show one, two or even
more humps. Even at the level of smoothing introduced to make
Fig. 5 the shape of the latitude profile still reflects sub-structure,
which could be termed “active latitudes”. It may well be related
to the latitudes of higher activity seen in 6-month time-averaged
sunspot area latitude distributions by Antalova & Gnevyshev
(1983). A more detailed analysis would be needed to ascertain
the reality on any active latitudes, e.g. 13◦N, at which 5 cycles
display a peak. In particular, it must still be ascertained how ro-
bust such peaks are to different amounts of averaging.

Figure 5 clearly shows that the low latitude part of the cy-
cle remains relatively unchanged from one cycle to another (the
curves representing the different cycles lie very close together),
while the higher latitude parts of the cycle exhibit a considerable
scatter. This agrees well with the result deduced from the mo-
ments: stronger cycles peak at higher latitudes and are broader,
with a (weak) tendency to be more strongly skewed towards the
equator, which also implies that the cycles will be more similar
near the equator than at higher latitudes. Hence, the correlations
we find between the moments suggest that changes at latitudes
�15◦ (�−15◦) are well correlated with the bulk of the cycle.
Also evident from Fig. 5 is the difference in the behaviour of the
2 hemispheres. The northern hemisphere exhibits a larger scatter
in amplitude and width (cf. Fig. 3). There are also more cycles
which show anomalous behaviour immediately to the north of
the equator than to its south. Also plotted in Fig. 5 is the latitu-
dinal profile averaged over all cycles (thick black curve). The N
and S lobes of this profile are similar in strength, but differ, e.g.,
in asymmetry, with the profile in the south being more symmet-
ric than that in the north.
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Fig. 4. Difference between correlation coefficients rc between “mo-
ments” of latitude distributions of sunspots in the northern, rc(N) and
the southern hemispheres, rc(S ) vs. rc(〈N + S 〉) (top panel). In the mid-
dle and bottom panels the difference between rc(〈N + S 〉), and rc(N)
or rc(S ), respectively, are plotted. Open circles: 〈l〉 vs. Atot, filled cir-
cles: σ vs. Atot, open triangles: s vs. Atot, filled triangles: k vs. Atot, open
squares: σ vs. 〈l〉, filled squares: s vs. 〈l〉, open diamonds: k vs. 〈l〉, filled
diamonds: s vs. σ, pluses: k vs. σ, crosses: k vs. s.

5. Dynamo models

In order to test whether the correlations presented in Sect. 4 can
be used as a new diagnostic of the solar dynamo, e.g., to distin-
guish between different dynamo models, we have carried out a
set of computations with variants of a simple dynamo model. In
order to simulate the irregularity of the solar cycle we allowed
for stochastic fluctuations of the α-effect (models A, B and C), a
random source term due to magnetic fields from a turbulent con-
vection zone dynamo (model D), and a variable meridional flow
(model E).

We did not aim at a completely realistic and detailed model
of the solar cycle and thus restricted ourselves to the thin shell
dynamo of Schmitt & Schüssler (1989) with prescribed radial
dependence in the form of a spherical wave∼exp(ikr)/kr (Hoyng
et al. 1994) such that the axisymmetric magnetic field, described
by the toroidal components of the magnetic field, B, and the

Fig. 5. Latitude distributions of the cycle-integrated sunspot area. 5◦
running means are plotted. Colour key is given at the top of the plot.
The thick black line represents the mean cycle distribution.

vector potential, A, only depends on the colatitude ϑ of the spher-
ical shell and on time t. The dimensionless αΩ-dynamo equa-
tions are written as

∂B
∂t
= D(B) + RΩ

∂A sinϑ
∂ϑ

− Rv
∂vϑB
∂ϑ

(9)

∂A
∂t
= D(A) + RααB + δS (ϑ, t) − Rv

vϑ
sinϑ

∂A sinϑ
∂θ

(10)

with diffusion operator

D =
1

sinϑ
∂

∂ϑ
sinϑ

∂

∂ϑ
− 1

sin2 ϑ
− (kR)2 , (11)

Reynolds numbers of the α-effect, differential rotation and
meridional flow

Rα =
αmR
η
, RΩ =

Ω′R3

η
, Rv =

vmR
η

(12)

and a stochastic source term δS (ϑ, t). The α-effect consists of
a regular α-effect and random fluctuations, α = α0(ϑ, B) +
δα(ϑ, t)/αm, for the differential rotation we assumed a constant
radial gradient dΩ/dr = Ω′, and as part of the meridional cir-
culation a flow in latitudinal direction vϑ = sin 2ϑ + δv(ϑ, t)/vm,
again with regular and fluctuating components. αm and vm rep-
resent the maximum values of the regular parts of the α-effect
and the meridional flow, respectively. The length scale R =
5 × 1010 cm was chosen as the radial position of the dynamo
layer at the bottom of the convection zone. We took the diffusion
time, R2/η, as the time scale, where η is the turbulent magnetic
diffusivity, and measured B in units of B0 = 105 G. Further we
set kR = 3. The dynamo equations were solved in the north-
ern hemisphere with antisymmetric boundary condition for the
magnetic field across the equatorial plane.

From the obtained magnetic fields only those above a thresh-
old in field strength were further analysed. This accounts for the
fact that only the stronger fields become buoyantly unstable, rise
to the surface and contribute to sunspots. In models A, B and D
we chose a threshold of 0.3 of the maximum value of the field
strength reached during the whole run, in models C and E this
threshold was set to 0.05. The results do not significantly depend
on the threshold.

In models A, B and C we allowed for random fluctuations
of the α-effect superposed on the regular α-effect in order to
simulate the irregularity of the solar cycle. While in models
A and B the regular α-effect extends from equator to pole as
α0 = cosϑ, it is confined to latitudes below 40◦ in model C by
taking α0 = sin (π(ϑ−ϑ0)/(π/2−ϑ0)) for ϑ > ϑ0 = π 50/180 and
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Fig. 6. Butterfly diagrams for the northern hemisphere produced by 5 simple dynamo models described in the text. Shown are contours of field
strength, with negative fields being indicated by dashed contours. Time is measured in units of diffusion time.

α0 = 0 elsewhere, yielding butterfly wings closer to the equator
in the latter case. These models were run at their corresponding
critical excitation, i.e. RαRΩ = −1300 for models A and B and
RαRΩ = −2450 for model C. The number of fluctuating cells
from equator to pole was 50, which were renewed every 0.001
diffusion time steps, corresponding roughly to 1 month. The am-
plitudes δα/αm of the fluctuations were random values from the
interval (−3, 3), i.e. up to 3 times the regular α-effect in models
A and C, and from the interval (−4, 4) in model B. 33 cycles
were available for analysis of models A and B, and 79 cycles
for model C. Note that only cycles produced after the models
reached a statistically steady state were analysed. For details of
the model setup and justification see Ossendrijver et al. (1996).

In model D we describe an overshoot layer dynamo with an
α-effect due to the buoyancy instability of the toroidal magnetic
field (Ferriz-Mas et al. 1994). The regular α-effect is limited to
40◦ latitude as in model C and, additionally, operates only in a
finite range of field strength, B1 ≤ B ≤ B2, with B1 = 5 × 104 G
and B2 = 105 G. Instead of α-fluctuations a stochastic source
term δS (ϑ, t) describes poloidal flux loops shed into the over-
shoot region from magnetic fields in the convection zone. The
latitudinal extension, lc 	 105 km, and the duration of such an in-
jection, tc 	 0.001 diffusion times or 1 month, are determined by
the length and time scales of the large-scale convective flows. We
chose a random location ϑ0 and the amplitude of δS is also a ran-
dom number in the interval (−δS m, δS m) with a dimensionless
value of δS m = 0.3. After each correlation time tc, new random
values for ϑ0 and the amplitude of δS are selected. The dynamo
operated at twice the critical excitation, with RΩ = −24 500 and

Rα = 0.2. Model details are given in Schmitt et al. (1996). The
combination of a threshold in field strength for dynamo action
and random fluctuations due to magnetic fields from a turbulent
convection zone dynamo leads to activity cycles with amplitude
variations, interrupted by randomly occurring grand minima. A
time sequence without grand minima was chosen and a total of
33 cycles were available for analysis.

Finally in model E we investigated an equatorward flow
as part of the meridional circulation at the location of the dy-
namo in the overshoot layer with superposed fluctuations (cf.
Charbonneau & Dikpati 2000). The flow speed was chosen to
be rather low in order to keep the αΩ-dynamo mechanism from
being quenched by the flow (see also Petrovay & Kerekes 2004).
In particular, for RΩ = −1550, Rα = 1 and Rv = 1 the dynamo
is critically excited, when a regular α-effect with α0 = cosϑ
is adopted. The amplitudes of the fluctuations δv(ϑ, t)/vm are
random numbers in the interval (−2, 2), 5 cells from equator to
pole were adopted, and renewed every 0.1 diffusion times, cor-
responding roughly to the duration of a cycle. 31 butterfly wings
with amplitudes varying by a factor of about 3 are analysed.

In Fig. 6 we plot the analysed butterfly diagrams for each
of the 5 models. The outermost contour in Fig. 6 corresponds
to the relevant threshold level for each model. Solid and dashed
contours refer to opposite polarity fields. Time is given in units
of the diffusion time. Due to the applied boundary condition at
the equator the southern hemisphere is just a mirror image mul-
tiplied by –1. The difference between the butterfly diagrams re-
sulting from the various models is clear already from this figure.
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Fig. 7. Latitude distribution of cycle-averaged magnetic flux above the threshold for each of the 5 considered dynamo models. Plotted is the
distribution averaged over all cycles (thick curves), as well as the distributions due to the strongest and weakest analysed cycles.

Models C and E show larger variability than the others, which is
the reason that a different threshold was used for these models.

The synthetic butterfly diagrams were analysed in exactly
the same manner as the solar data. The separation between in-
dividual cycles is straight forward for the models, since the sign
of the toroidal field alternates between cycles. After integration
over time we obtained latitudinal profiles, plotted in Fig. 7, simi-
lar to those obtained from the data. Shown are the average distri-
bution of each model (i.e. averaged over all cycles; thick curves)
as well as the distribution due to the weakest and the strongest
cycle. Note that the weakest cycle has the lower m0, but need
not have the lowest magnetic flux at all latitudes. Similarly, the
strongest cycle need not be the strongest at all latitudes.

6. Results obtained with dynamo models

Since the computed dynamos are symmetric around the equator
we do not need to distinguish between the hemispheres as long
as we do not directly compare with solar data. The results are
summarised in Table 3.

There are similarities and differences between the models
with regard to the correlations. Some correlation coefficients
change comparatively little from one model to another, e.g., σ
vs. 〈l〉 or k vs. s while others are strongly dependent, such as 〈l〉
vs. Atot or s vs. 〈l〉.

These very sensitive parameters, i.e. parameters which
change significantly from one model to another, are of particular
interest to distinguish between the models. Other such parame-
ters include s vs. Atot and k vs. Atot.

Model E is the only one for which all rc values are positive. It
has the highest |rc| value in 6 out of 10 cases. There is also a ten-
dency for model C to have more positive rc values than models

A, B and D. The highest correlation is reached between σ and
〈l〉, between k and s, and to a lesser extent between σ and Atot.
Whereas the first and third of these agrees well with the obser-
vations, k and s, although reasonably related in the observational
data (rc ≈ 0.66–0.76), is only the fourth highest correlation.

Comparing the rc values in Table 3 with the values given in
Table 2 shows some good agreement and some significant dif-
ferences. Interestingly, the level of agreement depends strongly
on whether a given model is compared with the northern or the
southern solar hemisphere or with the full Sun.

To show these similarities and differences more clearly, we
plot in Fig. 8 the difference between the solar and model correla-
tion coefficients vs. the solar rc value. It is interesting that models
A–D (in particular C), i.e. models without a meridional flow, re-
produce the behaviour of the northern solar hemisphere, which
shows the weaker correlations between moments. Model E, on
the other hand, lies closer to the behaviour of the whole Sun
and the southern hemisphere. Therefore, the behaviour of the
southern hemisphere of the Sun is better described by a model
including a meridional circulation (in a simplified form).

In general, the probabilities that the correlations are due to
chance are much smaller for the models, basically because of
the larger number of cycles that could be calculated compared to
the number for which observations are available.

7. Discussion and conclusions

We have analysed the 5 lowest moments of the latitude depen-
dence of the solar cycle and have found tight relationships be-
tween the total strength of the sunspot cycle, the mean latitudes
of the sunspots and the width of the latitude bands over which
the sunspots are distributed. Correlations involving the skewness
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Table 3. Correlation coefficients, 1σ uncertainties of the correlation coefficients and false alarm probability for dynamo models.

Model A Model B Model C
rc δ− δ+ Pf rc δ− δ+ Pf rc δ− δ+ Pf

〈l〉 vs. Atot 0.36 0.17 0.15 0.04 0.37 0.16 0.14 0.03 0.51 0.09 0.08 2 × 10−6

σ vs. Atot 0.67 0.11 0.09 4 × 10−4 0.78 0.08 0.06 4 × 10−5 0.59 0.08 0.07 7 × 10−8

σ vs. 〈l〉 0.73 0.10 0.08 1×10−4 0.73 0.09 0.07 1 × 10−4 0.96 0.01 0.01 1 × 10−14

s vs. Atot 0.27 0.18 0.16 0.12 0.44 0.16 0.13 0.01 0.42 0.10 0.09 7 × 10−5

s vs. 〈l〉 −0.60 0.10 0.13 1 × 10−3 −0.39 0.14 0.16 0.03 −0.02 0.11 0.12 0.85
s vs. σ 0.002 0.18 0.18 0.99 0.24 0.18 0.16 0.16 0.24 0.11 0.11 0.02
k vs. Atot 0.14 0.18 0.17 0.39 0.17 0.18 0.17 0.32 0.32 0.11 0.10 2 × 10−3

k vs. 〈l〉 −0.69 0.08 0.11 3 × 10−4 −0.58 0.11 0.13 1 × 10−3 −0.28 0.10 0.11 6 × 10−3

k vs. σ −0.34 0.15 0.17 0.05 −0.21 0.16 0.18 0.21 −0.08 0.11 0.12 0.41
k vs. s 0.81 0.07 0.05 4 × 10−5 0.74 0.09 0.07 8 × 10−5 0.90 0.02 0.02 1 × 10−13

Model D Model E
rc δ− δ+ Pf rc δ− δ+ Pf

〈l〉 vs. Atot 0.72 0.10 0.08 4 × 10−6 0.65 0.12 0.10 8 ×10−5

σ vs. Atot 0.62 0.13 0.10 4 × 10−5 0.86 0.06 0.04 1 ×10−6

σ vs. 〈l〉 0.94 0.02 0.02 3 × 10−8 0.85 0.06 0.04 1 ×10−6

s vs. Atot −0.11 0.18 0.19 0.40 0.71 0.11 0.08 2 ×10−5

s vs. 〈l〉 −0.18 0.17 0.18 0.17 0.15 0.19 0.18 0.30
s vs. σ 0.08 0.19 0.18 0.55 0.54 0.15 0.12 6 ×10−4

k vs. Atot −0.23 0.17 0.18 0.09 0.64 0.13 0.10 9 ×10−5

k vs. 〈l〉 −0.53 0.12 0.15 3 × 10−4 0.04 0.19 0.19 0.78
k vs. σ −0.39 0.15 0.17 5 × 10−3 0.41 0.17 0.14 7 ×10−3

k vs. s 0.83 0.07 0.05 4 × 10−7 0.96 0.02 0.01 2 ×10−7

Fig. 8. Difference between correlation coefficients rc obtained from solar data and from models, plotted vs. the observed rc. The three frames refer
from left to right to solar rc values deduced from the northern hemisphere, the southern hemisphere and the whole Sun. From top to bottom the
frames refer to models A to E. Open circles: 〈l〉 vs. Atot, filled circles: σ vs. Atot, open triangles: s vs. Atot, filled triangles: k vs. Atot, open squares:
σ vs. 〈l〉, filled squares: s vs. 〈l〉, open diamonds: k vs. 〈l〉, filled diamonds: s vs. σ, pluses: k vs. σ, crosses: k vs. s.

and kurtosis of the latitude distribution of sunspots are weaker,
although these two quantities do correlate significantly with each
other. A clear difference between the hemispheres is evident:
The correlations between all these parameters are stronger (and
positive) for the southern hemisphere, while for the northern

hemisphere some of the correlations are weakly negative, al-
though at a level that is not significant. This type of analysis
obviously brings out the differences between the hemispheres
particularly clearly.
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Since sunspots are formed soon after the emergence of an ac-
tive region and generally die long before the active region itself,
they can be considered to be tracers of freshly emerged mag-
netic flux. Thus our results can be compared directly with mod-
els describing the generation of the Sun’s magnetic field (dy-
namo models). We therefore tested the usefulness of the rela-
tions found here by computing butterfly diagrams for 5 simple
dynamo models and analysing these in exactly the same way as
the data. The aim here was not primarily to identify the most
appropriate dynamo model, but rather to use these models to
see if moments of cycle-averaged sunspot distributions have the
power to distinguish between models. We found different lev-
els of agreement with the real Sun from one model to the other.
In particular, we could identify correlations between moments
whose diagnostic value is high in that they could clearly distin-
guish between models.

The most striking (and surprising) result of our analysis con-
cerns the north-south asymmetry of solar activity, which has
been reported to manifest itself in various activity indices such as
flares, filaments, magnetic flux and sunspot numbers and areas
(e.g. Reid 1968; Howard 1974; Verma 1993; Temmer et al. 2002;
Knaack et al. 2004, and references therein). The models with-
out meridional flow (A–D) reproduce the latitude dependence of
the sunspots in the northern solar hemisphere far better than in
the southern hemisphere, while for the model with meridional
flow (E) it is the other way round. This is as yet no proof that
the meridional flow plays different roles in the two solar hemi-
spheres, but it is intriguing and calls for more work. In particular,
an analysis that goes beyond our exploratory work and involves
the comparison with more realistic dynamo models is needed.
In any case our result shows that the north-south asymmetry of
solar activity manifests itself also in rather complex ways.
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