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ABSTRACT

Aims. We consider a model of a two-dimensional solar coronal arcade to explore the effects of a curved magnetic field topology on
excitation and attenuation of slow magnetoacoustic standing waves.
Methods. The time-dependent ideal magnetohydrodynamic equations are solved numerically to find the spatial and temporal signa-
tures of these waves.
Results. A pulse in gas pressure initially launched at a loop footpoint excites the fundamental mode of slow magnetoacoustic standing
waves. The typical excitation time of such a wave mode is 2.5 wave periods, with a similar attenuation timescale. These values are
remarkably similar to those recovered from observations by SOHO/SUMER in an Fe XIX line.
Conclusions. Slow magnetoacoustic standing waves are excited and attenuated more efficiently in curved magnetic field lines than in
a straight magnetic slab topology. The waves supported by the magnetic arcade are in far closer agreement with observations.
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1. Introduction

Slow magnetoacoustic (henceforth called slow) standing waves
have been the subject of intensive observational and theoretical
investigations. Observations recovered by the SOHO/SUMER,
SOHO/EIT, TRACE/EUV, and YOHKOH/SXT instruments re-
vealed that loop oscillations are triggered impulsively by flares
or smaller brightening close to a loop footpoint (De Moortel
et al. 2002a,b; Taroyan et al. 2004, 2005; Mariska 2006). In par-
ticular, Wang et al. (2005) investigated the excitation of standing
slow-mode oscillations and found that develop rapidly, within
1−2 wave-periods of the excitation by a hot impulsive events. It
was found by Zaqarashvili et al. (2005) that slow waves may also
be excited by the periodic shaking of coronal magnetic field lines
due to photospheric motions. Diáz & Roberts (2006) demon-
strated that a structured plasma along the magnetic field lines
influence considerably the evolution of slow modes. In another
study, Wang et al. (2003a,b) inferred from observational data
that slow standing waves are attenuated within a few wave peri-
ods. Wave attenuation can result from mechanisms such as: wave
leakage into the chromosphere (Ofman 2002; Van Doorsselaere
et al. 2004; Ogrodowczyk & Murawski 2007); lateral wave leak-
age due to curvature of loops (Roberts 2000); phase mixing (e.g.
Ofman & Aschwanden 2002; Voitenko et al. 2005); resonant ab-
sorption (Ruderman & Roberts 2002); non-ideal magnetohydro-
dynamic (MHD) effects (Roberts 2000); and electric conduction
(Mariska 2006).

Intensive theoretical studies of slow oscillations were com-
pleted by Nakariakov et al. (2004) and Tsiklauri et al. (2005),
who showed that in a coronal loop an impulsive thermal energy
release excites the first harmonic mode efficiently. This result
was confirmed by Selwa et al. (2005), who demonstrated that
gas pressure pulses launched close to a footpoint excite the fun-
damental mode of the slow standing wave, while pulses close to
the apex trigger the first harmonic. Selwa et al. (2005) performed

numerical simulations of slow standing waves in the limit of
the one-dimensional approximation. This model was extended
to a curved slab by Selwa & Murawski (2006) and Selwa et al.
(2007); who measured a reduction in the excitation time of the
fundamental mode in a curved structure in comparison with a
straight slab. No-parametric studies were however performed.

The aim of this paper is to generalize the straight magnetic
field model of Ogrodowczyk & Murawski (2007) by taking into
account the influence of curvature of magnetic field lines on slow
standing waves. The effect of a curved magnetic field topology
on fast magnetoacoustic waves was discussed, among others, by
Brady et al. (2006), Verwichte et al. (2006), and Terradas et al.
(2008). Slow waves are however less well studied. Our goal is
to extend the studies of Selwa & Murawski (2006) and Selwa
et al. (2007) by performing appropriate parametric studies of
slow standing waves.

This paper is organized as follows. The numerical model
is described in Sect. 2. The numerical results are presented in
Sect. 3. This paper is then concluded by a short summary of the
main results in Sect. 4.

2. Numerical model

We describe coronal plasma by the ideal MHD equations:

∂�

∂t
+ ∇ · (�V) = 0, (1)

�
∂V
∂t
+ �(V · ∇)V = −∇p +

1
μ

(∇ × B) × B, (2)

∂p
∂t
+ ∇ · (pV) = (1 − γ)p∇ · V, (3)

∂B
∂t
= ∇ × (V × B), (4)

∇ · B = 0, (5)
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where � denotes mass density, V is flow velocity, B is magnetic
field, p is gas pressure, μ is the magnetic permeability, and γ =
5/3 is the adiabatic index.

2.1. Equilibrium configuration

We adopt the coronal arcade model in which the coronal arcade
is settled in a two-dimensional, gravity-free and motionless en-
vironment (V = 0) (see Oliver et al. 1998, for a detailed descrip-
tion of the initial configuration). In the solar, corona magnetic ef-
fects are more significant than gas pressure effects. The pressure
gradient, ∇pe, in the momentum equation Eq. (2) can therefore
be neglected, and we can assume that pe = const. In equilibrium,
the Lorentz force must therefore vanish, i.e.

1
μ

(∇ × Be) × Be = 0. (6)

This equation can be solved by a current-free magnetic field,

1
μ
∇ × Be = 0. (7)

Henceforth, we limit our discussion to a two-dimensional atmo-
sphere for which the plasma quantities are assumed to be inde-
pendent of the spatial coordinate y, ∂/∂y = 0. As a consequence,
Eq. (7) can be satisfied by using the magnetic potential A(x, z),

Be = ∇ × (Aŷ), (8)

where ŷ is a unit vector along the y-direction and A(x, z) is de-
fined to be

A(x, z) = B0ΛB cos (x/ΛB) exp (−z/ΛB). (9)

Consequently, the equilibrium magnetic field components are

Bex = B0 cos (x/ΛB) exp (−z/ΛB), (10)

Bez = −B0 sin (x/ΛB) exp (−z/ΛB). (11)

Where B0 denotes the magnetic field at the reference level z = 0,
and ΛB = 2L/π is the magnetic scale-height with L denoting
the horizontal half-width of the arcade, which we choose to be
L = 100 Mm.

We assume that the coronal mass density �c is constant over
the entire spatial region and varies dramatically with z to a photo-
spheric value �ph = 104 �c at the bottom of the simulation region.
The mass density profile �e is given by

�e(z) = �c

{
1 +

1
2

dph

[
1 − tanh

(
z

sph

)]}
, (12)

where dph is the ratio of the photospheric mass density, �ph, to
the coronal mass density, �c. Symbol sph determines the slope of
�e(z) at the boundary to the photosphere-like layer.

We set the sound speed to be cse = 0.4 Mm s−1 in the am-
bient coronal medium at the level z = 0, Alfvén speed VAe =
1 Mm s−1, and mass density �c = 10−15 kg m−3. Additionally,
we choose and hold fixed sph = 1.5 Mm.

We consider a curved coronal slab embedded in the ar-
cade. The curved slab corresponds to a region of dense plasma.
Boundaries of the slab are parallel to magnetic field lines
(Fig. 1). The mass density profile across the slab attains the am-
bient coronal value, �c, as we move away from the slab and is
given by

�(x, z) = �c + d�e exp

⎡⎢⎢⎢⎢⎣− (A(x, z) − Ac)2

B2
0σ

2

⎤⎥⎥⎥⎥⎦, (13)

Fig. 1. Initial configuration of the curved slab. Magnetic field lines are
indicated by solid lines. The mass density � (color bar) is expressed in
arbitrary units (10−15 kg m−3). The black region below the line z = 0
corresponds to the photosphere-like layer of dense plasma with a mass
density �ph = 104 �c.

where the center of the slab corresponds to a magnetic field line
that is defined by Ac = A(Lf , 0), σ is the half-width of the slab,
and d denotes the mass density contrast between the slab and
the ambient medium. In the simulations, we choose and hold
fixed the parameters d = 3 (Aschwanden & Nightingale 2005),
σ = 0.02 L, and Lf = 0.6 L. For that choice of parameters, the
curved slab does not have a purely circular shape. The average
main loop radius and length are estimated to be ∼60 Mm and
∼146 Mm, respectively.

2.2. Perturbations

The equilibrium state described above can be perturbed in vari-
ous ways. Since we investigate impulsively excited slow stand-
ing waves that are associated with perturbations in gas pressure,
at t = 0 we launch a pulse in gas pressure in the region x ≤ 0
and 0.0635 L ≤ z ≤ 0.1 L, namely

p(x, z, t = 0) = pe

⎧⎪⎪⎨⎪⎪⎩1 + pa exp

⎡⎢⎢⎢⎢⎣− (A(x, z) − Ac)2

B2
0δ

2

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (14)

where pa denotes the relative amplitude of the pulse and δ is its
half-width. We choose pa = 0.5 and δ = 0.02 L. As a result, the
pulse is reproduced inside the slab precisely at its left footpoint
just above the photosphere (see Eq. (13)). Such a pulse produces
local heating within the slab.

3. Numerical results

In this section, we present results of the numerical simulations
performed. We focus on excitation and attenuation times of slow
standing waves that are triggered by the pressure pulse described
by Eq. (14). We solve Eqs. (1)−(5) numerically with the code
Athena (Gardiner et al. 2005). A higher-order Godunov method
is implemented in this code for solving the time-dependent, ideal
magnetohydrodynamic equations. A single step, second-order
accurate in space and time algorithm is used here. This algorithm
is based on the piecewise parabolic method (e.g. Woodward &
Collela 1984). This numerical scheme is supported by a trans-
port scheme that maintains the divergence-free constraint on the
magnetic field.

We consider an Eulerian grid with the x- and z-dimensions
(−L, L)×(−0.2 L, 1.3 L). This box is covered by a uniform grid of
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Fig. 2. Spatial profiles of the x-component of the velocity, Vx, at t ≈
2.25 P1 (top panel) and at t ≈ 2.75 P1 (bottom panel) for an ini-
tial pulse launched within the slab at its left footpoint. The velocity
(color bar) is expressed in arbitrary units of the coronal Alfvén speed,
VAe = 1 Mm s−1.

500× 500 numerical cells. We performed grid convergence stud-
ies that are based on grid refinement to demonstrate that the nu-
merical results are unaffected by insufficient spatial resolution.
We implemented open boundary conditions, with zero-gradient
extrapolation for all perturbed plasma quantities at all bound-
aries of the numerical box. These boundaries enable a wave sig-
nal to escape the simulation region completely. However, time
invariant boundary conditions for the magnetic field at the bot-
tom and top boundaries of the numerical box are imposed. As
described by Eq. (14), we now consider an initial pulse that is
launched at the left foot-point of the slab.

Figure 2 displays the x-component of the velocity at two mo-
ments of time. These panels are approximately in anti-phase and
they indicate that the excited oscillation correspond to the fun-
damental mode, n = 1, here n denotes the standing wave number
such that its wave period, Pn, can be evaluated from the analyti-
cal formula

Pn � 2l
ncTi

, n = 1, 2, . . ., (15)

where cTi = csiVAi/
√

c2
si + V2

Ai is the tube speed within the slab

and l denotes the slab’s length. Sound, csi, and Alfvén, VAi,
speeds are evaluated for the curved slab equilibrium to be

csi =

√
γpe

d�e
, VAi =

B0√
μd�e

· (16)

In our approach, a value of the tube speed corresponds to the
mass density ratio, d � (cse/cTi)2 � 2.2, at the slab apex. These

Fig. 3. Time-signatures of velocity Vx (solid line) and relative density
enhancement δ� (dotted line), evaluated at the slab apex for an initial
pulse launched within the curved slab at its left footpoint. Here Vx,
time t, and δ� are expressed in units of VAe = 1 Mm s−1, fundamen-
tal period, P1, and density outside the loop, �e respectively.

findings confirm earlier claims by Selwa et al. (2005), Selwa &
Murawski (2006), and Selwa et al. (2007) that an initial pulse
launched close to a footpoint excites a fundamental mode.

The fundamental slow standing wave produces time-
signatures of Vx that can be visualized at any particular spa-
tial location. Figure 3 displays Vx(t) (solid line) and the per-
turbed filtered mass density δ�(t) (dotted line), at the apex of
the curved slab. We note the phase-shift between Vx and δ�.
Nakariakov and Verwichte (2005) showed that for a slow stand-
ing wave the parallel component of the velocity experiences a
quarter wave-period phase-shift compared with perturbations in
mass density δ�.

We use an excitation criterion (Selwa et al. 2005) to find out
the excitation time tex of slow standing waves in a physical sys-
tem. According to this criterion the fundamental standing wave
is excited at tex > 2.5 P1 (see also Fig. 2). It is noteworthy that
this value of tex is smaller than in the one-dimensional model of
Selwa et al. (2005) and in the straight slab case of Ogrodowczyk
& Murawski (2007). This value of tex is approximately twice
that in the curved slab case discussed by Selwa & Murawski
(2006) and Selwa et al. (2007). The reason for this discrepancy
lies either in the presence of fast magnetoacoustic waves in a
two-dimensional system (Selwa & Murawski 2006) or in the
wide pulse used by Selwa & Murawski (2006) and Selwa et al.
(2007) that triggers wave signals both within the curved slab and
in the ambient medium. A pulse signal in the ambient medium is
also associated with fast magnetoacoustic waves that are able to
spread wave energy on a shorter timescale than slow waves. As
a consequence, the energy of the initial pulse is spread over the
slab structure more rapidly than by slow waves alone, and slow
standing waves are sustained over a smaller timescale.

From Fig. 3, we infer that by t ≥ 4 P1 the wave signal is
any longer that of a standing wave. This detuning between the
oscillations in mass density and parallel component of velocity
was already observed but not reported by Selwa et al. (2005)
and Ogrodowczyk & Murawski (2007). This detuning may result
from nonlinear effects, which, after a long time start to play a
role. It is also interesting that the perturbed mass density δ�(t) =
�(t) − �(t = 0) > 0 retains its positive values. This behavior is a
result of inflow of additional material to the apex from the initial
pulse. This inflow results in a permanent evacuation of plasma
at the region in which the pulse was launched.

Figure 4 displays the Fourier power spectrum of Vx eval-
uated at the slab apex (Fig. 3). This spectrum confirms the
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Fig. 4. Fourier power spectrum of the slow wave signal collected at the
slab apex. The amplitude of the power spectrum A(P) is normalized
to 1. Wave period P is given in seconds.

presence of the fundamental mode, n = 1, with wave period
P1 � 1054 ± 30 s.

To estimate the attenuation time, τ, of a slow standing wave,
we fit the curve

Vx(t) = Vx0 exp
(
− t − tex

τ

)
(17)

to the time-signature of Vx (Fig. 3), where Vx0 denotes the ampli-
tude of Vx at the excitation time tex and Vx0 is used as an initial
parameter entering the fitting subroutine. In this way, we find
that τ � 1.85 P1 for the fundamental standing wave, n = 1.

To investigate the excited standing mode, we adopt the flux
coordinate system (Oliver et al. 1996)

ψ = cos (x/ΛB) exp (−z/ΛB), (18)

χ = sin (x/ΛB) exp (−z/ΛB). (19)

Flux coordinates χ and ψ are in directions that are parallel
and perpendicular to the curved slab respectively. In the sys-
tem (χ, ψ), the curved slab becomes straight (Fig. 5). We note
that the photosphere-like layer is at the left and right of Fig. 5
and the slab runs from left to right.

Figure 5 illustrates the spatial profiles of p(χ, ψ) at t �
2.75 P1 (top panel), p(x = 0, z) (middle panel), and along the
slab, for ψ = 0.4355, (bottom panel). In agreement with Fig. 2,
we are able to discern that wave energy is also present in the
ambient medium, both above (for z/L > 0.4) and below the loop
apex (for z/L < 0.2) (middle panel). We note that part of the
energy leaks into the photosphere-like layer, |χ| > 0.5, giving
rise to a prominent pattern of maxima and minima. These wave
fronts agree well with the picture in which oscillation within the
loop decays with time. In the corona, the wavelength of waves
leaking through the footpoints is λi � 2.89 L. In the photosphere-
like layer, we have λph � 0.0421 L. λi/λph = 68.6, which is close
to cTi/cTph = 67.5. These values satisfy the relations λi = cTiP1
and λph = cTphP1. As a result, we infer that waves reduce their
wavelength, while leaking into the photosphere-like layer, due to
the low slow-mode speed there (the wave has managed to prop-
agate only slightly during the wave period). This is what we can
see in Fig. 5.

At the photosphere-like layer, slow waves become partially
reflected back into the top medium The wave reflection coeffi-
cient can be defined to be (LeVeque 2002, Eq. (9.52))

R =
Zph − Zi

Zi + Zph
, (20)

Fig. 5. Spatial distribution of gas pressure (top panel) and its slices
along x = 0 (middle panel) and ψ = 0.4355 (bottom panel). The
solid lines (top panel) illustrate the approximate location of the curved
slab (horizontal lines) and the interface between the solar corona and
photosphere-like layer (vertical lines), presented in flux coordinates
(Eqs. (18) and (19)).

where Zph = �phcTph and Zi = �icTi denote the impedance of
the photosphere-like layer and the slab, respectively. We esti-
mate that Zph = 40 and Zi = 0.231, which provides R = 0.98.
Thus, 98% of each component of the incident wave will reflect
every time it collides with the interface and 2% will be transmit-
ted. This finding is in qualitative agreement with the numerical
results plotted in the bottom panel of Fig. 5.

We now consider the averaged energy density of slow waves

Ê(t) =
1
S

∫ ψ2

ψ1

∫ χ2

χ1

E(χ, ψ, t)dχ dψ, (21)

where S is the spatial area over which the integration is per-
formed, and ψ1 and ψ2 (χ1 and χ2) are the limits of the integra-
tion along the ψ − (χ−) direction. The energy density, E(χ, ψ)
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Fig. 6. Evolution of the perturbed energy computed from Eq. (21)
within the slab (0.41 ≤ ψ ≤ 0.45) (top panel), above the slab (0.34 ≤
ψ ≤ 0.38 and −0.45 ≤ χ ≤ 0.45) (middle panel), and inside the
photosphere-like layer (0.41 ≤ ψ ≤ 0.45 and 0.55 ≤ χ ≤ 0.8) (bot-
tom panel).

is expressed as the sum of kinetic and internal energy densities,
namely

E(χ, ψ, t) =
�V2

2
+

p
γ − 1

· (22)

The top panel of Fig. 6 illustrates the evolution in the normal-
ized energy, δÊ(t)/E0 = (Ê(t) − Ê(t = 0))/Ê(t = 0), evaluated
within the slab (0.41 ≤ ψ ≤ 0.46). It is clear that energy leak-
age is also present during the initial transient stage (t < 1 P1).
For 2 ≤ t/P1 ≤ 5.6, the energy decreases more rapidly with
in time than in the straight slab case (not shown). As a result,

Fig. 7. Normalized standing slow wave attenuation time τ/P1 versus
normalized loop length l/L.

we conclude that it is caused by a curved magnetic field, which
results in energy leakage to the ambient corona across the slab
edges (middle panel of Fig. 5). It is noteworthy that energy de-
creases about twice as rapidly within the slab (Fig. 6, top panel)
as above the slab (middle panel). We infer that the energy leaks
to both the ambient corona and the photosphere-like layer (bot-
tom panel). As a result of energy penetrating the photosphere-
like layer, δÊ(t)/E0 is there positive. Due to energy leakage from
the slab, δÊ(t)/E0 is negative within the slab. We also discovered
that δÊ(t)/E0 < 0 in the region above the slab and a physical rea-
son for this is presently unclear.

We now present the results of parametric studies that we per-
formed. For these studies, we changed the curvature of the loop
by varying the positions of its footpoints. This can be achieved
by varying Ac in Eq. (13). We note that a longer loop exhibits a
larger curvature of magnetic field lines (Fig. 1). This approach
enabled us to determine the influence of the magnetic-field-line
curvature on the attenuation time of slow standing waves.

Figure 7 show a plot of the normalized standing wave at-
tenuation time τ/P1 versus normalized loop length l/L. We note
that τ/P1 decreases with l/L. As a result, we conclude that more
strongly curved loops result in shorter attenuation times. One
scenario to explain this dependence is that it is a consequence
of energy leakage through slab edges to the ambient corona.
According to this scenario, energy leakage is more significant
for longer slabs, for which have the magnetic field lines stronger
curvature. On the other hand, if magnetic field lines are longer
and the width of the initial pressure pulse remains constant, then
there will be more power at shorter wavelengths. These shorter
waves are not reflected from the dense layers and the slow wave
therefore attenuates more rapidly by means of leakage into the
photosphere.

4. Summary

We have developed a two-dimensional model of a curved coro-
nal slab resting on a dense photosphere-like layer in performing
numerical simulations of standing slow magnetoacoustic waves.
These waves are triggered by a pressure pulse that is initially
launched within the slab. Such a pulse generates fundamen-
tal slow modes, in good agreement with the results of Selwa
et al. (2005). These slow waves leak their energy into both the
photosphere-like layer and the ambient coronal medium. Our
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numerical results show that curvature of magnetic field lines af-
fects significantly the excitation and attenuation of slow standing
waves. As a result of energy leakage through the slab edges at
the apex of a curved loop, the standing slow waves are sustained
and attenuated more rapidly than in a straight slab (Selwa et al.
2005).

Observational findings (Wang et al. 2002, 2003a,b, 2005) re-
vealed that slow standing waves are quickly excited and strongly
attenuated within 1−2 waves periods and have typical periods
of 14−18 min. These findings corresponded to a relatively long
loop (l = 191 Mm) and high sound speed cs = 380 km s−1 (Wang
et al. 2003a). In our model, we find that the fundamental mode
possesses a wave period equal to 17.5 min and the excitation and
decay times were estimated to be tex = 2.5 P1 and τ = 1.85 P1,
respectively. These results correspond to l = 146 Mm and sound
speed within the curved slab of csi = 0.231 Mm s−1. It is gratify-
ing that by implementing curved magnetic field lines such good
agreement with observations could be achieved (Wang et al.
2002, 2003a,b). This agreement was far closer than achieved
by either the one-dimensional model of Selwa et al. (2005) or
the two-dimensional straight slab model of Ogrodowczyk &
Murawski (2007). Selwa et al. (2005) found that the ratio of at-
tenuation time τ to wave period P1 was τ/P1 ≈ 5. Ogrodowczyk
& Murawski (2007) measured a ratio of τ/P1 ≈ 3.8, while the
present model reveals that τ/P1 can be as low as 1.85 for a loop
of length l = 143 Mm.
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