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ABSTRACT

We have employed a penumbral model, which includes the Evershed flow and convective motions inside penumbral
filaments, to reproduce the azimuthal variation of the net circular polarization (NCP) in sunspot penumbrae at differ-
ent heliocentric angles for two different spectral lines. The theoretical NCP fits the observations as satisfactorily as
penumbral models based on flux tubes. The reason for this is that the effect of convective motions on the NCP is very
small compared to the effect of the Evershed flow. In addition, the NCP generated by convective upflows cancels out
the NCP generated by the downflows. We have also found that, in order to fit the observed NCP, the strength of the
magnetic field inside penumbral filaments must be very close to 1000 G. In particular, field-free or weak-field fila-
ments fail to reproduce both the correct sign of the NCP and its dependence on the azimuthal and heliocentric angles.
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1. INTRODUCTION

Several investigations have proposed the presence of con-
vective motions within the sunspot penumbra (Danielson 1961;
Grosser 1989; Márquez et al. 2006; Langhans 2006; Sánchez
Almeida 2005, 2006; Sánchez Almeida et al. 2007), but only
very recently those motions have been observationally pin-
pointed as occurring within penumbral filaments (Ichimoto et al.
2007; Rimmele 2008; Zakharov et al. 2008; cf. Bellot Rubio
et al. 2005). Zakharov and co-workers have found that these
convective flows appear similar to the upper part of convective
rolls proposed by Danielson (1961), with an upflow at the fil-
ament’s center that turns into downflowing lanes at its edges.
The measured speed of these motions is about 1 km s−1. Super-
posed to this convective flow is the Evershed flow, with typical
speeds of about 4–5 km s−1, although much larger values have
been reported (del Toro Iniesta et al. 2001; Penn et al. 2003;
Bellot Rubio et al. 2004; Borrero et al. 2005; Sánchez Almeida
2005). Recent 3D magnetohydrodynamics (MHD) simulations
(Scharmer et al. 2008a; Rempel et al. 2009a, 2009b) suggest
a relation between these two velocity fields, with the Evershed
flow being formed by the deflection of the convective flow along
the horizontal magnetic field inside penumbral filaments.

It is also well established that as the observer’s line of sight
penetrates through the penumbral ambient field and into the
penumbral filament, the magnetic inclination and line-of-sight
velocity undergo large variations. These are widely accepted
as being responsible for creating the anomalous (i.e., asym-
metric or even multi-lobed) polarization profiles observed in
the penumbra (Sánchez Almeida & Lites 1992; Solanki &
Montavon 1993; see Solanki 2003 for a review). Models in-
corporating such variations have successfully reproduced the
azimuthal and center-to-limb variation of the net circular polar-
ization (NCP) in visible and infrared Fe i lines (Sánchez Almeida
1996, 2005; Martı́nez Pillet 2000, 2001; Schlichenmaier &
Collados 2002; Schlichenmaier et al. 2002; Müller et al. 2002;
Borrero et al. 2007).

However, the effect that the newly discovered convective
component of the velocity field inside penumbral filaments
has on the NCP (azimuthal and center-to-limb variation) has
not been studied. The convective flow can potentially have
important consequences for the NCP observed at disk center,

or at all disk positions at locations perpendicular to the line
of symmetry of the sunspot. In both cases the Evershed flow
is almost perpendicular to the line of sight, which should
enhance the contribution of the convective flow. Furthermore,
the NCP generated by the convective flow could be detected
by spectropolarimeters operating at extremely high spatial
resolution (Scharmer et al. 2008b) and it could be related to
the non-zero NCP observed at the edges of penumbral filaments
(Ichimoto et al. 2008).

In this paper, we address this possibility and study the effect
of the combined magnetic and convective flow pattern reported
by Zakharov et al. inside penumbral filaments on the azimuthal
and center-to-limb variations of the NCP in sunspot penumbrae.

2. MHS MODEL FOR PENUMBRAL FILAMENTS

We will adopt a 2.5D model for penumbral filaments similar
to that of Scharmer & Spruit (2006) and Borrero (2007). We
assume that the properties of the filament do not change along
its axis, i.e., directed radially outward in the sunspot (y-axis).
Therefore, we can restrict ourselves to the XZ plane. In this
plane, the filament is located at the bottom of the domain:
z = 0. Hereafter we employ the indices “f” and “s” to refer to
the filament and its surroundings, respectively. The filament’s
boundary has a semi-circular shape of radius R. Using polar
coordinates (r, θ ), the magnetic field vector for the filament’s
interior, Bf , and its surroundings Bs are prescribed as follows:

Bs(r, θ ) = B0 sin γ0ey + B0 sin θ cos γ0

(
1 − R2

r2

)
er

+ B0 cos θ cos γ0

(
1 +

R2

r2

)
eθ if r > R, (1)

Bf(r, θ ) = Bf0ey if r < R, (2)

where B0 and γ0 refer to the strength and inclination (with
respect to the z-axis) of the surrounding magnetic field far away
from the tube (r → ∞). Bf0 refers to the magnetic field inside
the penumbral filament, which we assume to be aligned with
the filament’s axis and homogeneous. We do not attempt to
model what happens below z = 0 and therefore, throughout this
paper, the polar angle coordinate is constrained to θ ∈ [0, π ]
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(see Figure 1). Following Spruit & Scharmer (2006) we have
adopted a potential configuration for the surrounding magnetic
field Bs. Similarly, the velocity field is prescribed as follows:

Vs = 0 if r > R, (3)

Vf(r, θ ) = Veey + Vfr(r)er + Vfθ (r, θ )eθ if r < R, (4)

where Ve refers to the Evershed flow (radial flow along the
y-axis). Superposed to it, we allow for the possibility of a
convective flow pattern in the XZ plane. The radial, Vfr, and
angular Vfθ components of the convective velocity flow are
given by

Vfr(r) = Vc

{
1 − e−β(r−R)2}

(5)

Vfθ (r, θ ) = [ρ0 exp{−r sin θ/Hs} + rδ sin θ ]−1

×
{

∂(rVr )

∂r
×

[
ρ0

(
θ − π

2

)
+ αr cos θ

]

+ rVr

[
α cos θ +

rρ0

2H 2
s

(
θ − π

2
− cos θ sin θ

) ]}
,

(6)

where ρ0 refers to the density in the surrounding atmosphere at
z = 0: ρ0 = ρs(0). In addition, α and δ can be written as

α = ρ0

Hs
− δ , (7)

δ = B2
0 cos2 γ0

πgR2
, (8)

where g represents the Sun’s gravitational acceleration at the
surface (g = 2.74 × 104 cm s−2) and Hs is the density scale
height for the surrounding atmosphere in which the filament
is embedded. The value of β in Equation (5) can be chosen
to allow for a more rapid/slow drop of the radial (in the XZ
plane) velocity profile within the penumbral filament. In our
case, we have chosen it such that βR2 � 1. This ensures that
at r = 0, Vf r (0) � Vc. Thus, Vc can be identified with the
magnitude of the convective upflow at the filament’s center. The
complicated functional dependence of the velocity field comes
from the fact that is has been derived fully analytically under the
following constraints: (1) mass conservation inside the filament:
∇(ρf Vf) = 0; (2) hydrostatic equilibrium inside the filament:
∇Pgf = ρfg; (3) total pressure balance between the filament and
its magnetic surrounding; and (4) the overall configuration must
be convective like. The rather tedious derivation of Vf (r, θ ) is
described in the Appendix of this paper.

The resulting flow pattern inside the filament in the XZ plane
is presented in Figure 1, where it can be seen that it features an
upflow at the filament’s center, with downflowing lanes at the
filament’s edges. This convective pattern resembles the flows
inside penumbral filaments in the simulations from Heinemann
et al. (2007) and Rempel et al. (2009b), as well as the pattern
deduced from observations by Zakharov et al. (2008).

Our model can be used to mimic the magnetostatic solutions
for the gappy penumbral model presented by Scharmer & Spruit
(2006). This can be achieved by simply reducing the magnetic
field inside the filament until it becomes a field-free gap Bf0 = 0.
It can also mimic the classical flux tube picture (Borrero 2007;
Borrero et al. 2007) by removing the convective flow inside the

Figure 1. Vertical cut (XZ plane) showing the density configuration for a
penumbral filament in a surrounding potential field. This configuration was
obtained with the following model parameters: B0 = Bf0 = 1000 G, R =
75 km, γ0 = 60◦. The field lines outside the filament (r > R) correspond to
the magnetic field lines in the surrounding atmosphere (Equation (1)) projected
onto the XZ plane, while the field lines inside the filament denote the convective
flow pattern (Equations (4)–(8)) in the same plane. The blue dashed line shows
the location of the τ5 = 1 level (Wilson depression) and the dashed red line
denotes the location of the constant (1.3 × 105 dyn cm−2) gas pressure level.

filament Vc = 0. The later two papers will be hereafter referred
to as Papers I and II.

Once the velocity and magnetic field have been prescribed,
we can obtain the pressure and density stratification of the
surrounding atmosphere, Pgs(z) and ρs(z), from a tabulated
atmosphere. Here we use the hot umbral model from Collados
et al. (1994; other models are discussed in Section 6). Note
that, since the external magnetic field is potential, the adopted
pressure and density stratification are also valid everywhere
outside the filament. The boundary layer between the filament
and the surrounding field is located at (R, θ ) ≡ (±√

R2 − z2, z)
(in polar and cartesian coordinates, respectively) and is denoted
by an ∗ throughout this paper. At this boundary, the following
relation links the external and internal gas pressures:

P ∗
gf +

B∗2
f

8π
= P ∗

gs +
B∗2

s

8π
. (9)

This equation is valid irrespective of the external and internal
velocity and magnetic fields, as long as their radial components
vanish at the filament’s boundary: V ∗

fr = V ∗
sr = B∗

sr = B∗
f r = 0.

As in Paper I, we can take derivatives with respect to θ in
Equation (9) and apply the θ -component of the momentum
equation. This yields the following relation for the density across
the filament’s boundary:

ρ∗
f

{
Rg cos θ +

1

2

∂V ∗2
fθ

∂θ

}
= ρ∗

s Rg cos θ − 1

8π

∂B2∗
sθ

∂θ
. (10)

Note that the velocity we have prescribed (Equation (6))
satisfies V ∗

fθ = 0. Therefore, Equation (10) can be simplified
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into

ρ∗
f = ρ∗

s +
1

πRg

[
B2

0 sin θ cos2 γ0
]
. (11)

These boundary conditions must be applied, together with the
general stationary momentum equation, in order to obtain the
pressure and density structure inside the filament:

ρ(v∇)v = −∇Pg +
1

c
j × B + ρg. (12)

In this equation (ideal MHD without viscosity), the left-hand
side term corresponds to the advection term, where the right-
hand side terms correspond to the gas pressure gradient, the
Lorentz force and the gravity, respectively. Since the magnetic
field inside the filament is constant (Equation (2)), the Lorentz
force (j×B) plays no role in the pressure and density equilibrium
for r < R. In addition, the convective velocities are much
smaller than the sound speed: Vfr, Vfθ � 1 km s−1(see Ichimoto
et al. 2007; Zakharov et al. 2008) and therefore the advection
term can be neglected. This yields a pressure and density balance
that conforms with hydrostatic equilibrium inside the filament:
∇Pgf = ρfg. The horizontal (x-axis) component of this equation
yields the pressure. Once it is obtained, the vertical (z-axis)
component of the momentum equation gives the density

Pgf(z) = Pgs(z) +
1

8π

[
4B2

0 cos2 γ0

(
1 − z2

R2

)

+ B2
0 sin2 γ0 − B2

f0

]
(13)

ρf (z) = ρs(z) + z
B2

0 cos2 γ0

πgR2
. (14)

Figure 1 shows the density configuration for a penumbral
filament and its surroundings, along with the magnetic field
lines outside the filament and the convective flow pattern inside
it. Once the gas pressure and the densities are known, the
temperature can be evaluated using the ideal gas law with a
variable molecular weight to account for the ionization of the
different species. As a result, we now have the temperature,
density, gas pressure, and the velocity and magnetic field vector
at every point in the XZ plane.

Note that our approach to the magnetohydrostatic (MHS)
equilibrium is slightly different from Scharmer & Spruit (2006).
This yields a different thermodynamic structure. For example,
in Scharmer & Spruit (2006) the density inside the gap is larger
than the density outside by a constant factor at all depths. In
our case, the density difference changes linearly with depth
(Equation (14)), and it peaks at the top of the filament while
vanishing at z = 0. Our approach is also different from the
flux tube MHS equilibrium presented in Borrero (2007) in that
we do not model the lower half of the filament, as we do not
know if deeper down the filament has the shape of a flux tube
or an elongated plume. This in turn means that we do not have
to deal with possible negative densities in the lower half of
the filament as in the flux tube case (see Equation (14) in
Paper I). It also allows us to have a uniform magnetic field
inside the filament (Equation (2)). All these details about the
thermodynamics, however, play a secondary role for radiative
transfer calculations. In particular, they are negligible for the

NCP since this quantity depends mostly on the magnetic field
and velocity configurations.

Finally, it is also important to mention that Equations (2)
and (4) (Bf(r, θ ) and vf (r, θ )) imply, through the induction
equation, that the magnetic field along the filament’s axis, Bf0,
changes in time. This inconvenience could have been avoided
by postulating a magnetic field inside the filament that is parallel
to the velocity field. Since the magnitude of the Evershed effect
is much larger than that of the convective velocities: Ve � Vc,
it immediately follows that the magnetic field in the XZ plane is
much smaller than the magnetic field along the filament axis.

3. REFERENCE FRAME AND AZIMUTHAL VARIATION
OF THE NCP

The thermodynamic, kinematic, and magnetic configuration
for a penumbral filament has been obtained in the previous
section in the local reference frame: S = {ex, ey, ez} (where the
z-axis corresponds to the direction perpendicular to the solar
surface), but in order to study the azimuthal variation of the
NCP at different heliocentric angles we need to place ourselves
in the observer’s reference frame: S ′′ = {e′′

x, e′′
y, e′′

z }, where now
the z′′-axis points toward the observer. To that end, we perform
a double rotation of the velocity and magnetic field vectors.
First a rotation by angle Ψ along ez. This allows us to place the
filament at any azimuthal position within the sunspot. Ψ = 0
refers to the line of symmetry of the sunspot on the center-side
penumbra (i.e., it points toward the center of the solar disk).
Second, a rotation by angle Θ (heliocentric angle) along the
resulting ey

′. This allows us to locate the sunspot at any position
on the solar disk (see Equation (1) in Paper II). After performing
these rotations, the inclination of the magnetic field vector with
respect to the observer can be obtained as γ = cos−1(B ′′

z /B),
the azimuth of the magnetic field in the plane perpendicular to
the observer as φ = tan−1(B ′′

x /B ′′
y ), and finally the line-of-sight

velocity as vlos = v′′
z .

The equations describing the ray paths (lines of sight) along
which the radiative transfer equation is to be solved are given
by

x = x0 + (zmax − z) tan Θ sin Ψ (15)

y = y0 + (zmax − z) tan Θ cos Ψ, (16)

where (x0, y0, zmax) is the point where the line of sight pierces
the uppermost boundary of our computational domain. Note that
our model is 2.5D which means there are no variations along the
filament’s axis (y-coordinate) which implies that Equation’s (16)
role can be simply substituted by a modification in the optical
depth scale as dτlos = dτ/ cos β, with β = tan−1(tan Θ cos Ψ).
With this information, we can now calculate the paths of each
line of sight piercing the XZ plane in Figure 1 at different x0’s. In
our calculations we use 64 ray paths with x0 = −2R, . . . , 2R.
The radiative transfer equation is solved using the synthetic
module in the SIR code (Ruiz Cobo & del Toro Iniesta 1992)
for each ray path. Stokes V profiles as a function of wavelength of
two widely used spectral lines Fe i 6302.5 Å and Fe i 15648.5 Å
are computed. The NCP for each ray, Nm, is obtained as the
wavelength integral of Stokes V, with the final NCP (denoted as
N ) being the mean over the ray paths that pierce the filament
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Figure 2. Top panel: individual Stokes Vm profiles (black dashed lines) generated
by each of the ray paths for Θ = 45◦ and Ψ = π . The averaged profile (over
all 64 individual rays) is also showed in color. Bottom panel: NCP generated
by different ray paths, Nm, piercing the filament at different points. Solid lines
correspond to the center side penumbra on the line of symmetry of the sunspot
(Ψ = 0), while dashed lines correspond to the limb side penumbra also over the
line of symmetry (Ψ = π ). Blue lines correspond to the Fe i line at 6302.5 Å and
red lines are for Fe i 15648.5 Å. Model parameters are the same as in Figure 1:
B0 = Bf0 = 1000 G, R = 75 km, γ0 = 60◦. In addition, we have employed
Ve = 6 km s−1, Vc = 1 km s−1.

(only M rays out of 64)3

N = 1

M

M∑
m

Nm = 1

M

M∑
m

∫
Vm(λ)dλ. (17)

Figure 2 (top panel) shows examples (dashed lines) of the
individual 64 Stokes Vm profiles generated by each of the ray
paths when looking at a penumbral filament located along the
line of symmetry in the limbward side of the penumbra (Ψ = π )
of a sunspot located at a heliocentric angle of Θ = 45◦. Only
half of the ray paths actually pierce the filament and produce
a non-vanishing NCP (M out of 64). In color we also plot the
averaged Stokes V profiles. The lower panel of Figure 2 shows

3 By averaging only over the lines of sight that pierce the filament we are
ensuring that the filling factor of the filament is always one or, in other words,
that our resolution element is fully occupied by the filament irrespective of Θ
and Ψ. Failing to do this would allow us to arbitrarily change the filling factor
at each azimuthal position to create more or less NCP. Note that the same
results would be obtained if we assume that there are several filaments lying
next to each other within the resolution elements as long as it is fully filled
with filaments and they are located at the same height.

Figure 3. Predicted azimuthal variation of the NCP, N (Ψ), for two different
neutral iron atomic lines: 6302.5 Å (top) and 15648.5 Å (bottom) for sunspots
located at different heliocentric angles. They have been obtained using the
model for penumbral filaments described in this paper, which includes both the
Evershed flow and convective motions inside the filament. The model parameters
used are the same as in Figure 2: B0 = Bf0 = 1000 G, R = 75 km, γ0 = 60◦,
Ve = 6 km s−1, Vc = 1 km s−1.

an example of the NCP generated by individual ray paths (Nm)
in the two considered spectral lines, at a heliocentric angle
of Θ = 45◦, and at two different azimuthal angles: Ψ = 0
(center side penumbra) and Ψ = π (the limbward side of
the penumbra). This example was obtained using the following
model parameters: B0 = Bf0 = 1000 G, Ve = 6 km s−1, Vc = 1
km s−1, γ0 = 60◦, and R = 75 km.

We have repeated the same calculations for 25 different
azimuthal positions between Ψ = 0, 2π and at 4 heliocen-
tric angles: Θ = 15◦, 30◦, 45◦, 60◦. Results are presented in
Figure 3 (top panel for Fe i 6302.5 Å and bottom panel for Fe i

15648.5 Å). Example of theoretical and observed N (Ψ) curves
are overplotted in Figure 4 for two cases: ASP (Advanced Stokes
Polarimeter; Elmore et al. 1992) observations of Fe i 6302.5 Å
at Θ = 38◦ (AR 8545; 1999 May 21) and TIP (Tenerife Infrared
Polarimeter; Martı́nez Pillet et al. 1999) observations of Fe i

15648.5 Å at Θ = 60◦ (AR 8706, 1999 September 21). Figure 4
clearly demonstrates that the total amount of NCP and its sign
are well reproduced as a function of the azimuthal position at the
displayed heliocentric angles. It is particularly gratifying to see
the model reproducing the multi-peak shape of the NCP curve
of Fe i 15648.5 Å. The theoretical N (Ψ) curves compare satis-
factorily with the observed ones also at other heliocentric angles
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Figure 4. Same as Figure 3 but for Fe i 6302.5 Å and Θ = 38◦ (top panel) and
Fe i 15648.5 Å and Θ = 60◦ (bottom panel). Observations of N (Ψ) for two
different sunspots observed at those heliocentric angles in these two spectral
lines are displayed by the dots (same data as underlying Figures 3 and 4 in
Paper II).

for these two spectral lines (compare Figure 3 with Figures 3
and 4 of Paper II ).

It is important to mention here that the observed NCP
curves have been obtained mainly for points located in the
middle penumbra. It may seem that the model parameters
B0 = Bf0 = 1000 G and γ0 = 60◦ chosen to reproduce them are
more typical of the outer penumbra. This is not the case since
these model parameters refer to locations far away from the flux
tube. In fact, in the vicinity of the flux tube the field strength and
inclination of the external magnetic field reaches values closer
to 1500 G and 45◦ respectively (see for example Figure 1 in
Paper I), which is more representative of the mid-penumbra.

4. EFFECT OF A CONVECTIVE FLOW ON THE NCP

As demonstrated in the previous section, the model for
penumbral filaments employed here produces very similarN (Ψ)
curves as the round horizontal flux tube model employed by
Borrero et al. (2007; see Figures 3 and 4) to describe penumbral
filaments. In order to understand the reason for this we need to
investigate the similarities and differences between our current
model for penumbral filaments and the model from Paper II.

The MHS equilibrium for horizontal flux tubes imposes large
temperatures in the tube’s lower half. This yields a τ = 1 level
that is always formed within the upper middle-half of the flux

Figure 5. Net circular polarization produced by different ray paths, Nm, cutting a
penumbral filament at different x0’s. This test was performed with the following
model parameters: B0 = Bf0 = 1000 G, γ0 = 60◦, R = 75 km, Ve = 0 km s−1,
Θ = Ψ = 0◦, Vc = 1 km s−1(solid lines) or Vc = 3 km s−1(dashed).

tube (see Figure 2 in Paper I), just as in our Figure 1. Therefore,
the lower half of the flux tube does not significantly affect the
emergent radiation, so that the main difference between the
model employed in this work and the horizontal flux tube model
is the addition of the convective flow (Equations (3)–(8)).

To investigate the effect that these convective motions have
on the generated NCP, we have calculated the NCP produced
by individual rays cutting through a penumbral filament (in the
same way as in Figure 2) but switching off the Evershed effect:
Ve = 0. An example is presented in Figure 5 for a filament
located at disk center (Θ = 0◦) and at the line of symmetry
of the sunspot (Ψ = 0◦). We have carried out the experiment
for two different convective velocities: Vc = 1 (thin lines) and
3 km s−1(thick lines). Note that in this particular example the
results would have been the same even if a horizontal Evershed
flow was present, Ve �= 0 (Equation (4)), since it does not
contribute to the LOS-velocity.

According to Figure 5, the amount of NCP does not exactly
scale linearly with Vc. This is because Vc does not necessarily
represent the convective velocities seen in spectropolarimetric
observations, but rather the strength of the convective upflow
at the filament’s center (see discussion in Section 2), which
is partly hidden below the τ = 1 level (see Figure 1). For
Vc = 1 km s−1 the generated NCP is always smaller than 3 mÅ
(absolute value). The results for the Fe i 6302.5 Å line show
that at the center of the filament (where the upflow is present)
the NCP is negative, but it turns positive closer to the filament’s
edge (at the downflow lanes).

Hinode/SP (Ichimoto et al. 2008) has not so far provided
a clear correlation between convective velocities and NCP in
sunspots penumbrae close to disk center in the Fe i 6302.5 Å line,
probably due to the limited spatial resolution of the observations,
which smears out the NCP variation across the filament. For Fe i

6302.5 Å this makes the effect of the convective velocity field
negligible, since the NCP generated by the upflow cancels out
with the NCP generated by the downflowing lanes. Because of
the Δφ-mechanism (Müller et al. 2002) Fe i 15648.5 Å does
not show such a correlation between upflows/downflows and
NCP; however, we can see in Figure 5 that the regions with
positive NCP are roughly equal to the regions with negative
one. Therefore, the spatially averaged NCP also tends to cancel
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Figure 6. Azimuthal variation of the NCP N (Ψ) predicted at different heliocen-
tric angles Θ, for a penumbral filament harboring no Evershed flow (Ve = 0)
and a convective flow Vc = 3 km s−1. The rest of the model parameters are
the same as in Figure 4: B0 = Bf0 = 1000 G, γ0 = 60◦, R = 75 km. Top
panel shows the NCP calculated for Fe i 6302.5 Å and the bottom panel for Fe i

15648.5 Å.

out in this near-infrared spectral line. It is also worth noting, in
Figures 2 and 5, that the curves Nm(x) are not symmetric even
though the filament is located at disk center. The asymmetry is
again due to the Δφ-mechanism which affects more the infrared
lines (red curves) than the visible lines (blue curves).

In Figure 6, we present different N (Ψ) curves for sunspots
located at different heliocentric angles. The first thing one
realizes is that for Θ = 0◦ a flat curve is obtained. This was
to be expected because at disk center it does not matter where
the filament is located within the sunspot (Equation (15)). In
addition, the total NCP is very small (|N (Ψ)| < 1 mÅ). This
is in agreement with our previous discussion, and is due to the
fact that the upflow at the filament’s center produces an NCP
opposite in sign as the downflowing lanes at its edges, yielding
very small values once we calculate the spatial average.

The NCP decreases toward the limb along the line of
symmetry of the spot (Ψ = 0, π ). This is because the projection
of the convective velocity field along the observer’s line of sight
decreases, and therefore we expect the NCP at this azimuthal
position to decrease with increasing Θ. Note that this is not
necessarily the case for regions perpendicular to the line of
symmetry (Ψ = π/2, 3π/2) since the overturning upflow
would become aligned with the observer. Indeed we observe
that, for Fe i 6302.5 Å (Figure 6; top panel), at Ψ = π and
Ψ = 3π/2 the NCP decreases by a smaller amount with Θ

than at Ψ = 0, π . In the case of Fe i 15648.5 Å (Figure 6;
bottom panel), the additional contribution of the Δφ-mechanism
produces an increase in the NCP, perpendicular to the line of
symmetry, as Θ increases.

We stress that in these experiments we neglected the contri-
bution of the Evershed flow (Ve = 0). If we had included it, its
effect would have become larger with increasing Θ, making the
effect of Vc even more negligible by comparison. Consequently
the NCP generated by convective velocities inside penumbral
filaments is easily masked by the lack of spatial resolution, pro-
jection effects, and the additional effect of the Evershed flow.

Finally, it is important to bear in mind that the model presented
here does not transport any net energy since the temperature in
the downflowing lanes is the same as in the central upflow.4 To
test what would happen in a more realistic situation where real
convection would be present, we have repeated our experiments
in this section (Figures 5 and 6) but artificially increasing the
temperature in the upflowing lane according to

ΔT (x, z) = ΔT0

(
1 − z√

R2 − x2

)
if

{
Vz(x, z) < 0√

x2 + z2 < R,

(18)

where ΔT0 = 3000 K. This value for ΔT0 has been chosen such
that upflows provide sufficient energy to explain a penumbral
brightness that is about 70% of the quiet Sun. Note that
Equation (18) only applies to upflows inside the filament:
Vz < 0 and r = √

x2 + z2 < R. Equation (18) shows that the
temperature difference vanishes at the filament’s edge, where
convective-like motions are no longer present. Under this new
configuration, the results show that the actual shape for the
NCP curve (Figures 5 and 6) in Fe i 6302.5 Å does not change,
whereas for Fe i 15648.5 Å does. On the one hand, these changes
are at the level of ∼1 mÅ, which supports our previous claim
that the thermodynamic structure plays only a secondary role
in the generation of NCP. On the other hand, after modifying
the temperature in the upflow, density and gas pressure have not
been modified in a way that is consistent with the equilibrium
of the filament (Equations (13) and (14)), therefore these claims
need further investigation with a model that allows for these
differences self-consistently.

5. EFFECT OF THE FILAMENT’S MAGNETIC FIELD
STRENGTH ON THE NCP

Another model with distinct similarities to the structure we
have studied here is the gappy penumbral model (Spruit &
Scharmer 2006; Scharmer & Spruit 2006), which postulates
that the penumbral filaments are formed by field-free gaps that
penetrate the penumbral magnetic field from below. Inside such
field-free gaps overturning convective motions occur. This is an
advantage, as compared to horizontal flux tube models (Solanki
& Montavon 1993), since convective motions are able to carry
enough energy to heat the penumbra, which in turn could explain
its enhanced brightness relative to the umbra (cf. Schlichenmaier
& Solanki 2003; Ruiz Cobo & Bellot Rubio 2008). In the context
of the gappy penumbral model, the Evershed flow would be
produced by the deflection of these convective motions along
the inclined field lines above the gap (Scharmer et al. 2008b),
although it has not yet been shown that in this model the

4 Equations (13) and (14) show that neither the density nor the gas pressure,
and thus also not the temperature, depends on the x-coordinate.
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Figure 7. Azimuthal variation of the NCP N (Ψ) predicted at Θ = 38◦ for
Fe i 6302.5 Å (top panel) and at Θ = 60◦ for Fe i 15648.5 Å (bottom panel).
Note that solid lines (Bf0 = 1000 G) are the same as in Figure 4. This case
corresponds to a strong magnetic field inside the filament and is able to reproduce
the observations satisfactorily. The other curves refer to different values of Bf0,
as marked in the upper panel. The model parameters employed here are B0 =
1000 G, R = 75 km, γ0 = 60◦, Ve = 6 km s−1, Vc = 1 km s−1.

Evershed flow would be restricted to material threaded by a
magnetic field (Solanki et al. 1994).

In the previous examples (Sections 3 and 4), we have assumed
that the magnetic field inside the penumbral filament is as strong
as the external field far away from the filament (Bf0 = B0 =
1000 G). However, our model for penumbral filaments would
present a very similar configuration, both in the magnetic field
and the velocity field, to the gappy penumbral model if we set the
field strength inside the filament to zero: Bf0 = 0. Very recently,
however, Scharmer (2008) has acknowledged the possibility of
a non-zero (although strongly reduced) magnetic field inside the
field-free gap (cf. Brummell et al. 2008; Rempel et al. 2009b).

The azimuthal variation of the NCP, N (Ψ), for a penumbral
filament observed away from disk center for various field
strengths inside the filament is presented in Figure 7 for Fe i

6302.5 (top panel, for Θ = 38◦) and Fe i 15648.5 Å (bottom
panel, for Θ = 60◦). The case of Bf0 = 1000 G is indicated
by solid lines in this figure, which are identical to the solid
lines in Figure 4, which reproduce very well the observations.
However, when the field strength inside the filament drops
below 1000 G, the discrepancy between theoretical and observed
curves becomes clear. Similar discrepancies appear also at other
heliocentric angles.

In particular, for Bf0 < 500 G, the NCP produced by an almost
field-free filament is always negative at all azimuthal angles in

both spectral lines, and therefore does not reproduce the correct
sign of the NCP. In addition, the multi-peak structure observed
in Fe i 15648.5 Å disappears completely for Bf0 < 500 G, which
is contrary to observations. These computations imply a value
of Bf0 not much below 1000 G, which is in agreement with
the findings of Borrero & Solanki (2008) who found that in the
outer penumbra, the magnetic field inside penumbral filaments
is not weaker than in the external field.

6. EFFECT OF OTHER MODEL PARAMETERS

In order to investigate whether our results are affected by
our particular choice of model parameters, we have studied the
effect of these parameters on the N (Ψ) curves, for example, the
effect of the inclination of the external field. The idea behind
this is that a smaller γ0 increases the gradient in the inclination
along the line of sight, so that a larger NCP should be generated
through the Δγ -mechanism (Sánchez Almeida & Lites 1992).
Using γ0 = 45◦ indeed increases the amount of NCP (for Fe i

6305.5 Å only); however, it did not have any significant impact
on the overall shape of the N (Ψ) curves.

We have also employed other models for the external atmo-
sphere. Instead of the hot umbral model from Collados et al.
(1994) we adopted the mean penumbral model by del Toro Ini-
esta et al. (1994), which is about 1200 K hotter than the former at
τ5 = 1 and possesses a steeper gradient in temperature. Again,
no significant differences were observed, supporting our earlier
statement (Section 2) that the thermodynamic details play only
a minor role. Of course, if the thermodynamics change dramat-
ically noticeable differences do appear. For example, using the
cool (instead of hot) umbral model from Collados et al. (1994)
has the effect of yielding very small, |N (Ψ)| < 1 mÅ, values for
the NCP in Fe i 6302.5 Å, in clear disagreement with observa-
tions. This happens because this umbral model is very cold and
therefore the lower level of the atomic transition depopulates,
which produces spectral lines that are far from their saturation
point, becoming less sensitive to the gradients along the line of
sight (Grossmann-Doerth et al. 1989; Borrero et al. 2004).

We have also studied the effects of other possible convective
velocity fields. For example, consider

Vf(r, θ ) = Veey + Vc

{
1 − r

R

}
er − Vc cos θeθ . (19)

This velocity field produces a very similar convective pattern
as that described in Equations (3)–(8) (see also Figure 1), but
it does not satisfy mass conservation inside the penumbral fila-
ment. In spite of this, we have repeated most of the calculations
presented in this paper using this velocity field and found that it
produces essentially the same results as the more realistic flow
that conserves mass.

Another parameter that affects the NCP curves is the percent-
age of the resolution element that is assumed to be occupied by
the penumbral filament (filling factor; see footnote in Section 3).
A smaller filling factor will scale the N (Ψ) curves proportion-
ally. However, on the one hand the model parameters we have
chosen are meant to model the conditions in the middle penum-
bra, where the filling factor of the filament is seen to peak (see
Bellot Rubio et al. 2004; Borrero et al. 2005). On the other hand,
a decrease of 25% in the filling factor can be compensated for by
a similar increase in the magnitude of the Evershed flow Ve or a
decrease in the inclination of the external field γ0 (that increases
in the gradient in the inclination of the magnetic field as the line
of sight passes from the external atmosphere to the inside of the
filament).
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7. CONCLUSIONS

We have developed a magnetohydrostatic model of a penum-
bral filament embedded in a surrounding potential field. The
MHS equilibrium imposes a density, pressure, and temperature
structure inside the penumbral filaments such that the τ = 1
level is formed inside the filament. Consequently, we do not
need to specify its subsurface structure, which could be in the
form of a flux tube (filament with circular cross section) or in
the form of a vertically elongated plume. Inside the filament,
we assume the presence of the Evershed flow along its axis and
of a convective velocity field perpendicular to it. The filament’s
magnetic field is imposed to be homogeneous in its interior.

By means of Stokes radiative transfer calculations, we have
shown that this model is able to reproduce the observed
azimuthal variation of the NCP N (Ψ), observed at different
heliocentric angles for two different (visible and near-infrared)
Fe i lines.

We have also studied the effect of the convective velocity field
on the generated N (Ψ) curves. We have found that its effect is
much smaller than the NCP generated by the Evershed flow.
In addition, the NCP generated by the convective downflows
(N > 0) partly cancels with the NCP generated by the upflow
at the filament’s center (N < 0).

Finally, we have employed our model to study the NCP
generated by field-free gaps (Spruit & Scharmer 2006) and
have found that this model does not reproduce satisfactorily
the observed NCP. For that to happen, the magnetic field inside
the filament should be around 1000 G, which is not compatible
with the concept of a field-free gap.

Our results do not, by themselves, rule out the field-free gap
model, since the model employed here is still rather simple,
although it does account for the main features of the penumbral
fine structure. A more elaborate model based on field-free gaps
could still yield NCP curves closer to the observed ones.

In summary, our investigation confirms that the NCP is
produced mainly by the Evershed flow in filaments filled with
a rather strong horizontal field, and embedded in an inclined
magnetic field, as originally proposed by Solanki & Montavon
(1993) and worked out in greater detail by Martı́nez Pillet
(2000), Müller et al. (2002), Schlichenmaier et al. (2002),
Borrero et al. (2007), and others.

More elaborate models are already available thanks to recent
3D MHD simulations (Schüssler & Vögler 2006; Heinemann
et al. 2007; Rempel et al. 2009a, 2009b). These simulations
reveal a complex picture that shares similarities and differences
with both the flux tube and the gappy penumbral model (see
Borrero 2009; Schlichenmaier 2009). In a next step, it is
important to introduce non-gray radiative energy transfer into
such simulations, so that similar analyses as carried out here can
be performed.

This work was partly supported by the WCU grant no. R31-
10016 from the Korean Ministry of Education, Science and
Technology.

APPENDIX

DETERMINATION OF THE FILAMENT’S CONVECTIVE
FLOW THROUGH MASS CONSERVATION

In this section, we derive a velocity field inside penumbral
filaments that conforms with mass conservation for a prescribed

density and gas pressure stratification inside the filament. Gas
pressure and density have been obtained under hydrostatic
equilibrium in Section 2 of this paper and are given by
Equations (13) and (14), respectively. In addition, in order
to satisfy the boundary conditions at the filament’s boundary
(Equations (9) and (10)) the radial and angular component
of the velocity field must vanish at the filament’s boundary:
V ∗

fr = V ∗
fθ = 0. The final requirement is that the velocity flow

must be convective, that is, with an upflow at the filament’s
center and downflowing lanes at its edges. We start by writing
down the condition: ∇(ρfVf) = 0 in polar coordinates. Unless
otherwise specified we will always refer to the filament and
therefore the subindex “f” is implied throughout this section:

Vr

∂ρ

∂r
+

Vθ

r

∂ρ

∂θ
+

ρ

r

{
∂(rVr )

∂r
+

∂Vθ

∂θ

}
= 0 . (A1)

We now rewrite (A1) as

∂Vθ

∂θ
+ q(r, θ )Vθ = m(r, θ ), (A2)

where q(r, θ ) and m(r, θ ) are

q(r, θ ) = 1

ρ

∂ρ

∂θ
, (A3)

m(r, θ ) = −
{

∂(rVr )

∂r
+

rVr

ρ

∂ρ

∂r

}
. (A4)

Equation (A2) is a first-order linear partial differential equa-
tion that can be solved with the help of an integrating factor
i(r, θ ), given by

i(r, θ ) = exp

{∫
q(r, θ )dθ

}
= exp

{∫
1

ρ

∂ρ

∂θ
dθ

}
= ρ(r, θ ).

(A5)

Equation (A5) shows that the integrating factor is indeed
the density. Multiplying the left- and right-hand sides of
Equation (A2) by the density yields the solution for Vθ as

Vθ (r, θ ) = 1

ρ(r, θ )

{∫
ρ(r, θ )m(r, θ )dθ + C(r)

}

= 1

ρ(r, θ )

{
−

∫
∂(rρVr )

∂r
dθ + C(r)

}
, (A6)

where C(r) is an integration constant that can depend on
the radial coordinate. For simplicity, we will now make the
further assumption that Vr depends only on the radial distance
from the filament’s center: Vfr(r). With this, we can simplify
Equation (A6) to

Vθ (r, θ ) = −1

ρ(r, θ )

{
rVr

∫
∂ρ

∂r
dθ +

∂(rVr )

∂r

∫
ρdθ − C(r)

}
.

(A7)

Now, according to Equation (14) in Section 2, the filament’s
density is given by

ρf (r, θ ) = ρs(z) + rδ sin θ, (A8)
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where we have only substituted z = r sin θ and δ = B2
0 cos2 γ0

πgR2

(Equation (8)). Now, the density stratification of the external
atmosphere ρs(z) can be written in terms of the density at z = 0:
ρ0 and its density scale height Hs:

ρs(z) = ρ0e
−z/Hs = ρ0e

−r sin θ/Hs = ρs(r, θ ). (A9)

In general, the density scale height varies with height;
however, over the range of heights we are interested in: z ∈
[0, R], Hs can be considered to be constant. When substituting
Equation (A9) into (A8) and then into A7 we are left with
two integrals that can be solved analytically, in terms of the
hypergeometric function 2F1(1/2; (1 − k)/2; 3/2; cos2 θ ), but
only if we perform a Taylor expansion of the density in the
surrounding atmosphere ρs(r, θ ):

ρs(r, θ ) = ρ0

[
1 +

∞∑
k=1

(−1)krk

k!Hk
s

sink θ

]

= ρ0

[
1 − r

Hs
sin θ +

r2

2H 2
s

sin2 θ + O(sin3 θ )

]
.

(A10)

Fortunately, for typical penumbral conditions we have that
Rδ > ρ0. In this case, the term rδ sin θ in Equation (A8) is
the main contributor to the filament’s density ρf(z), which in
turn means that we can truncate the Taylor expansion of ρs(z)
(Equation (A10)) to include only the first two terms. In this
way, we can avoid dealing with hypergeometric functions and
transform the integrals inside Equation (A7) into∫

∂ρf(r, θ )

∂r
dθ ≈

∫ [−ρ0 sin θ

Hs

(
1 − r sin θ

Hs

)
+ δ sin θ

]
dθ

= α cos θ +
rρ0

2H 2
s

(θ − cos θ sin θ ) (A11)

∫
ρf(r, θ )dθ ≈

∫ [
ρ0 − ρ0

r sin θ

Hs
+ rδ sin θ

]
dθ

= ρ0θ + αr cos θ, (A12)

where α and δ had already been defined in Equations (7) and
(8) in Section 2. The integration constant C(r) in Equation (A7)
is determined by imposing that across the center of the filament
the velocity field takes the form of an upflow: Vfθ (r, π/2) = 0.
Finally, substituting Equations (A11) and (A12) into (A7) yields
the final result for Vfθ (r, θ ) given by Equation (6). Note that
Equations (6) and (A7) are completely general as long as the
radial component of the velocity field depends only on r: Vfr(r).

For the determination of Vfr(r) we are free to choose any
function that vanishes at the filament’s boundary: V ∗

fr = 0
such that there is total pressure balance between the filament
and the surrounding atmosphere (Equation (9)). Our choice of
Vfr(r) will also affect the functional form of Vfθ (r, θ ) (through
Equation (6)). According to the discussion in Section 2 we are
looking for solutions that verify V ∗

fθ = 0 such that the velocity
term in Equation (10) disappears. This is guaranteed if V ∗

fr = 0
(which we are already looking for) but also ∂V ∗

fr /∂r = 0. Note
that our choice of Vfr(r) (Equation (5)) satisfies both conditions:

both Vfr(r) and its derivative vanish at the filament’s boundary:

Vfr(r) = Vc

{
1 − e−β(r−R)2}

. (A13)
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