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ABSTRACT

Aims. We study an oscillatory driver as a possible excitation mechanism of vertical kink loop oscillations in the ideal MHD regime.
Methods. We consider a solar coronal magnetic arcade with a dense photospheric layer. The two-dimensional numerical model that
we implement includes the effects of nonlinearity and line curvature on the excitation and attenuation of fast magnetosonic kink
waves. We investigate the effects of a driven sinusoidal pressure pulse and compare it with the impulsive excitation by a pressure
pulse that impacts the overlying loop.
Results. Our numerical simulations reveal wave signatures that are reminiscent of vertical loop oscillations seen in TRACE observa-
tional data.
Conclusions. We conclude that attenuation of vertical kink oscillations can be reduced to the value observed by adopting an oscilla-
tory instead of an impulsive excitation. An oscillatory driver also naturally explains why only a small subset of all loops is excited to
oscillate transversally in an active region.
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1. Introduction

Sensitive instruments such as SUMER on SOHO (Wilhelm et al.
1995) and TRACE (Handy et al. 1999) have detected of various
modes of oscillation in solar coronal loops. The identified wave
modes include both slow propagating (De Moortel et al. 2002)
and slow standing (Wang et al. 2002; 2003a,b; 2005; Ofman
& Wang 2002) waves, sausage waves (Nakariakov et al. 2003;
Aschwanden et al. 2004), and two polarizations of kink oscil-
lations called horizontal (Aschwanden et al. 1999; Nakariakov
et al. 1999; Schrijver et al. 2002) and vertical (Wang & Solanki
2004). Although these two polarizations are similar in nature,
they differ in some properties (e.g., signs of compressibility are
displayed by the vertical kink oscillations only). Note that some
of the oscillations identified as horizontal may in fact be vertical
(Wang et al. 2005).

The current work is motivated by the rapid attenuation of
magnetohydrodynamic waves through leakage found by Selwa
et al. (2005, 2006, 2007a) and Gruszecki et al. (2006, 2008) in
earlier 2D simulations. The simulated oscillations are damped
considerably more rapidly than the observed oscillations. The
authors modeled impulsively excited vertical kink oscillations in
a solar arcade. In this paper, we propose a new excitation mech-
anism for vertical kink waves: an oscillatory driver instead of a
single pulse. This driver can be considered as a flare that con-
tains quasi-periodic pulsations (Ofman & Sui 2006; Nakariakov
et al. 2006; Nakariakov & Melnikov 2009).

� Present address: School of Mathematics and Statistics, University
of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK

Properties of waves in 2D and 3D straight loops/slabs were
described by Edwin & Roberts (1982, 1983) and Roberts et al.
(1984). Several papers also describe the effect of the excitation
of different kinds of oscillations by a periodic driver. Murawski
& Goossens (1994) excited fast waves in a 2D slab by means
of periodic photospheric shearing motions. They found that the
type of excited wave (kink or sausage) depends on the polar-
ization of the driver. Ruderman et al. (1997) studied resonant
Alfvén oscillations in coronal arcades driven by toroidal foot-
point motions. The authors calculated expressions for both the
total amount of dissipated wave energy and its spatial distribu-
tion within the resonant magnetic surface. Tirry & Poedts (1998)
studied the heating of 2D coronal arcades by linear resonant
Alfvén waves that are excited directly by photospheric toroidally
polarised footpoint motions. Taroyan et al. (2005) studied the
excitation of slow standing waves in a 1D loop by footpoint
heat deposition. They found that the time profile of the long-
lasting pulse determines whether a standing or propagating wave
is excited. Zaqarashvili et al. (2005) suggested that the periodic
shaking of coronal magnetic field lines due to photospheric mo-
tions may induce the excitation of slow magnetoacoustic waves
in short coronal magnetic structures. They found that harmonics
of slow magnetoacoustic waves with half the frequency of the
photospheric driver had an exponential growth in time that was
proportional to the amplitude of photospheric motions and to
the value of the plasma β in the corona. Brady & Arber (2005)
studied numerically the excitation of vertical kink waves in a
2D curved loop with a velocity driver at one of its footpoints.
They found that the maximum wave period, which can suc-
cessfully be excited by the footpoint driving mechanism, cor-
responds to the fifth harmonic of the loop. In this paper, we
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extend the approaches of both Selwa et al. (2005, 2006, 2007a)
and Brady & Arber (2005) by perturbing the loop with an os-
cillatory pressure that acts on the whole loop from the ambient
medium. Ballai et al. (2008) studied kink waves in straight cylin-
drical loop excited by EIT waves. The authors found that for a
harmonic driver the dominant period in the generated oscillation
belongs to the driver while in the case of a non-harmonic driver
(modelling a shock wave) the generated oscillations in the loop
are of natural periods only. This paper is devoted to a 2D MHD
study. A review of 3D MHD studies of coronal loop oscillations
can be found in Ofman (2009).

This paper is organized as follows. The numerical model
is described in Sect. 2. The numerical results are presented in
Sect. 3. This is followed by a summary and discussion of the
main results in Sect. 4.

2. Numerical model

We describe coronal plasma by the ideal magnetohydrodynamic
equations with polytropic index γ = 5/3:

∂�

∂t
+ ∇ · (�V) = 0, (1)

∂ (�V)
∂t

+ (V · ∇) �V = −∇p +
1
μ

(∇ × B) × B, (2)

∂E
∂t
+ ∇ ·

[(
E + p +

B2

2μ

)
V − BB · V

μ

]
= 0 , (3)

∂B
∂t
= ∇ × (V × B) , (4)

∇ · B = 0. (5)

Here μ is the magnetic permeability, � is mass density, V is flow
velocity, p is gas pressure, B is the magnetic field and the plasma
energy density is expressed as:

E =
�V2

2
+

p
γ − 1

+
B2

2μ
· (6)

Since the vertical pressure-scale height of ∼50 Mm is compa-
rable to the height of the loop (∼50 Mm), the effects of gravity
can be neglected to first approximation. Similarly, as our aim
is to study standing fast magnetosonic waves that involve short
timescales, non-ideal effects can be neglected.

2.1. Equilibrium configurations

We adopt and modify the coronal arcade model described in
Selwa et al. (2005, 2006, 2007a). In this model, the coronal ar-
cade is embedded in a two-dimensional motionless environment
(Ve = 0; all variables referring to the environment are denoted
by subscript “e”) in which mass density �e = const and gas pres-
sure pe = �ec2

se/γ has to be constant. Here cse is the sound speed
in the ambient medium. From the momentum Eq. (2), it follows
that in this equilibrium configuration the Lorentz force must van-
ish, i.e.,

1
μ

(∇ × Be) × Be = 0. (7)

This equation can be solved by a potential magnetic field

∇ × Be = 0. (8)

Since we limit our discussion to a two-dimensional magnet-
ically structured atmosphere for which the plasma quantities

Table 1. Equilibrium and normalization parameters for the potential ar-
cade and the loop.

�
[

kg
m3

]
VA

[
Mm

s

]
cs

[
Mm

s

]
B0 [G] T0 [MK]

Arcade 10−12 1 0.2 11 2.9
Loop 10−11 0.316 0.2 11 0.29

are independent of the spatial coordinate y, i.e., ∂/∂y = 0, the
equilibrium magnetic field Be = [Bex, 0, Bez] has two non-zero
components that are specified by the vector magnetic potential
A = Aŷ as

Be = ∇A × ŷ. (9)

Here ŷ is a unit vector along the y-direction and A satisfies
Laplace’s equation, ∇2A = 0 with its solution

A(x, z) = B0ΛB cos (x/ΛB)e−z/ΛB . (10)

This method leads to the equilibrium magnetic field components

Bex = B0 cos (x/ΛB)e−z/ΛB , (11)

Bez = −B0 sin (x/ΛB)e−z/ΛB , (12)

where B0 is the magnetic field at the level z = 0 and ΛB is the
magnetic scale height such that

ΛB =
2L
π
· (13)

Here L is the horizontal half-width of the arcade. In this
model, the Alfvén speed in the environment is given by VAe =
|Be|/√μ�e.

Following Selwa et al. (2005, 2006, 2007a) we model a
denser loop that is embedded in the arcade in such a way that
its edges follow two specific magnetic field lines. We choose
xf = ±0.7 L as footpoints of the loop and w = 0.0125 L as its
half-width at the footpoints. Such a loop does not have a perfect
circular shape, but its average radius and length can be estimated
to be 70 Mm and 190 Mm, respectively. The mass density is en-
hanced in the loop compared to the ambient medium. Initially a
top-hat density profile is introduced into the loop. For the mass
density contrast, we choose d = �i/�e = 10, where �i denotes the
mass density within the loop and �e corresponds to the ambient
medium. This density contrast was chosen to remain consistent
with our earlier computations (Selwa et al. 2005, 2006, 2007a).
Note that the Alfvén speed within the loop is smaller than in the
ambient medium (VAi = VAe/

√
d). As a consequence, the loop

forms a wave guide for fast magnetosonic waves (as described
in Edwin & Roberts 1982). Because of the decrease in mag-
netic field strength with height and the constant pressure loop,
the plasma β = 2cs

2/(γVA
2) grows from 0.048 at the loop foot-

points to 0.125 at the loop apex and the loop is cooler than the
surrounding corona. It may affect slow waves evolution as their
speed is lower inside the loop than in the outer part of arcade.
The influence of the sound speed on fast magnetosonic speed is
minor in low β plasma, and therefore the lower loop tempera-
ture is not expected to affect our results significantly. Recently
Ugarte-Urra et al. (2009) found that cooler loops, e.g., at transi-
tion region temperatures are observed in active regions (mainly
peripheral parts) and reach heights of 150 Mm in the corona
above the limb. All equilibrium parameters are listed in Table 1.
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Fig. 1. Initial mass density profile. Note the logarithmic scale on the
vertical axis.

3. Numerical simulations

We adopt the numerical code Athena developed by Gardiner &
Stone (2005). This code implements a higher-order Godunov
method for solving time-dependent ideal MHD equations. This
algorithm, which is based on the piecewise parabolic method, is
second-order accurate in space and time. Equation (5) is satisfied
by using a constrained transport scheme.

Equations (1)–(5) are solved numerically in an Eulerian box
with the x- and z-dimensions (−L, L) × (−0.2 L, 2.8 L). This box
is covered by a uniform grid of 400 × 600 numerical cells. Grid
convergence studies have shown that this resolution is sufficient
for obtaining results independent of the grid.

We apply open boundary conditions with a zero-gradient ex-
trapolation of all plasma variables at all the boundaries to al-
low a wave signal to freely leave the simulation region. Instead
of adopting the line-tying boundary conditions at the bottom of
the simulation region implemented by Selwa et al. (2005, 2006,
2007a), we model wave reflection from the bottom boundary by
implementing a dense photosphere-like layer for z < 0 region
given by

�0(z) = �e

{
1 +

dph − 1

2

[
1 − tanh

(
z

sph

)]}
· (14)

Here dph = �ph/�e = 1000 is the photospheric mass density
contrast and sph = 2.5 Mm enables the smoothness of the density
profile to be controlled. The equilibrium structure of the loop and
the photospheric layer is shown in Fig. 1.

3.1. Perturbations

To excite the oscillations, we implement a damped oscillatory
driver in gas pressure given by

δp(x, z, t) = Ao peS (x, z)S (t), (15)

where

S (x, z) = exp

[
−

( x − xo

w

)2
]

exp

[
−

(z − zo

w

)2
]
, (16)

S (t) =
1
2

[
1 + cos

(
2π
Po

t

)]
exp

(
− t
τo

)
· (17)

Here Ao denotes the amplitude of the driver, whose initial po-
sition is denoted by (x0, z0) and whose width is given by w.
Symbols Po and τo are the wave period and attenuation time of

Fig. 2. Several time signatures of an oscillator with wave period Po =
400 s and τo = 50 s (red line), τo = 100 s (yellow line), τo = 200 s
(green line), τo = 400 s (blue line), and τo = 800 s (violet line). The
initial amplitude of the perturbation is normalized to unity.

Table 2. Impulse over unit area1 equivalent to the oscillator with pa-
rameters Ao = 0.025, Po = 400 s.

τo [s] δpt
50 1.01

100 1.49
200 1.89
400 2.17
800 2.32

the pulse, respectively. We choose x0 = 0, z0 = 0.25 L, and
w = 0.25 L. Selwa et al. (2006) studied the influence of the
position and width of a single pulse on the excitation, attenu-
ation, and other properties of oscillations. Note that spatial pa-
rameters are fixed for both kinds of excitation. Several examples
of time signatures of an oscillatory driver are shown in Fig. 2,
where we plot drivers with different attenuation times. All have
amplitudes, δp, normalized to unity and Po = 400 s. Table 2
shows the pulse amplitude, Ap, corresponding to the oscillator
with parameters Ao = 0.025, and Po = 400 s for different τo.
Here we assume that the driver acts within the time interval
0 < t < 200 s. This time interval corresponds to the time be-
fore the driver reaches its first minimum, which occurs before
the loop oscillations display their first maximum. As a result,
this part of the driver can act like a single pulse if the attenuation
is sufficiently rapid.

To be able to compare with the results of Selwa et al. (2005,
2006, 2007a), we also perturb the static solution of Eqs. (1)–(5)
by launching a hot pulse in the gas pressure, i.e.,

δp(x, z, t = 0) = Ap peS (x, z), (18)

where Ap is the relative amplitude of the pulse.

3.2. Results

We begin our studies by launching an initial pulse in gas pressure
according to Eq. (18). Since this case will be used for compari-
son purposes with excitation by an oscillatory driver, we choose
an amplitude that provides a comparable integral over time as
an osillatory driver until the first minimum in its time signa-
ture: Ap = 2.5 (see Table 2). Next we excite oscillations by an
oscillatory driver (Eq. (15)). As a reference value, we choose

1 Calculated to be the area beneath the curve within the time interval
0 < t < 200 s.
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Fig. 3. Time-signatures of the mass density (color scale; units of �e)
at the loop apex. Oscillations are excited by a pulse (top panel) and a
damped oscillatory driver (middle panel). Spatial coordinates and time
are measured in units of L and seconds, respectively. Bottom panel
shows time signatures of the mass density at the loop’s apex after re-
moving trends from the top (dashed line) and middle (solid line) panel,
respectively.

Ao = 0.025, Po = τo = 400 s. Figure 3 shows the time sig-
natures of mass density collected at the loop apex for impul-
sive (top panel) and oscillatory (middle panel) excitation, respec-
tively. The oscillations excited by the oscillatory driver (middle
panel) are less attenuated than those produced by impulsive ex-
citation (top panel) as we demonstrate by means of the analysis
in this section (although the difference is not clearly visible from
Fig. 3).

To identify the excited mode of oscillations, we plot differ-
ence images of the loop between the initial state (t = 0) and the
first maximum observed in the time series of loop apex height
(t = 250 s) (top panel of Fig. 4) and between the first maximum
(t = 250 s) and the following minimum (t = 400 s) (bottom panel
of Fig. 4). We clearly see that the fundamental mode of the ver-
tical kink oscillation is excited. This matches both the observa-
tional data (compare with Fig. 3 in Wang & Solanki 2004) and
impulsively excited oscillations (compare with Fig. 2 in Selwa
et al. 2005). Local enhancements (white patches), seen among

Fig. 4. Difference images of the loop in the case of oscillatory excitation
(Ao = 0.025, Po = τo = 400 s). Top panel corresponds to the difference
between initial state and the first maximum of the oscillation (bottom
panel of Fig. 3), bottom panel shows the difference between the first
maximum in time and the following minimum. Yellow indicates a pos-
itive difference (i.e., the new position of the loop) while the blue colour
corresponds to a negative difference, i.e., with respect to the loop at an
earlier time.

yellow arcs indicating the new position in time of the loop in the
lower panel, correspond to slow magnetosonic waves that prop-
agate along the legs of the loop (Selwa et al. 2006). These waves
are produced by magnetic compression of the loop that also leads
to the evacuation of part of the mass from the apex, which can
be seen in both panels of Fig. 3 and the bottom panel of Fig. 4.
At a later stage of the evolution, the mass density at the loop’s
apex is again enhanced (not shown) after the reflection of the
slow waves from the footpoints of the loop – this process leads
to the formation of a slow standing wave (Selwa et al. 2007b).
The other feature that amplifies the effect of mass rarefication at
the apex is numerical diffusion discussed qualitatively and quan-
titatively by Selwa et al. (2006, 2007a).

We trace the global oscillations of the loop discussed above
by following the position of the loop apex in time estimated by
the maximum of a Gaussian function fitted to the mass density
profile across the loop’s cross-section at its apex

G(z) = G0 · exp

[
− (z −G1)2

2G2
2

]
+G3, (19)

where G1 denotes the position of the loop apex, G0 + G3 is the
amplitude of the Gaussian function (mass density at the loop
apex), and G2 is the half-width of the Gaussian function (half-
width of the loop). Before carrying out any further analysis, we
removed any long term trend by smoothing the time signature to
obtain pure oscillations of the apex position versus time. Then
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Fig. 5. Offset of the loop’s apex (measured in units of L) versus am-
plitude of the oscillator with Po = τo = 400 s. Thick green symbol
corresponds to excitation by a pulse.

we fitted a damped sine function to constrain the wave periods
and attenuation times of the oscillations:

D(t) = D0 + D1 · sin

(
2π
P

t + D2

)
exp(−t/τ) , (20)

where P denotes the wave period of the oscillation and τ is the
attenuation time. The offset of the loop’s apex resulting in a long-
term trend strongly depends on the strength of the driver (i.e., Ao
shown in Fig. 5).

We begin our parametric studies with an impulsively ex-
cited wave. The fitting described by Eq. (20) provides Pp = 424
(440) s and τp/Pp = 1.03 (0.97) for a fit to part of the oscillation
time series containing 2 (3) maxima (top panel of Fig. 3). The
subscript p identifies the quantities related to the excitation by
the pulse. Although this wave period is about two times longer
than the observed∼ 230 s period of the displacement oscillations
(Wang & Solanki 2004), it can be reduced to the exact observa-
tional value with a different choice of the Alfvén speed, VAe, in
the corona, which is a free parameter in our model. However,
the attenuation time is approximately three times shorter than
the observed value of τ/P ∼ 3 (Wang & Solanki 2004), irrespec-
tive of the choice of Alfvén speed, VAe. The dimensionless ratio
τ/P is expected to be independent of VAe in the linear regime.
Parameters such as the amplitude or width of the pulse also in-
fluence the wave period and attenuation time: e.g., a narrower
and smaller amplitude pulse results in shorter wave periods and
less attenuated oscillations (Selwa et al. 2006), which, however
are still attenuated too quickly. The inferred period is close to
the kink period of the loop, which in 2D is given by

Pk =
2l

VAe
, (21)

where l is the loop length. The choice of external Alfvén speed
for calculation of the period is not so straightforward. Since the
equilibrium magnetic field exponentially decreases with height,
we decided to estimate the period with the mean value of Alfvén
speed outside the loop, e.g., (VAemax +VAemin )/2, where VAemax and
VAemin are maximum/minimum values of Alfvén speed around
the loop. This estimation infers the period ∼515 s. This value is
∼20% higher than the derived value. However, from Fig. 4 we
know that the observed mode is a vertical kink mode. A differ-
ence in period produced by averaging in the estimated external
Alfvén speed, may be caused by the complex geometry of the
system (curved loop with non-uniform cross-section) and the ef-
fect of including a photospheric boundary instead of line-tying
at the coronal boundary of the loop footpoints.

The top panel of Fig. 6 displays the wave period P versus the
relative amplitude of a driver Ao (for Po = τo = 400 s) in the case
of a fit based on 2 (squares) or 3 (crosses) maxima in the corre-
sponding time signature (middle panel of Fig. 3). In Figs. 6–8,
points corresponding to impulsive excitation are plotted in green.
They are shown for comparison purposes. We clearly see that
for a low amplitude driver, the wave period of the oscillations is
close to the wave period of the oscillation excited impulsively,
Pp, because only the first peak of the driver is significant enough
to excite oscillations. For a larger driver amplitude, the wave
period of the oscillations tends toward the wave period of the
driver (Po = 400 s). Up to Ao = 0.04, the trends based on 2 and
3 maxima fits in P(Ao) are consistent. However, for larger am-
plitudes they exhibit the converse behavior, because a stronger
pulse produces a higher shift of the loop apex and the entire loop
is more stretched so that its length changes significantly. As a
consequence of that, the distance between the loop and the driver
increases resulting in a decrease in the observed wave frequency
(increase in wave period) between the first and the second max-
ima in time signatures. In this way, we observe the influence of
the Doppler effect. Because the loop is shifted mainly between
the 1st and the 2nd maximum, the Doppler effect influence is
visible mainly for the fit with 2 maxima (squares). We estimated
analytically the change in observed period, δP, caused by the
Doppler effect

P + δP =
VA + Vs

VA
P, (22)

where Vs =
ΔL
Δt is the velocity at which the loop recedes from

the driver, measured from the shift of the apex of the loop, ΔL,
in time, Δt. The periods calculated from Eq. (22) agree with val-
ues shown in Fig. 6 with squares for P → Po. The fit based
on 3 maxima (crosses) is much less affected by the “Doppler
effect”, because after the second maximum the position of the
apex is almost fixed (bottom panel of Fig. 3) and the Doppler
effect becomes very small.

As shown by Selwa et al. (2007a), a major attenuation mech-
anism of vertical kink oscillations in a 2D ideal MHD model is
energy leakage. It was found that energy leakage causes atten-
uation to increase for longer period oscillations. Since the exci-
tation mechanism does not change the properties of the plasma,
we expect that the attenuation mechanism should be the same
for both impulsive and oscillatory excitation. Indeed, the middle
and bottom panels of Fig. 6 show the attenuation time measured
in units of wave period, τ/P, versus the relative amplitude of the
driver, Ao, and versus wave period, P. It is clear that the normal-
ized attenuation time, τ/P, falls off for longer period oscillations.
This agrees with the findings of Selwa et al. (2007a) for the en-
ergy leakage mechanism (compare with the top panel of their
Fig. 8). We plot only crosses in this panel to avoid the results
being too strongly affected by the Doppler effect. Note the high
τ/P values reached for large Ao.

Next we hold the amplitude and attenuation time of the driver
fixed: Ao = 0.025, τo = 100 s, and vary its period Po. Figure 7
displays the wave period P and attenuation ratio τ/P of the oscil-
lations versus the period of the oscillator. For this value of τo, we
expect the oscillatory driver to behave like a single, long-lasting
pulse that is almost independent of Po except at the shortest peri-
ods (e.g., red and yellow curves in Fig. 2). From the top panel of
Fig. 7, we see that a short-period strongly attenuated driver ex-
cites oscillations with wave periods close to the value obtained
by an impulsive excitation (green). As the period of the oscilla-
tor increases, we observe a small change (decreasing trend) in
the periods of the oscillations (<10% P). If Po/τo ≤ 1, then the
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Fig. 6. Wave period, P, (top panel) and the ratio of attenuation time τ
to wave period, τ/P, (middle panel) of vertical loop oscillations versus
amplitude of the oscillator with Po = τo = 400 s. Bottom panel displays
the normalized attenuation time τ/P versus wave period of the oscil-
lations, P. Thick green symbols correspond to excitation by a pulse.
Squares (crosses) correspond to damped sine function fits including 2
(3) significant maxima of the damped oscillations.

driver acts like a real oscillator (note the high τ/P value in the
bottom panel of Fig. 7 for small Po). However, as Po increases
we indeed find a long-lasting single pulse and τ/P drops to the
value expected for a pulse excitation. Note that the driver peri-
ods were chosen to be close to a fraction or a multiple of the
loop’s eigenperiod. Drivers with periods that do not fulfill this
criterion (e.g. 300 s) do not excite an eigenmode and give rise to
extremely strongly damped oscillations.

Next we vary the attenuation time of the oscillator with its
amplitude (Ao = 0.025) and period (Po = 400 s) fixed. The top
panel of Fig. 8 shows yet again that the strongly attenuated oscil-
lator (τo � Pp) acts like a single pulse and both the wave period
of the excited oscillation and its attenuation time tend to the val-
ues for an impulsive excitation (green color). For higher values
of the attenuation time of the oscillator (less attenuated driver),
the wave period of the excited oscillation tends to the period of
the driver, Po. The middle panel of Fig. 8 shows that the oscilla-
tions are less attenuated for a less attenuated driver. The steady
increase in τ/P with τo is particulary striking. The bottom panel
of Fig. 8 shows a similar trend as the bottom panel of Fig. 6,
which again agrees with the findings of Selwa et al. (2007a, their

Fig. 7. Wave period, P, (top panel) and the ratio of attenuation time τ
to wave period, τ/P, (bottom panel) of vertical loop oscillations versus
period of the oscillator with amplitude Ao = 0.025 and attenuation time
τo = 100 s. Symbols are the same as in Fig. 6.

Fig. 8) that energy leakage is a viable attenuation mechanism for
vertical kink oscillations.

4. Summary

We have carried out the first study of vertical kink oscillations in
a 2D curved loop excited by an oscillatory driver outside the
loop. This driver could model a shock with a wave train be-
hind it excited by a flare. Our numerical results show that the
oscillations excited by the attenuated periodic driver are in gen-
eral less attenuated than those excited by a pulse. The ratio of
τ/P becomes close to the observational value (τ/P ∼ 3, Wang
& Solanki 2004) for short-period slowly attenuated drivers.
Impulsive excitation results in rapid attenuation (τ/P ∼ 1), sim-
ilar to the excitation by a footpoint driver in velocity studied by
Brady & Arber (2005), who calculated the decay time for the
fundamental mode (0.18 wave periods) based on an extrapola-
tion from higher harmonics. We find that the agreement of the
damping time to period ratio between our model and observa-
tion is an encouraging result, suggestive of the form of the ex-
citation mechanism of vertical oscillations observed in coronal
loops. On the other hand, impulsive excitation results in a time
signature that is closer to the observations (top panel of Fig. 2 in
Wang & Solanki 2004) since the time-signature of the loop apex
of the oscillations excited by the oscillator displays a strong up-
ward shift (Fig. 3). This is an artifact of the chosen expression
for the driver (Eq. (15)), which gives perturbations that are en-
tirely positive (i.e., only pressure enhancements) and results in
a higher shift of the apex due to positive flux of energy into the
system. We realize that this driver may approximate poorly the
conditions in the solar corona, but we wish to avoid setting nega-
tive pressures in the code, which could otherwise arise for large-
amplitude drivers. In excitation by a pulse, the eigenoscillation
is set up naturally in a coronal loop. A restriction of a driven
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Fig. 8. Wave period, P, (top panel) and the ratio of attenuation time τ
to wave period, τ/P, (middle panel) of vertical loop oscillations versus
attenuation time of the oscillator with Po = 400 s. Bottom panel dis-
plays the normalized attenuation time τ/P versus wave period of the
oscillations, P. Symbols are the same as in Fig. 6.

system is that only if a driver period is close to the eigenperiod
it generates an eigenoscillation.

Typically, an external oscillatory driver with a given fre-
quency in an active region will be able to excite transverse os-
cillations only in a small subset of loops, namely those whose
eigenfrequencies are close to the frequency of the driver. This
can explain why only very few loops of an active region are ex-
cited to oscillate transversally after an energetic event such as a
flare. An impulsive driver, which harbours a very wide range of
frequencies, should excite a much larger fraction of all loops.

We also showed that a rapidly damped oscillator acts like a
single pulse. By varying the period of the driver it is possible
to excite oscillations that resemble a fundamental vertical kink
mode, but which are just a very strongly attenuated simple re-
sponse of the loop to a periodic driver. In addition, our results
are consistent with the findings of Selwa et al. (2007a) that ver-
tical kink oscillations are attenuated because of energy leakage.

In this study, we did not change the properties of the loop,
such as the spectrum of eigenfrequencies, F(ω), by switching
between impulsive excitation and the excitation by the damped
oscillatory driver. However, the observed change in decay rates
(and periods) can be explained in terms of changing the con-
volution F(ω) ∗ R(ω), where R(ω) is the response function of

the loop for the excitation mechanism. Although the oscillator
is characterized by a single wave-period Po, it corresponds to a
more complex Fourier spectrum. This is partly related to the de-
cay of its amplitude with time and also its spatial structure. So,
the oscillator launches a continuous spectrum of wave-periods
centered around Po. If Po fits the eigenperiod of the loop, Pp,
then the excited oscillations will be magnified by the oscillator.
On the other hand, in the case of a mismatch between Po and Pp,
loop oscillations receive signals from waves produced because
the oscillator is out of phase (at unsuitable moments of time). As
a result, loop oscillations are incoherent to the oscillator and the
loop exhibits more complex oscillations, which are more attenu-
ated.

In the applied model, we have neglected several important
factors such as the three-dimensional geometries of loops and
the flare site, radiative losses, and gravitational stratification. A
2D model is more apropriate to the excitation of vertical oscil-
lations than other transverse oscillation modes, since the source
of the initial pulse must be located in or near the loop plane.
However, the absence of the third dimension may result in higher
leakage, especially with initial top-hat loop density profile be-
coming diffused with time, and smooth loop edges being another
factor that increases the leakage.

One possible extension of our model is to study more realis-
tic drivers such as with random parameters (Ao or τo). A possi-
ble way of reducing the offset is to replace the pressure driver by
a vertical (or perpendicular to the loop) velocity driver, which,
according to Gruszecki et al. (2008, private communication), re-
sults in a lower offset because it is not associated with an internal
energy (slow waves).
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