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ABSTRACT

We present numerical results of coronal loop oscillation excitation using a three-dimensional (3D) MHD model
of an idealized active region (AR) field. The AR is initialized as a potential dipole magnetic configuration with
gravitationally stratified density and contains a loop with a higher density than its surroundings. We study different
ways of excitation of vertical kink oscillations of this loop by velocity: as an initial condition, and as an impulsive
excitation with a pulse of a given position, duration, and amplitude. We vary the geometry of the loop in the
3D MHD model and find that it affects both the period of oscillations and the synthetic observations (difference
images) that we get from oscillations. Due to the overestimated effective length of the loop in the case of loops
which have maximum separation between their legs above the footpoints (>50% of observed loops), the magnetic
field obtained from coronal seismology can also be overestimated. The 3D MHD model shows how the accuracy of
magnetic field strength determined from coronal seismology can be improved. We study the damping mechanism of
the oscillations and find that vertical kink waves in 3D stratified geometry are damped mainly due to wave leakage
in the horizontal direction.
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1. INTRODUCTION

Solar space based Extreme Ultraviolet (EUV) telescopes such
as SUMER on board the Solar and Heliospheric Observatory
and the Transition Region and Coronal Explorer (TRACE)
facilitated in the detection of various oscillation modes in
solar coronal loops. The most important discoveries concern
propagating (Berghmans & Clette 1999; Robbrecht et al. 1999;
De Moortel et al. 2002) and standing (Kliem et al. 2002; Wang
et al. 2002) slow magnetosonic waves as well as observations
of fast kink magnetosonic waves (Nakariakov et al. 1999;
Aschwanden et al. 1999; Aschwanden et al. 2002; Schrijver et al.
2002; Wang & Solanki 2004). Kliem et al. (2002) discovered
periodic Doppler shift oscillations associated with flares and
interpreted them as MHD waves. The oscillations were later
identified as standing slow magnetosonic waves by Wang et al.
(2003). The third branch of detected waves consists of short
period fast sausage waves (Nakariakov et al. 2003; Aschwanden
et al. 2004).

Among fast kink waves two kinds of oscillations may be
distinguished: horizontal (Nakariakov et al. 1999; Aschwanden
et al. 1999; Aschwanden et al. 2002; Schrijver et al. 2002) and
vertical (Wang & Solanki 2004). Both of them lead to an asym-
metric displacement of the loop, with the difference, however,
that vertical oscillations are planar oscillations while horizontal
oscillations are fully three-dimensional (3D) oscillations. They
also differ in how they affect loop properties: vertical oscilla-
tions can change the loop length and as such are compressible,
while the loop length remains fixed for horizontal oscillations.
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Other properties, such as period and damping time do not vary
significantly between these types or polarizations of kink mode
oscillations.

One common feature of these observations is that the os-
cillations decay quite rapidly. Several mechanisms have been
suggested to explain the rapid damping of loop oscillations,
e.g., wave leakage (Smith et al. 1997; Selwa et al. 2007), en-
hanced viscosity (Nakariakov et al. 1999), resonant absorption
(Ruderman & Roberts 2002), and phase mixing (Ofman &
Aschwanden 2002). Ofman & Wang (2002) showed that thermal
conduction can account for the damping of slow mode waves
observed by SUMER. Resonant absorption was studied in 3D
geometry (Ruderman & Roberts 2002), but the authors restricted
their study to the linear regime and a straight cylindrical loop.
Nonlinear 3D MHD studies of loop oscillation damping by wave
leakage in curved (dipolar) active region (AR) geometry were
performed recently by McLaughlin & Ofman (2008) and Selwa
& Ofman (2009, 2010); see also the review by Ofman (2009b).
They found that fieldline curvature can significantly enhance
the leakage rate compared to a straight cylindrical loop with the
same parameters.

Kink oscillations in coronal loops (usually represented by
straight cylinders or slabs) have been studied for decades. Prop-
erties of waves in 3D straight loops were described by Roberts
et al. (1984). The authors suggested that magnetoacoustic oscil-
lations provide a potentially useful diagnostic tool for determin-
ing physical conditions in the inhomogeneous corona. Reviews
of different oscillation properties including other effects such as
stratification, expansion, twist, non-circular cross section, cur-
vature, and collective behavior have been given by Nakariakov
& Verwichte (2005) and Ruderman & Erdélyi (2009). More
properties of oscillations in curved structures are provided
by van Doorsselaere et al. (2009). The authors show that
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curvature introduces leakage effect. Recently, different meth-
ods of excitation of kink waves were studied. The most common
way is an initial perturbation (Selwa et al. 2005, 2006, 2007) or
a time-dependent pulse (Ofman 2007; Selwa & Ofman 2009).
Selwa & Ofman (2010) compared the external excitation mech-
anism with an internal excitation mechanism and found that in
complex ARs only the external one could reproduce observed
time signatures of loop oscillations. Another type of excitation
studied recently is the periodic shedding of Alfvénic vortices
which can explain the excitation of some of the horizontally
polarized kink oscillations (Nakariakov et al. 2009; Gruszecki
et al. 2010).

Full 3D simulations of simultaneously excited vertical and
horizontal oscillations were performed by McLaughlin &
Ofman (2008). However, this model neglects several issues.
The main simplification is that the loop density enhancement
does not expand with the flux tube height. Recently, Pascoe
et al. (2009) studied impulsively excited oscillations in an ar-
cade loop. The authors found that the global transverse kink
mode is efficiently excited for a range of attack angles (angles
measured at the height of the apex of the loop from the line
perpendicular to the loop in the horizontal direction) for pulses
located at the height of the loop’s apex. However, the amplitude
of the oscillations decreases with the angle, while the frequency
remains the same. Selwa & Ofman (2010) showed that observed
kink oscillations are likely to be excited by external drivers only,
and the curved topology of AR loops is necessary to under-
stand the whole dynamics of loop oscillations. Selwa & Ofman
(2009) studied transverse oscillations in a 3D curved gravity-
free loop and slow standing mode in a curved dipolar stratified
loop. Other 3D numerical simulations concern straight cylin-
drical loops. Propagating waves (slow, fast kink, and sausage)
were studied by Selwa et al. (2004). Terradas & Ofman (2004)
used 1D, 2D, and 3D models to explain density enhancements
within the loop. Ofman (2005) studied kink waves and presented
several 3D models of the loops including straight cylinder and
four cylindrical loops. Ofman (2009a) studied the behavior of
multiple cylindrical twisted loops. Ofman & Thompson (2002)
and Ofman (2007) studied wave behavior in 3D ARs based on
a dipole field and magnetogram data, respectively. However,
their models did not include a denser loop structure, which is
necessary to examine wave trapping and leakage.

In this paper, we focus mainly on simulations of fast kink
oscillations. One goal of this paper is to extend the Ofman &
Thompson (2002), McLaughlin & Ofman (2008), and Selwa
& Ofman (2009, 2010) models. Ofman & Thompson (2002)
studied the waves in an AR modeled as a dipole magnetic
field with a gravitationally stratified atmosphere. McLaughlin
& Ofman (2008) extended that model by adding a curved
denser cylindrical loop that follows a chosen fieldline in the
AR. However, their loop had a constant circular cross section
which is an unrealistic model of a loop in a potential dipole field.
Selwa & Ofman (2009, 2010) extended the model by adding a
denser loop with variable cross section that expands with height
in accordance with the flux tube structure in the dipole field. We
vary the properties (mainly geometrical) of the pulse and the
loop in order to better understand the mechanisms of excitation
and damping of kink oscillations and their effect on coronal
seismology.

The paper is organized as follows. The numerical model is
described in Section 2. The numerical results are presented in
Section 3. The paper is concluded by a short summary of the
main results in Section 4.

2. NUMERICAL MODEL

We describe solar plasma with the 3D nonlinear dimension-
less resistive MHD equations with gravitational effects included:

∂�

∂t
+ ∇ · (�V) = 0 , (1)

�

[
∂V
∂t

+ (V · ∇) V
]

= − Eu∇p + (∇ × B) × B

− �ẑ

Fr (Rs + z − zmin)2 , (2)

∂B
∂t

= ∇ × (V × B) +
1

S
∇2B . (3)

Here � denotes the mass density, V is the plasma velocity, B
is the divergence-free (∇ · B = 0) magnetic field vector, p is
plasma pressure, Rs is solar radius, and ẑ is the unit vector in the
vertical direction. The approximate form of the gravity term is
applicable for the Cartesian box in our study. The dimensionless
Euler number Eu, Froude number Fr, and Lundquist number S,
are given as

Eu = β

2
= c2

s

γ c2
A

, (4)

Fr = V 2
0 Ls

GMs

, (5)

S = LsV0

η
, (6)

where plasma β is the ratio of the thermal to the magnetic
pressures, cs and cA denote the sound and Alfvén speeds,
respectively, V0 is a typical speed of the system, Ls is a typical
length scale in the system, G is the gravitational constant, Ms
denotes the solar mass, and η is resistivity. We neglect explicit
viscosity in the model presented here. For simplicity, we study
the isothermal case (γ = 1) and therefore p = nkBT0. Here,
n is particle density, kB denotes Boltzmann’s constant, and T0
is plasma temperature. Such an assumption is justified as most
of the TRACE loops were observed at a chosen temperature,
generally at close to 1 MK (Fe ix 171 Å filter).

The normalizations of the variables in the MHD equations
are V/vA, t/τA, x/Ls , �/�0, and B/B0. We set the magnetic
field strength of the dipole at B0 = 60 G, temperature T0 =
1 MK, and density n0 = �0/mp = 109 cm−3, where mp
is the proton mass. These values correspond to the Alfvén
speed V0 = 4138.57 km s−1, the isothermal sound speed
cs = 128.5 km s−1, and Alfvén time τA = 16.8 s. Resulting
Euler and Froude numbers are given as Eu = 9.64 × 10−4

and Fr = 9.03. Furthermore, we introduce as a spatial unit
Ls = Rs/10 = 69.55 Mm. We use the value of S = 104

in this study which means that the resistive diffusion time is
10,000 times smaller than the Alfvén transit time. Thus, we are
in the low-resistivity regime. The smallest value of resistivity
that can be represented in a numerical code is determined by
the resolution of the grid. Although the resistivity in the model
is likely still higher than in the solar corona, on the typical
timescale of oscillations of order 100 Alfvén times considered
in this study the resistivity does not affect the magnetic field
significantly.
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2.1. Numerical Code

We adopt the numerical code NLRAT described by Ofman &
Thompson (2002) and developed by Ofman (2007). This code
implements the modified Lax–Wendroff scheme with a fourth-
order Chebyshev smoothing term added for stability (Hamming
1973, p. 571) for solving time-dependent non-ideal isothermal
MHD equations. Powell’s method is used for the correction of
the divergence of the magnetic field.

Equations (1)–(3) are solved numerically in an Eule-
rian box with the x, y, and z dimensions (xmin, xmax) ×
(ymin, ymax)×(zmin, zmax) = (−3.5, 3.5)×(−3.5, 3.5)×(1, 5.5)
or (xmin, xmax) × (ymin, ymax) × (zmin, zmax) = (−3.5, 3.5) ×
(−3.5, 3.5) × (3, 7.5). All spatial coordinates are given in units
of Ls. The numerical box is covered by a uniform grid of
150 × 150 × 130 numerical cells. Grid convergence studies
showed that this resolution is sufficient to resolve the loop and
get results independent of the grid.

We apply open boundary conditions, with a zero-gradient
extrapolation of all plasma variables at all the boundaries except
at zmin, which corresponds to the photospheric boundary to
allow a wave signal to leave freely the simulation region. At the
bottom of the simulation region (zmin), we model wave reflection
from the photospheric layer (z < zmin) by introducing line-tying
boundary conditions:

B (x, y, zmin, t) = B (x, y, zmin + Δz, t) , (7)

V (x, y, zmin, t) = 0, (8)

� (x, y, zmin, t) = � (x, y, zmin + Δz, t) . (9)

2.2. Initial Conditions

As the initial equilibrium magnetic field of our AR, we take
an idealized 3D potential dipole. Magnetic fieldlines are shown
in Figure 1. Detailed formulae describing such a magnetic
configuration can be found in Ofman & Thompson (2002). As
the initial background density, we use a gravitationally stratified
equilibrium density which is the solution of Equation (2) in the
equilibrium state (see also Equation (13) below):

�(x, y, z, t = 0) = �0 exp

{
1

H

[
1

(10 + z − zmin)
− 1

10

]}
.

(10)
Here, H is the normalized scale height expressed as

H = 1

EuFr

= 2kBT0Ls

GMsmp

. (11)

For the set of parameters given above H = 8.7 × 10−3, which
corresponds to a scale height of 60.5 Mm, and plasma β varies
with height (from 0.0025 at the center of the bottom of the
simulation region to 0.5 at the center of the top of the simulation
region).

2.3. The Loop

We model a denser loop located between a chosen set of
magnetic fieldlines. Note that such a loop has a modified Alfvén
speed in comparison to the ambient corona. We use a new
approach to calculate the initial state of a loop, whose boundary
exactly follows a flux tube in a dipole field. For test purposes, a

few cases were also computed for an extended McLaughlin &
Ofman (2008) approach of a “cylindrical loop,” i.e., a loop with
a fixed cross section constructed along a chosen fieldline, which
is the axis of the loop.

While in McLaughlin & Ofman (2008) the increased density
inside the loop was achieved by imposing a discontinuous jump
between �i and �e, we use a smooth density profile which is
closer to observations (Aschwanden et al. 2003), starting in the
x = 0 plane:

�i = �ed exp

[
−

(
(y − y0)2 + (z − z0)2

w

)2
]

. (12)

Here, subscripts i(e) refer to the loop (ambient corona) and d
denotes the density ratio between the loop and ambient corona.
A value of d = 3 is chosen, in agreement with observations
of loops oscillating in the horizontal kink mode (Aschwanden
et al. 2003) and in the vertical kink mode (Selwa et al. 2007).
(x0, y0, z0) = (0, 0, 4) or (x0, y0, z0) = (0, 0, 5.25) denote
the central point of the fieldline chosen as the loop’s axis for
different loops; w = 0.375 is the loop width at the apex.

We study two kinds of loop geometries: closed geometry
and open geometry. The closed geometry loop is defined as a
loop which has maximum separation between its legs at the
middle of the loop’s height, while the open geometry loop has
a maximum separation between its legs at the footpoints. Note
that this nomenclature does not reflect the amount of open flux
in the simulation box. The closed geometry loop resembles the
loop from the McLaughlin & Ofman (2008) studies, while the
open geometry loop shows more resemblance to the arcade loop
from the Selwa et al. (2005, 2006, 2007) studies. We obtain the
open geometry loop by shifting the photosphere level along
the vertical axis. The density profiles along the y = 0 cut
together with 3D plots of the loop and fieldlines of these loops
are shown in Figure 1 (gravitational stratification is neglected
to enhance clarity in the figure; the computations are carried
out with gravitational stratification included). The plotted loops
correspond to the new approach, with variable cross section,
such that the loop’s boundary traces fieldlines. The loop width
w = 0.375 is chosen for two reasons: (1) it is sufficiently wide
to have several grid points in the footpoint of the loop (2) and is
also sufficiently wide to resolve the boundary of the loop.

We calculate the initial state of the flux-tube-filling loop in a
way that we start tracing the loop in the x = 0 plane. Each of
the fieldlines is parameterized with a factor associated with the
value of the Gaussian profile (Equation (12)) which is constant
along the whole fieldline in the flux tube in case (2).

From the momentum Equation (2) in equilibrium it follows
that for such an equilibrium configuration the sum of the Lorentz
force, hydrostatic force, and gravitational force must vanish:

Eu∇p − (∇ × B) × B +
�ẑ

Fr (Rs + z − zmin)2 = 0 . (13)

As the initial magnetic field is potential (∇ × B) = 0 and
plasma β (Euler number) is small in the system, the equilibrium
density profile is the same inside and outside the loop and varies
just by a factor of d. For the same reason, we can choose a
density distribution that is not in exact force balance in the
initial state (e.g., constant radius loop following a fieldline in
a dipole field). Consequently, our loop is near the equilibrium
state at t = 0. However, we expect small adjustments of the loop
across fieldlines during the initial stage of the simulation. In the
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Figure 1. Initial 3D magnetic field configuration of the magnetic field with the flux tube loop for the closed geometry (left panels) and open geometry (right panels)
loops. The top panels present the fieldlines together with the isosurface of density, while the bottom panels display the loop density cut along the y = 0 line. Note
that gravitational stratification is neglected in both cases in order to display the loop more clearly (but the oscillations are computed in the presence of gravitational
stratification). Spatial coordinates are measured in units of Ls. The vertical axis is stretched relative to the horizontal axis in the lower frames.

(A color version of this figure is available in the online journal.)

3D MHD model, the loop rapidly achieves an equilibrium state
through the generation of a small magnetic pressure gradient at
the loop boundary that balances the thermal pressure inside the
loop.

2.4. The Perturbation

In order to excite kink oscillations, we perturb the loop in
the following ways: by initial velocity perturbations (Gaussian
blobs) and by a non-initial pulse originating from the z boundary
(2D, time-dependent, boundary perturbation). The first type of
perturbation is a 3D extension of the perturbation used by Selwa
et al. (2005, 2006, 2007) in 2D arcade studies and consists
of an initial (t = 0) 3D structure (which is not imposed
as a boundary condition and is not time dependent) in Vz

with a Gaussian shape, located below the loop, but above the
boundary:

Vz = AV VA0 exp[−(4x2 + 4y2 + 2(z − z0)2)2]. (14)

Here, AV = 0.1 is the relative amplitude of the pulse, VA0 is the
maximum Alfvén speed at the bottom of the simulation region,
and z0 = 1(2) in the case of closed geometry or 3(4) in the case
of open geometry loops, for two locations of the perturbation,
respectively. Such a structure is either placed below the loop
close to the photospheric boundary (top panels of Figure 2) or
it is located higher up, centered within the loop (bottom panels
of Figure 2).

Another type of perturbation considered here models an
impulsive event (flare) centered below the loop legs (velocity

pulse launched at the bottom boundary, Figure 3):

Vz = AV VA0 exp

[
−

(
x − x0

w

)2
]

exp

[
−

(
y − y0

w

)2
]

× exp

⎡
⎣−

(
2t − (

t1 + t2−t1
2

)
t2 − t1

)8
⎤
⎦ , (15)

where AV = 0.1 is the relative amplitude of the pulse, VA0 is the
maximum Alfvén speed at the bottom of the simulation region
t1 = 2.5τA, t2 = 7.5τA, w = 1.0, and x0 = 0, y0 = 0 (A).

3. NUMERICAL RESULTS

3.1. Geometry of the Loop

We start our studies with the loop shown in the left panels
of Figure 1. Looking for vertical kink oscillations, we perturb
the loop by the initial velocity perturbations shown in Figure 2
(Equation (14)) and by the pulse below the loop in the ver-
tical component of velocity, Vz (bottom panel of Figure 3,
Equation (15)).

The behavior of the 3D closed geometry loop perturbed from
the bottom is plotted in the top panels of Figure 4. Only the
upper part of the loop oscillates vertically. Similar oscillations
of the upper half of the loop are excited when we change the
boundary pulse to the initial perturbation at the photospheric
level or in the middle of the loop so that it is located equally
distant from all parts of the loop (not shown). The lower parts of
the loop remain almost unperturbed. In order to relate our results
to satellite observations, we generate 2D difference images of
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Figure 2. Spatial profiles of the perturbation in the x–z plane cutting through the axis of the loop (y = 0) given at t = 0 (color scales) launched at photospheric level
(top panels) and above—fitting the shape of the loop (bottom panels) in the case of the closed (left panels) and open (right panels) geometry loops. Black contours
show the profile of the loop. Spatial coordinates are given in units of Ls.

(A color version of this figure is available in the online journal.)

Figure 3. Spatial profiles of the pulses launched in the z component of velocity
(bottom panel, x–y plane at z = 1; color scale). Black contours display the
initial position of the loop (different plane than the pulse in the top panel).
Spatial coordinates are given in units of Ls.

(A color version of this figure is available in the online journal.)

the oscillating loops (commonly used to enhance and visualize
small-scale dynamics in observational data) by taking cuts in
the plane through the loop in the 3D model and calculating
running differences between the frames. The difference images
in all these cases are quite distinct from the oscillation of the
loop modeled in 2D arcade geometry by Selwa et al. (2005,
2006, 2007), corresponding to a “breathing-like” motion (i.e.,
loop changing position up and down; a similar signature was
also found by Wang & Solanki 2004 using a simple geometrical
model).

A possible explanation of this mechanism may be that the
non-uniform width of the loop causes non-uniform oscillation
within the loop. To examine the impact of this feature, we change

the geometry of the loop to the cylinder surrounding a chosen
fieldline. Difference images for a cylindrical loop proved that
the oscillation seems to be restricted to the upper part of the loop
(just as in the case of the flux tube loop), while the lower parts
of the loop remain unperturbed, as can also be seen in Figure 7
of McLaughlin & Ofman (2008).

The excitation of the oscillation based on whole loop dis-
placement (as shown in 2D by Selwa et al. 2005, 2006, 2007)
may be associated with the shape of the loop. The 3D open ge-
ometry loop is similar to the 2D potential arcade loop discussed
by Selwa et al. (2005, 2006, 2007). Difference images of oscil-
lations excited by the boundary pulse are shown in Figure 5. We
clearly see that the loop is displaced as a whole, and the highest
amplitude of the oscillation corresponds to the upper part of the
loop (as suggested by Wang & Solanki 2004, irrespective of the
perturbation type studied in this paper, not shown).

A possible explanation of the difference in the vertical
oscillation affecting part of the loop or the whole structure
is associated with the way the Lorentz (j × B) force acts on
the loops of closed and open geometries (Figure 6). As we are
interested only in vertical oscillations, Figure 6 shows only x and
z components of the Lorentz force. The Lorentz force dominates
in a curved (and low β) structure in comparison to the thermal
pressure gradient force, i.e., the total force acts on both the loops
in the same way as the Lorentz force. The ratio of magnetic
and thermal pressure is not the same in the two configurations
studied here, even if they match at one or two points (e.g., apex
and footpoints). The difference between the two geometries is
striking: in the closed loop the Lorentz force at the footpoints
is largest, and directed inward, opposing the oscillations, while
in the open loop the Lorentz force is largest at the apex and
supports oscillations as it moves the loop as a whole. In the
closed geometry loop, the Lorentz force changes sign at a quarter
of the loop length: while vertical oscillation results in an upward
shift of the apex (the part which supports vertical oscillations),
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Figure 4. Running difference images in the x–z plane (at y = 0) of mass density of the closed geometry loop between the initial state and the first maximum in
time signature (left panel) and between the first maximum and the first minimum (right panel), respectively. The perturbation is launched as a zmin boundary pulse
(corresponding to the perturbation shown in Figure 3). White contours correspond to the initial position of the loop. Light (dark) blue areas correspond to an increase
(decrease) in density. Spatial coordinates are given in units of Ls.

(A color version of this figure is available in the online journal.)

Figure 5. Same as Figure 4, but for the open geometry.

(A color version of this figure is available in the online journal.)

Figure 6. Lorentz force (|j×B|, only x and z components considered in this figure, the magnitude is plotted with color scale, while the arrows show the direction) acting
on a loop of closed (left panel) and open (right panel) geometry just before the second maximum displacement of the loop along the y = 0 plane. The perturbation
was launched as a zmin boundary pulse (corresponding to perturbation shown in Figure 3). Spatial coordinates are given in units of Ls; |j × B| (color scale) is given in
arbitrary units; red arrows show the direction of j × B.

(A color version of this figure is available in the online journal.)

the loop legs are squeezed together (contrary to the “breathing”
motion described by Wang & Solanki 2004) and counteract the
oscillation due to the change of sign of curvature (i.e., inflection
point). The scenario for the open geometry loop is different: the
curvature does not change the sign anywhere from its legs to
the apex and leads to a coherent Lorentz force shifting the whole
loop away from the disturbance. Note that the magnitude of the
Lorentz force is the highest at the footpoints in both directions
as the magnetic field is strongest at the bottom of the simulation
region, plasma β reaches its minimum value, and moving the
magnetic fieldlines needs a stronger force than the apex of the
loop. As the plots from the simulations (Figure 6) are affected
by the component of the force directed toward the center of the
loop, we present corresponding schematic figures (Figure 7) for
better explanation of the mechanism.

The geometry of the loop observed by Wang & Solanki
(2004) is closed rather than open, so we expect the vertical

kink oscillation to be localized in the upper part of the loop
rather than displacing the loop as a whole. To examine this
feature, we reanalyze the event from 2002 April 17 observed by
TRACE (195 Å). Panel (a) of Figure 8 shows two loops before
the oscillation took place. The loop outlined with diamonds was
found to oscillate in a vertical kink mode by Wang & Solanki
(2004). Panels (b)–(d) of Figure 8 show difference images for
maximum displacement of the loop. Colors are used to highlight
the displacements more clearly than in the Wang & Solanki
(2004) paper. We observe that mainly the upper part of the loop
is displaced (with the possible exception of the lower footpoint
in panel b), while there is almost no motion near the footpoints,
which agrees well with the results of our simulation.

Next we estimate the period of oscillation:

P = 2L

ck

, (16)
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Figure 7. Schematic diagram showing maximum displacement of the loop of
closed (left panel) and open (right panel) geometry during the oscillation (solid
line contour). The arrows show the Lorentz force (|j × B| acting on the loop’s
apex and legs.

where P is the oscillation period of the fundamental kink mode,
L is the length of the loop, and the kink speed ck is calculated as

ck = VAi

√
2

1 + �e/�i
. (17)

Here, VAi is the Alfvén speed inside the loop and �e/�i is the
density contrast between the outside and inside of the loop. Note
that Equation (17) is strictly applicable only to the cylindrical
straight loop with a discontinuous jump in density between

�i and �e and with otherwise constant density and magnetic
field. In our loop, the density is not uniform along the loop
due to gravity, the magnetic field is variable due to the dipole
geometry, and the transition between �i and �e is continuous.
Therefore, Equation (17) is only approximately applicable to the
present loop model and to real coronal loops. We assume that
the loop length is close to the length of the fieldline belonging
to the midpoint of the apex (axis of the loop). We calculate the
length using the finer grid used for fieldline tracing (initially
five times finer than the grid used in 3D MHD calculations and
refined according to the value of the magnetic field). For the
given choice of central point of the loop, the loop length is
∼7Ls , both for closed and open geometry loops. We assume
a density contrast of �e/�i = 1/d, which is the difference
between the loop’s core and the surrounding plasma. The Alfvén
speed inside the loop is approximated by a mean value between
the footpoints and the apex and reaches VAi = 0.45VA0 for
a closed geometry loop and VAi = 0.275VA0 for an open
geometry loop. Therefore, theoretically predicted periods using
Equation (16) for the closed, Pc, and open geometry, Po, loops
are Pc = 24τA and Po = 44τA, respectively. The periods
that we observe in the simulations are Pcs =∼ 12τA for the
closed geometry loop and Pos =∼ 45τA for the open geometry

(a) (b)

(c) (d)

Figure 8. Observations of the oscillating TRACE loops in the 195 Å channel on 2002 April 17: image containing the analyzed coronal loop outlined by the diamonds
at 11:22:07 (panel a), running difference images (11:24:57—panel b; 11:28:07—panel c; 11:29:49—panel d). Blue color indicates where the loop was in the earlier
image and red where it has moved to (after Wang & Solanki 2004).

(A color version of this figure is available in the online journal.)
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loop. Although the period obtained in simulations of the closed
geometry loop is half the predicted value, the oscillation does
not correspond to the second harmonic of the vertical kink mode
(see difference images in Figure 4—there is no node at the
apex as expected from the second harmonic). Such a reduction
in the period may originate from the partial oscillation of the
loop. A similar (Pc/Pcs ≈ 2) reduction in periods compared
to analytical values was observed also by J. McLaughlin & L.
Ofman (2008, private communication), where also only the top
part of the loop oscillates and by Pascoe et al. (2009, difference
images not shown) in the case of horizontal oscillations. Note
that the period of the oscillation coincides with the analytical
period of the fundamental kink mode in the case of the open
geometry loop where the whole loop is displaced. Also, in
the 2D case studied by Selwa et al. (2005) the period from
numerical simulations matched the analytical period of the
fundamental kink mode in a straight cylinder. Recently, De
Moortel & Pascoe (2009) studied the problem of the difference
between the theoretical and simulated periods and its effect on
coronal seismology. The authors claim that the combined effects
of the loop curvature, density ratio, and aspect ratio may lead
to a reduction in periods. However, their arcade loop is more
similar to our open geometry loop. Computations of horizontal
oscillations of loops corresponding to our closed geometry
would be useful. For the open geometry loop, the period from
numerical simulations matches the analytically calculated one,
so that these effects probably do not play such an important
role. Hence, the geometry of the loop is a hitherto unrecognized,
important factor determining the oscillations period. We find that
the oscillation period is consistent with theoretical expectations
if for L the length of only the part of the loop that oscillates is
counted.

According to Nakariakov & Ofman (2001), the relative
uncertainty in the value of the magnetic field strength, δB, is
given as

δB =
√

(δL)2 + (δP )2 + (δρ/2)2, (18)

where δL, δP , and δρ are relative uncertainties in the estimation
of the loop length, period of kink oscillation, and coronal plasma
density, respectively. The loop geometry is an important factor
and should be taken into account when estimating the magnetic
field strength through coronal seismology, since it can lead to
errors of ∼50% in predicted periods of oscillations and also
in the magnetic field strength (supposing that the period of
oscillation and plasma density is measured without errors, i.e.,
δP = δ� � 0).

Assuming that transversal oscillations are sensitive to the
geometry of the loop, we check in how many cases would
coronal seismology not work correctly if loop geometry is
not taken into account and equations of straight cylinder
oscillations are used. Figure 9 shows the histogram of oscillating
loops (taken from the Aschwanden et al. 2002 and Wang &
Solanki 2004 papers) versus the loop geometry. The geometry
is presented based on circular fits to the loops, where the ratio
h0/r expresses the height of a circle center measured in the
loop plane to the radius of the circular loop. A value of zero
implies an exactly semicircular loop, positive values imply loops
similar to our closed geometry, and negative values imply loops
similar to our open geometry. We find that only 45% of all
loops displaying transverse oscillations has h0/r � 0.1, i.e., an
open geometry. These loops can be used directly to estimate the
coronal magnetic field. For the remaining 55% of the loops, the
magnetic field is likely significantly overestimated. Note that

Figure 9. Histogram of kink oscillations analyzed by Aschwanden et al. (2002)
and Wang & Solanki (2004). The number of oscillating loops is shown vs. the
ratio of the height of the center of the best-fit circle measured in the loop plane,
h0, to the radius of the circular loop, r, expressing the geometry of the loop,
based on data from Aschwanden et al. (2002) and Wang & Solanki (2004). The
arrow indicates the h0/r value obtained for the closed loop studied in this paper
(left panel of Figure 1).

observed loops often have similar, or even larger, h0/r values
than the closed loop studied here, whose h0/r is indicated by
the arrow in Figure 9.

3.2. Damping of Kink Oscillations in AR Loop

As a possible damping mechanism, we find that the leakage
of wave energy from the loop is the main process (Smith et al.
1997). It was found by Selwa et al. (2005, 2007) that vertical
oscillations in the 2D arcade loop are damped through energy
leakage. This was confirmed by McLaughlin & Ofman (2008)
in 3D geometry. Selwa et al. (2005, 2007) detected short period
(compared to global kink mode period) waves propagating out
of the loop in the direction of decreasing Alfvén speed (above
the loop) in the sausage mode. In 3D geometry, the scenario may
be more complicated. Figure 10 shows the time signatures of the
perturbed mass density (top panel), z (vertical, middle panel),
and y (horizontal, top panel) components of velocity inside the
loop and in its nearby surroundings along the horizontal line
at x = 0, z = 5.25 (at the loop’s apex and its surroundings)
after excitation with the pulse centrally located below the loop
(bottom panel of Figure 3, Equation (15)). We observe pure
vertical kink mode oscillations of the loop (middle panel of
Figure 10) and corresponding sausage mode oscillations (with
maximum amplitude just after impact of the pulse exciting the
kink mode) in the horizontal direction (bottom panel Figure 10).
As the sausage mode is leaky, it will leak energy trapped in
the loop due to the vertical kink oscillation in the form of a
horizontal sausage wave.

Brady et al. (2006) and Verwichte et al. (2006) modeled 2D
arcades and searched for leaky and body modes. They found that
damping of oscillations depends on Alfvén speed profiles across
the loop and surrounding plasma. The constant Alfvén speed
atmosphere (with a dip at the loop) results in a lower leakage
rate and slower damping (this is the usual case for a straight
cylindrical loop) than for a non-constant Alfvén speed profile.
Here we consider a similar scenario in 3D. From Figure 11,
we see that the barrier in Alfvén speed for wave tunneling is
lowest in the vertical (z) direction. However, time signatures
show that the oscillation is damped mainly in the horizontal
(y) direction. But during the vertical kink oscillation the loop
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Figure 10. Time signatures (color contours, units of �0 and VA0, respectively)
of mass density (top panel), vertical (Vz, middle panel), and transversal (Vy,
bottom panel) component of velocity collected at the apex of the open geometry
loop and its surroundings (along x = 0, z = 5.25 line). The loop was perturbed
by a bottom boundary pulse corresponding to that shown in Figure 3. Spatial
coordinates are given in units of Ls.

(A color version of this figure is available in the online journal.)

moves downward and upward (toward zmin or zmax boundaries).
When the apex of the loop is shifted downward we end up
with an Afvén speed profile that prevents tunneling (the barrier
is higher). When the apex is shifted upward we might end up
in a regime where no tunneling is necessary for the wave to
leak or just with a mode that is more leaky than the original one.
Leakage depends on the amplitude of oscillations: the higher the
amplitude of the oscillation is, the more the leakage is enhanced
and the damping time gets shorter. This agrees with the results

Figure 11. Alfvén speed profiles of the open geometry loop and surroundings (in
units of VA0) through the apex of the loop in all directions. Spatial coordinates
are given in units of Ls.

of Selwa et al. (2006), who showed that damping time decreases
with the amplitude of the pulse as well as with the shift of the
apex of the loop. The same mechanism would also work for a
purely horizontal mode as the height of the apex changes during
the oscillation.

4. SUMMARY AND CONCLUSIONS

We studied impulsive excitation of 3D oscillations of dense,
gravitationally stratified loops using a 3D MHD model of an
idealized AR dipolar magnetic field. We varied the geometrical
properties of the loops and the pulse and investigated their
impact on the modes of oscillations. We find that loops with
maximum separation at the footpoints (open geometry loops)
exhibit global vertical mode oscillations. This confirms the
results of previous 2D MHD studies of arcade loops by Selwa
et al. (2005, 2006, 2007). However, for loops having maximum
separation in the middle, i.e., closed geometry loops that expand
with height beyond their photospheric footpoints, only their
upper part shows oscillations in a vertical kink mode. The
periods of such oscillations are shorter than the analytically
predicted ones, due to the reduced effective length of the loop
that takes part in the oscillations. We find that the value of
the phase speed is not constant along the loop due to the
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variation of both the magnetic field and loop density with height
and the applicability of the analytically derived kink speed ck;
Equation (17) is only approximate in the present, more realistic
case. Such a reduction was also observed in a curved cylindrical
loop in a dipolar AR (McLaughlin & Ofman 2008) and in a 3D
arcade loop in the case of horizontal oscillations (Pascoe et al.
2009; De Moortel & Pascoe 2009). Therefore, the difference
between the loop length and the oscillating part of the loop
should be considered while evaluating magnetic field strength
through coronal seismology as it can lead to ∼50% errors in
predicted oscillation periods and magnetic field strength.

We studied the damping of the oscillations in the curved
AR loops and found that vertical kink waves in 3D stratified
geometry are damped mainly due to wave leakage in the
horizontal direction. We found that due to the rapid leakage,
there was no time for the resonant absorption layers to form, and
other dissipation mechanisms did not play an important role in
the damping of vertical kink mode oscillations. We investigated
the statistics of coronal loop geometries (open and closed)
observed by TRACE (Aschwanden et al. 2002), compared our
numerical results in detail to TRACE EUV observations of
vertical loop oscillation with closed geometry seen on 2002
April 17 (Wang & Solanki 2004), and found good agreement
with the observed damped vertical oscillation.
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No. R31-10016 funded by the Korean Ministry of Education,
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