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ABSTRACT

Context. The migration of magnetic bright point-like features (MBP) in the lower solar atmosphere reflects the dispersal of magnetic
flux as well as the horizontal flows of the atmospheric layer they are embedded in.
Aims. We analyse trajectories of the proper motion of intrinsically magnetic, isolated internetwork Ca iiH MBPs (mean lifetime 461±
9 s) to obtain their diffusivity behaviour.
Methods. We use seeing-free high spatial and temporal resolution image sequences of quiet-Sun, disc-centre observations obtained in
the Ca ii H 3968 Å passband of the Sunrise Filter Imager (SuFI) onboard the Sunrise balloon-borne solar observatory. Small MBPs in
the internetwork are automatically tracked. The trajectory of each MBP is then calculated and described by a diffusion index (γ) and
a diffusion coefficient (D). We also explore the distribution of the diffusion indices with the help of a Monte Carlo simulation.
Results. We find γ = 1.69 ± 0.08 and D = 257 ± 32 km2 s−1 averaged over all MBPs. Trajectories of most MBPs are classified as
super-diffusive, i.e. γ > 1, with the determined γ being the largest obtained so far to our knowledge. A direct correlation between D
and timescale (τ) determined from trajectories of all MBPs is also obtained. We discuss a simple scenario to explain the diffusivity
of the observed, relatively short-lived MBPs while they migrate within a small area in a supergranule (i.e. an internetwork area). We
show that the scatter in the γ values obtained for individual MBPs is due to their limited lifetimes.
Conclusions. The super-diffusive MBPs can be described as random walkers (due to granular evolution and intergranular turbulence)
superposed on a large systematic (background) velocity, caused by granular, mesogranular, and supergranular flows.
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1. Introduction

The study of small-scale, magnetic bright point-like features
or magnetic bright points (MBPs) in the lower solar atmo-
sphere has gained in interest over the last two decades because
they trace kG magnetic features (Riethmüller 2013), many of
which connect the photosphere with higher layers of the atmo-
sphere (e.g. Stenflo 1989). Magnetic bright points are among
the smallest potentially spatially resolved structures seen in
the photosphere (e.g. Berger & Title 2001; Möstl et al. 2006;
Sánchez Almeida et al. 2010; Riethmüller et al. 2010) and chro-
mosphere (e.g. Rutten & Uitenbroek 1991; Steffens et al. 1996;
Leenaarts et al. 2006; Jafarzadeh et al. 2013). Their motion is im-
portant for the braiding of the magnetic field in the corona; this
braiding plays an important role in coronal heating according
to Parker (1972, 1983, 1988); cf. Gudiksen & Nordlund (2002,
2005a,b); Peter et al. (2004).

Dispersion of the MBPs, i.e. their non-oscillatory motion on
the solar surface, is thought to be due to photospheric flows,
for example expansion and evolution of granules and supergran-
ules, differential rotation, and meridional flows (Hagenaar et al.
1999). These motions are commonly described in terms of a
diffusion process (e.g. Leighton 1964; Lawrence & Schrijver
1993; Dybiec & Gudowska-Nowak 2009; Ribeiro et al. 2011)
whose efficiency is expressed by a diffusion coefficient (D) rep-
resenting the rate of increase in the area that the MBP diffuses
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across per unit time. This process can be characterised by the
relation (x − x0)2 ∝ tγ, where (x − x0)2 represents the squared
displacement (sd) of the tracked MBP between its location x at
any given time t and its initial position x0; γ is normally named
the diffusion index. Motions with γ < 1, γ = 1 and γ > 1 are
called sub-diffusive, normal-diffusive (random walk) and super-
diffusive, respectively. In these regions sd grows more slowly
than linear, linearly, or faster than linear with time, respectively
(Dybiec & Gudowska-Nowak 2009).

Normal-diffusion was historically the first known class of
diffusive processes. It characterises a trajectory which consists of
successive random steps and is described by the simplest form
of diffusion theory (e.g. Fick 1855; Einstein 1905; Lemons &
Gythiel 1997). Brownian motion is an example of a normal-
diffusive process. Leighton (1964) discussed the random walk
interpretation of magnetic concentrations in the solar photo-
sphere. He estimated the diffusion coefficient for granules and
supergranules to be roughly 104 km2 s−1. He found that this rate
is comparable with the dispersal rate of the magnetic regions
in the photosphere; and hence concluded that convective flows
are responsible for the random walk of the magnetic concentra-
tions (cf. Jokipii & Parker 1968; Lawrence & Schrijver 1993;
Muller et al. 1994).

Sub-diffusive motion of magnetic elements in an active re-
gion in the photosphere was first reported by Lawrence &
Schrijver (1993). Later, Cadavid et al. (1999) found that al-
though the motion of network G-band MBPs in the photosphere
is random if their lifetimes are larger than 25 min, MBPs with
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lifetimes less than 20 min migrate sub-diffusively. The sub-
diffusivity was explained by the trapping of MBPs at stagna-
tion points (i.e. points with zero horizontal velocity; sinks of
flow field) in the inter-cellular pattern (Simon et al. 1995). In
agreement with Cadavid et al. (1999), Hagenaar et al. (1999)
stated that the diffusion index obtained from tracking magnetic
elements may depend on their lifetimes.

There are only a few observational reports of super-diffusion
in the lower solar atmosphere. Berger et al. (1998) found in-
dications of slight super-diffusivity among otherwise normal-
diffusive G-band MBPs in network regions. Later, in two high
spatial and temporal resolution image sequences, Lawrence et al.
(2001) found a significant number of super-diffusive MBPs be-
tween normal- (γ = 1) and Richardson diffusion (i.e. γ = 3).
Recently, Abramenko et al. (2011) observed super-diffusivity of
photospheric TiO MBPs in high spatial resolution time series.
They reported the presence of super-diffusivity (as the only ob-
served diffusion regime) for both quiet-Sun and active regions.
This super-diffusivity was later confirmed by Chitta et al. (2012)
by tracking MBPs observed in wideband Hα.

Diffusivity of MBPs is thought to be related to the turbu-
lent convection on and below the solar surface (Nordlund 1985).
In addition, it has been shown that stronger magnetic fields and
larger magnetic elements result in smaller diffusion coefficients
(Schrijver 1989; Schrijver et al. 1996).

In summary, the mobility of small MBPs has been described
as dependent on temporal and spatial scales and on the strength
of magnetic field.

We present measurements of the motion of small MBPs seen
in the high-resolution Ca ii H images of the SuFI instrument
aboard the Sunrise balloon-borne solar observatory. The MBPs
under study are located in the quiet-Sun internetwork areas sam-
pled at a height corresponding roughly to the temperature min-
imum. In particular, we track the motion of these small and in-
trinsically magnetic features (Jafarzadeh et al. 2013, hereafter
Paper I) in time series of filtergrams and calculate their trajec-
tories. We compute the sd for each trajectory and measure the
corresponding power exponent (i.e. the diffusion index) as well
as the diffusion coefficient.

In Sect. 2, we outline the dataset used to produce the time se-
ries. Section 3 represents the analysis method of the trajectories
of the MBPs as well as the diffusion study results. In Sect. 4 we
explore the role played by the distribution of diffusion indices
with the help of a simple model. The concluding remarks are
discussed in Sect. 5.

2. Data

For this study we used part of the datasets described in Paper I.
The datasets consist of six time series of intensity images ob-
tained in the Ca ii H passband (centred at 3968 Å with FWHM ≈
1.8 Å) of the Sunrise Filter Imager (SuFI; Gandorfer et al.
2011) on board the Sunrise balloon-borne solar observatory
during its first flight in June 2009 (Solanki et al. 2010; Barthol
et al. 2011; Berkefeld et al. 2011).

Table 1 lists the employed image sequences. All images
were phase diversity reconstructed employing averaged wave-
front errors (see Hirzberger et al. 2010, 2011), i.e. they corre-
spond to level 3 data. For all images the field of view is ≈15 ×
41 arcsec2 (712 × 1972 pixels) in size, with an image scale
of 0.021 arcsec/pixel. All data refer to quiet regions close to the
solar disc centre.

Figure 1 illustrates two snapshots from two different time
series. We have indicated four MBPs with yellow boxes whose

Table 1. Log of observations.

Date Time interval No. of Cadence
(UT) frames

2009 Jun. 9 00:36–00:59 117 12 s
2009 Jun. 9 01:32–02:00 136 12 s
2009 Jun. 11 15:22–15:44 312 4 s
2009 Jun. 11 20:09–20:19 78 8 s
2009 Jun. 11 21:00–21:09 83 7 s
2009 Jun. 13 01:46–01:59 255 3 s
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Fig. 1. Two examples of SuFI/Sunrise Ca ii H filtergrams. Left: ob-
served on 9 June 2009, at 01:54:43 UT. Right: obtained on 11 June 2009,
at 21:05:20 UT. The yellow boxes include selected MBPs whose trajec-
tories are shown in Fig. 2.

trajectories will be studied here in detail. The left image in Fig. 1
contains a small network area in the upper part of the field of
view that is excluded from our analysis which concentrates on
internetwork MBPs.

3. Data analysis and results

We analyse trajectories of the Ca ii H MBPs studied in Paper I.
According to the definition introduced in Paper I, a Ca ii H MBP
is an isolated (no merging, no splitting, and no fine-structure re-
solved) bright, point-like feature in the height range sampled by
the SuFI Ca ii H 3968 Å passband (see Jafarzadeh et al. 2013,
for the relevant contribution function). The MBPs are included
in this study if they (1) are located in an internetwork area around
the disc centre; (2) are intrinsically magnetic (for those cases for
which we have co-spatial & nearly co-temporal magnetograms);
(3) have a lifetime longer than 80 s; (4) have a roughly circular
shape with a diameter smaller than 0.3 arcsec; and (5) are neither
due to acoustic waves nor associated with “reversed granulation”
(cf. Rutten et al. 2004).
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Fig. 2. Trajectories (top) and log-log plots of the squared displacement (sd) vs. time (bottom) of the four MBPs (a)–d)) identified in Fig. 1, marked
at the top of the upper panels. Arrows on the trajectories indicate the direction of the MBPs’ motion. The red solid lines are the best linear fits to
the sd data points (crosses) vs. time and the blue dot-dashed lines show the 95% confidence bands around the linear fit. The linear fits result in
a) a MBP with γ = 0.10 ± 0.47, b) a slope (or γ) of 1.13 ± 0.18, c) a MBP with γ = 2.10 ± 0.11, and d) a MBP with a high power exponent γ
of 3.76 ± 0.57. The uncertainties are computed from the 95% confidence bands.

The identified (selected) MBPs are tracked using the algo-
rithm described in Paper I. Furthermore, the trajectories of the
MBPs are computed and the modes of motion for each trajectory
are investigated.

3.1. Trajectories

The trajectory of MBPs can be reconstructed by linking the
string of x and y positions marking the MBPs’ locations in each
frame. These MBPs have a mean lifetime of 673 ± 9 s, when
measured only for those MBPs whose birth and death times
are observable within the course of the time series and inside
the images field of view (Jafarzadeh et al. 2013). The observed
lifetime was found to be 461 ± 9 s on average when all MBPs
are considered. The shortest and longest lifetimes are 167 ± 8 s
and 1321 ± 13 s, respectively.

Four examples of trajectories of Sunrise Ca ii H MBPs are
illustrated in Fig. 2 (upper panels).

Linking the MBP positions into a trajectory is only possible
if the MBPs’ displacement in two consecutive frames is suffi-
ciently smaller than the typical distance between the detected
MBPs. This condition ensures that interacting MBPs or those
that show apparent merging or splitting are excluded. This crite-
rion may cause us to miss the fastest moving MBPs. Since a par-
ticular MBP may disappear and reappear again in a short time
interval, such as the so-called persistent flashers (Brandt et al.
1992; Jafarzadeh et al. 2013). Therefore, these possible absent
times were considered in the tracking algorithm, while a final
visual inspection guaranteed the exclusion of interacting MBPs

in these special cases. For details on the locating and tracking
procedures of the MBPs, we refer the reader to Jafarzadeh et al.
(2013).

3.2. Diffusion processes

The trajectories of MBPs, r(t), for a diffusive process can be
parametrised by their self-diffusion coefficients D based on the
Einstein-Smoluchowski equation (Crocker & Grier 1996),

〈
|r (t0 + t) − r (t0)|2

〉
= 2dDτ , (1)

where τ is the elapsed time and d indicates the trajectory’s di-
mension. The term r (t0 + t)− r (t0) gives the displacement of the
MBP at a given time t0 + t, from its first observed location at
time t0. In its original definition, the left-hand side of the above
equation is the mean of the squared displacement, whose value
is computed by averaging all squared displacements (sd) in the
system, i.e. all squared displacements over all MBPs. However,
this averaging can result in the mixing of different diffusive pro-
cesses and is not ideal for studying different motion types that
the MBPs may have (Dybiec & Gudowska-Nowak 2009).

In its general form, diffusion is characterised by scaling
of the variance of positions or alternatively the sd with time
(Ribeiro et al. 2011),

sd (τ) = Cτγ, (2)
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where C is the constant of proportionality. The power exponentγ
(i.e. diffusion index) is the scaling factor of the sd and, by defi-
nition, can be used to classify distinct diffusion regimes as,
⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ < 1, sub-diffusive process
γ = 1, normal-diffusive process (Random walk)
γ > 1, super-diffusive process.

(3)

Since diffusive processes in which the sd grows linearly with
time (γ = 1) are called normal, deviations from linearity re-
sult in anomalous diffusion. Trajectories for which the sd grows
more slowly or more quickly than linearly with time are said to
lie in the sub- or super-diffusion regimes, respectively. Diffusive
processes with γ = 2 and γ = 3 are often referred to as ballistic
and Richardson diffusions, respectively.

In order to compute the γ, we calculate the sd of each MBP
in each image (i.e. at every time-step) from its observed position
in the first image it is present in. The diffusion index of the MBP
can be conveniently captured by the slope of sd(τ) on a log-
log scale. The standard deviation of the slope is also computed
within 95% confidence intervals. Therefore, the true value of the
slope and hence of γ lies within this confidence interval with
a 95% probability.

Once γ is known, the diffusion coefficient D is calculated
from the constant of proportionality C in Eq. (2) for each MBP
separately. Following Abramenko et al. (2011), the diffusion co-
efficient, D, representing the rate of area in unit time that a MBP
moves across, is estimated as the coefficient of turbulent dif-
fusion described by Monin & Iaglom (1975) as a function of
timescale,

D(τ) =
1

2d
d
dτ

(sd(τ))· (4)

From Eq. (2), it follows that

D(τ) =
Cγ
2d
τγ−1, (5)

where d = 2 for our 2D trajectories.
In practice, C can be computed from the constant term of

the linear equation obtained from the least-squares fit to the log-
log plot of the sd(τ) for each MBP (i.e. the lower panels of
Fig. 2; C = 10yintercept ), γ is the slope of the fit and τ represents the
MBP’s lifetime.

Figure 2 displays the trajectory and sd(τ) plots of four se-
lected MBPs indicated as (a)–(d) in Fig. 1, marked at the top
of the upper panels in Fig. 2. The MBP (a) in Fig. 2 represents
one of the few MBPs (lifetime 312 ± 13 s) with a small γ =
0.10 ± 0.47. Although this is not the best example in our data,
we show its trajectory (top panel) and its log-log plot (bottom
panel) here, because it was the only MBP with γ < 1 in the se-
lected frames shown in Fig. 1. The 95% confidence intervals are
plotted as the confidence bands (blue dot-dashed lines) around
the linear fits (red solid line) to the data points. As can be seen
in the upper-left panel, the MBP moves over a small distance
and in fact, it stays almost at the same position for some time
before making a short jump to the next location. It moves by less
than 0.1 arcsec from its initial position, i.e. by less than its own
width (size) of 0.16 arcsec. The MBP (b) in Figs. 1 and 2, whose
lifetime is 548± 8 s, provides an example where the slope of the
linear fit (the red solid line in the bottom panel), γ = 1.13±0.18,
is consistent with normal-diffusion. This particular MBP dis-
plays a peculiar behaviour. The MBP first tends to move quickly
from its initial position. Later it changes its general direction and
comes closer to its initial coordinates again. Had it disappeared
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Fig. 3. Distribution of the diffusion index γ obtained from the
Sunrise/SuFI data (black histogram), normalised to unity maximum
value. The vertical dashed line indicates the mean value of γ. The red
histogram shows the result of a Monte Carlo simulation for the observed
MBPs (see Sect. 4 for details).

after 300 s, for example, a larger γ would have been obtained.
This hints that realisation noise, caused by the relatively short
lifetimes of the MBPs, may result in a different γ. We will inves-
tigate this effect using a simple model in Sect. 4. The sd(τ) plots
of the MBPs (c) and (d) in Figs. 1 and 2 (lifetimes 336 ± 13 s
and 461 ± 8 s) result in γ = 2.10 ± 0.11 and γ = 3.76 ± 0.57,
respectively. Although the two trajectories look rather similar in
the upper panels of Fig. 2, they are different in the sense that the
trajectory of MBP (d) displays a larger random component. The
larger γ for example (d) comes from the fact that it gets acceler-
ated, i.e. on average it moves faster with time.

3.2.1. Statistics

Figure 3 shows the statistical distribution of the diffusion in-
dices γ of all 103 MBPs in the analysed Sunrise/SuFI data
(black histogram). The histogram is peaked close to γ = 2 and
has a mean value of 1.69 (indicated by the vertical dashed line),
with the distribution’s standard deviation equal to 0.80. Eighty-
eight percent of these MBPs have γ > 1 and only 12% ex-
hibit γ ≤ 1.

The red histogram illustrates the statistics of diffusion in-
dices resulting from a Monte Carlo simulation. We describe and
discuss this simulation in Sect. 4.2.

3.2.2. Diffusion coefficients

Table 2 summarises the computed diffusion coefficients, D, for
the MBPs a–d (in Figs. 1 and 2) along with their lifetimes and
diffusion indices, γ; D increases with increasing γ for these four
examples.

The computed D obtained from all Sunrise/SuFI
Ca ii H MBPs are plotted as a function of γ in a log-linear
plot in Fig. 4 (black crosses). A power-law fit to the data (i.e.
γ = 28.9 D2.8) is overplotted as a green dashed line.

The red line is obtained from the same Monte Carlo sim-
ulation as the red histogram in Fig. 3. In Fig. 4 the simulated
line has been shifted upward to the observed trend (discussed
in Sect. 4.2). The blue vertical lines indicate the error bars of
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Table 2. Diffusion parameters of four example MBPs.

MBP Lifetime γ∗ D∗∗
[s] [km2 s−1]

a 312 ± 13 0.10 ± 0.47 0.08 ± 0.01
b 548 ± 8 1.13 ± 0.18 35.8 ± 1.2
c 336 ± 13 2.10 ± 0.11 203.6 ± 14.7
d 461 ± 8 3.76 ± 0.57 811.7 ± 35.6

Notes. (∗) Diffusion index. (∗∗) Diffusion coefficient.
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Fig. 4. Log-linear plot of diffusion coefficient, D, versus diffusion in-
dex, γ. Black crosses indicate the diffusion parameters calculated from
trajectories of the SunriseCa iiH MBPs. The green, dashed line shows
a power-law fit to the data points (see main text). The red solid curve
is obtained from a Monte Carlo simulation. Error bars to the simulated
values are depicted by blue vertical lines (see Sect. 4.2 for details).

the simulated trend. A mean value of D = 257 ± 32 km2 s−1

was obtained from the dispersal of the Sunrise (internetwork)
Ca ii H MBPs.

Plotted in Fig. 5 is D(τ) on a log-log scale. The black solid
line shows the best linear fit to the data points obtained from the
SunriseCa iiH MBPs. We observe a direct correlation between
the D and timescale (τ) in agreement with the results on super-
diffusive internetwork MBPs in the quiet Sun found by Lawrence
et al. (2001) (red solid line) and Abramenko et al. (2011) (green
dashed line). The slopes of the linear trends on the log-log
plot, determined from our results and those of Abramenko et al.
(2011) and Lawrence et al. (2001), represent power-law expo-
nents of 0.63, 0.53, and 0.28, respectively. Our larger power-law
exponent means smaller D in short timescales compared to the
other two studies. This may be due to overestimation of short-
term motions as a result of seeing in the ground-based data,
while on longer timescales seeing effects average out. We also
found a direct relationship between D and displacement (

√
sd)

values (not shown), similar to that of Abramenko et al. (2011).

4. Modelling

The histogram of the diffusion index (i.e. Fig. 3) is peaked close
to γ = 2, with wings reaching down to γ < 1 and up to γ > 3.
Furthermore, more than one third (39%) of the γ computed for
Sunrise/SuFI MBPs are around γ = 2 (within their uncertain-
ties). The fact that our longest lived MBP has a lifetime of 22 min
(with each MBP being observed for ≈8 min on average) leads us
to speculate that the broad wings of the distribution are due to
the relatively small number of individual frames (steps) at which
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Fig. 5. Log-log plot of diffusion coefficients (D) as a function of
timescale (τ). Black solid line: A linear fit to the data points determined
from trajectories of the Sunrise Ca ii H MBPs. The 95% confidence
bands to the fit are overplotted as dot-dashed lines. For comparison,
similar plots (for quiet-Sun regions) from Lawrence et al. (2001) (red
solid line) and Abramenko et al. (2011) (green dashed line) are overlaid.

we have observed each MBP, i.e. the width of the distribution is
due to realisation noise caused by relatively short lifetimes of the
MBPs. Clearly, the sd can be fit more precisely when a longer
MBP motion is followed. This can be clarified by making a sim-
ple model of the horizontal velocity of a MBP. We note that we
are dealing with internetwork MBPs, which can lie anywhere in
a supergranule (SG).

4.1. Migration scenario

The MBPs are located in a complex turbulent medium.
Correspondingly, the observed horizontal velocity of a MBP can
be broken up into several components. In general, a variety of
motions advect the MBPs, acting on different time and spatial
scales. These motions range from turbulence in intergranular
lanes (acting on the order of a few seconds), via the expansion
and motion of granules (on the order of a few minutes), meso-
and supergranular flows (on the order of one hour and about one
day, respectively) to differential rotation and meridional flow.
Given the relatively small field of view of all analysed time-
series and their locations close to disc centre, the influence of the
meridional circulation and differential rotation can be neglected.

The relatively short lifetimes of the MBPs under study im-
plies that they move only over a fraction of a meso-/supergranule
in the course of their average lifetime of ≈8 min. This in turn im-
plies that the short-lived small-scale motions (i.e. intergranular
turbulence and granular evolution) are primarily responsible for
the random walk components of the MBPs’ motion. Conversely,
we expect that the meso- and supergranular flows as well as mo-
tions imparted by constantly expanding, contracting, and split-
ting granules on passively advected MBPs can be considered to
be systematic.

We note that granules can contribute in a way to both ran-
dom (vr) and systematic (vs) components of the MBPs’ horizon-
tal velocity, since the speeds imparted on MBPs due to granular
evolution (slowly) change in the course of a MBP’s lifetime.

In addition, it is worth mentioning that a part of the motion of
the Ca ii H MBPs can be due to kink waves excited at these mag-
netic elements. However, we do not search for any periodicity in
the motion of the MBPs so that the effects of any kink waves
running along the field lines underlying the MBPs are assigned
to the random motion.
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4.2. Monte Carlo simulation

Assuming an explanation as proposed in Sect. 4.1, we explore
the statistical distribution of the diffusion index γ (shown in
Fig. 3) and its relationship with D (plotted in Fig. 4) obtained
from the Sunrise/SuFI data with the help of a Monte Carlo
simulation.

We allow 30 000 randomly generated “MBPs” to move along
the perpendicular x and y axes in 2D space and in time t. The x
and y axes represent the directions of the random motions of a
MBP, while the systematic direction is identified with the x axis.
As in Sect. 4.1 the latter can be taken to represent mainly meso-
granular, supergranular and granular flows. The random motions
are thought to be largely associated with granular and turbulent
intergranular flows (on short timescales). The random walk is
modelled assuming a discrete time-step of Δt (coherence time),
over which the velocity is assumed to be constant. The Δt and
the ratio of the random to systematic velocities (vr/vs) are treated
as initial free parameters of the simulation.

We performed the Monte Carlo simulations for MBPs with
lifetimes between 160 and 1320 s; 30 000 realisations were anal-
ysed for each lifetime. For each run of the simulation (for a par-
ticular lifetime), the trajectories of the 30 000 simulated MBPs
were determined in the same way as for the observed MBPs,
described in Sect. 3.1, and are also analysed to compute their
diffusion indices using a method similar to that applied to the
Sunrise/SuFI Ca ii H MBPs as described in Sect. 3.2 (i.e. the
slope of the log-log plot of the sd(τ) for each MBP is computed
from the simulated MBP trajectory). Therefore, for any set of the
two free parameters, we obtain a distribution of diffusion index γ
for the 30 000 simulated MBPs with a given lifetime.

Integration of the individual simulated histograms
corresponding to each lifetime results in a distribution
of γ calculated for MBPs with different lifetimes, similar to
the distribution obtained from the observations. To compare
with the observed distribution, the histogram resulting from
the simulation is re-binned to match the resolution of the one
obtained from the observations. Then, the free parameters are
tuned until the best match between these two histograms (i.e.
one obtained from the observations and one calculated from
the Monte Carlo simulation) occurs. The chi-square, χ2, is
computed as a measure of the best match between the two
histograms. Since we compare the distributions of the two
binned datasets, the quantity χ2 is measured as (Press et al.
2007)

χ2 =
∑

i

(Oi −Ci)2

Oi +Ci
, (6)

where Oi and Ci indicate the ith observed and computed (simu-
lated) bin of the histograms.

In Fig. 6 the coherence time Δt is plotted as a function of the
ratio of velocities vr/vs for all χ2 values. The Δt and vr/vs combi-
nation giving the smallest χ2 value was found to be 62 ± 3 s and
1.6 ± 0.03. We note that the absolute values of the velocity are
not constrained by the histogram of γ; therefore for simplicity
we used vr = 1 km s−1.

The result of the simulated distribution of γ based on these
parameters (integrated over all simulated distributions with dif-
ferent lifetimes) is plotted in Fig. 3 as a red histogram. A
comparison with the black histogram, which represents the
distribution of diffusion index obtained from the observations
(i.e. from the Sunrise/SuFI data), shows that the simulated dis-
tribution is stronger than that of the observations in the (far) wing
at γ > 2.5, but it is weaker for γ < 1.
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Fig. 6. Results of a chi-square (χ2) test for finding the best match be-
tween the distributions of the diffusion index from observations and
Monte Carlo simulations of the MBPs located in a supergranule’s bulk.
The contours guide the eye to the best χ2 value, giving the appropriate
coherence time Δt for the random velocity and the ratio of random-to-
systematic velocities vr/vs of the MBPs under study.

In the next step, we determine the absolute values of these
random and systematic velocities using the diffusion coeffi-
cient D. Given the determined ratio of the velocity components
as well as the coherence time, we compute D in the same way as
for the observed data, described in Sect. 3.2.2. Then, we overplot
the computed D versus γ for the simulated data on the same log-
linear plot as for the observed data. For simplicity, we average
the D values in each γ bin and overplot its standard deviation as
an error bar for each point. The plot of log (D) versus γ in Fig. 4
shows similar trends for both simulated and observed data, but
originally with an offset in the direction of log (D).

We have only one free parameter left in the simulation,
namely vs, with which to shift the log (D) versus γ curve. We
note that an arbitrary value for vr had been used so far. Therefore,
we tuned vr, while keeping vr/vs and Δt fixed, until we found
the best agreement between the observed and computed plots
of log (D) versus γ. The output of the simulation giving the
best agreement with the observations is overplotted as a red line
(along with the error bars; vertical blue lines) on the observed
data (black crosses) in Fig. 4. The vr giving the best fit was found
to be 1.2 ± 0.1 km s−1 on average. Consequently, the systematic
flow tends to move with a velocity of 0.75 ± 0.06 km s−1.

Finally, we take these best-fit values and do the simulation
once again, but for a larger range of lifetimes, i.e. from 80 s,
which represents the criterion for minimum lifetime of the MBPs
under study, to three times longer than the maximum lifetime of
the observed MBPs from the Sunrise/SuFI data. A plot of γ ver-
sus lifetime resulting from this simulation is illustrated in Fig. 7.
The background brightness follows the number density of MBPs
with a particular γ. A vertical cut at a given lifetime indicates
the histogram density of the γ distribution at the chosen lifetime.
The solid lines mark percentiles, i.e. fixed values of the integrals
over the histogram density in the vertical direction starting at the
bottom. Each yellow cross represents an observed MBP from
the Sunrise/SuFI data. At the left side of this plot, where most
of our observed data points are located, the lifetimes are shorter
and correspond to much fewer time-steps than the right side. The
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Fig. 7. Evolution of the diffusion index histogram with increasing life-
time of the MBPs. The background brightness is a measure of the num-
ber density of MBPs with a certain γ obtained from a Monte Carlo sim-
ulation. The solid lines indicate the percentiles of the distributions (see
main text for details). The observed data points from the Sunrise/SuFI
data are overlaid on the simulated plot and are marked by yellow
crosses.

left part of the plot displays a wider distribution of γ, with the
histograms having extended tails, similar to the tails of the ob-
served histogram in Fig. 3. Insufficient sampling on the left part
of the diagram enhances the effect of the random velocity, so that
an individual MBP can display a γ rather far removed from the
expectation value.

There are only few data points (as seen in Fig. 7) that have γ
values that are highly unlikely according to the simulations, out-
side the 5% and 95% percentile curves, for example. One source
of these outlying MBPs may be the fact that we considered a
uniform systematic flow dragging the MBPs with it, whereas in
reality the flow speed (caused by the contraction, expansion or
explosion of granules as well as the meso- and supergranular
flows) is expected to vary. However, the simulated histogram in-
cludes almost all of the data points and so can explain most of the
observations. Interestingly, the four data points whose locations
lie outside the outermost (1%) contour of the simulation in Fig. 7
all have small γ. One possibility to explain the excess of low γ
MBPs is that these are lying at the borders of the SGs, where
sub-diffusive and random walk MBPs are expected and are due
to inflows from opposite directions (from neighbouring SGs).

To summarise, the observations are consistent with the
MBPs being random walkers superposed on a systematic flow.
Therefore, while the motion of MBPs has a random component
due to intergranular turbulence as well as the birth and death of
neighbouring granules, the MBPs are transported by a system-
atic velocity on a larger spatial scale, e.g. due to the constant
evolution of long-lived granules, or the contributions of meso-
and supergranules to the large-scale velocity field felt by the
magnetic element underlying the MBP.

We found a coherence time of 62 ± 3 s which is comparable
with a value of 68 s computed from the given size (length scale)
of our features (i.e. 150 km on average) as well as the mean
horizontal velocity of the MBPs under study (i.e. 2.2 km s−1)

reported by Jafarzadeh et al. (2013). This implies that on aver-
age MBPs move a distance corresponding to their own diameter
before being forced to move in another direction.

5. Discussion and conclusions

We analysed the trajectories of 103 isolated (i.e. displaying no
merging or splitting) internetwork MBPs (≈0.2 arcsec in diame-
ter on average; Jafarzadeh et al. 2013) in the quiet Sun observed
in the Ca ii H 3968 Å passband of Sunrise/SuFI. We performed
a diffusion analysis on the trajectories of MBPs to distinguish be-
tween MBPs with different types of motions. We did not, how-
ever, search for oscillations or wave-like motions.

In order to avoid mixing MBPs in different diffusion regimes
and to get a better insight into the character of their proper mo-
tion, we performed the diffusion analysis on all individual tra-
jectories separately (Dybiec & Gudowska-Nowak 2009).

We used the same MBPs as in Paper I where they were iden-
tified using stringent criteria. This gives us confidence that these
MBPs are good tracers of small-scale magnetic elements in the
upper layers of the photosphere and the lower chromosphere.
These intrinsically magnetic features can be considered to rep-
resent the cross-sections of nearly vertical flux tubes (Jafarzadeh
2013) whose positions are influenced by different external forces
and are restricted to intergranular lanes. Therefore, although they
are not perfect tracers of the horizontal flows, the spatial and
temporal scaling of the MBPs’ dynamics can still indicate the
presence of turbulence in their paths (Lawrence et al. 2001).

We should note that the relatively small field of view (≈15×
41 arcsec), short time series (less than 28 min), and the restric-
tive criteria applied to select these small MBPs have limited our
sample to a relatively small number of 103 isolated MBPs (a
number density of 0.03 (Mm)−2; Paper I). However, selecting
only point-like features has allowed us to locate the MBPs more
accurately.

5.1. Diffusion index

We found a mean diffusion index (or diffusion power-law expo-
nent), γ, of 1.69±0.08 averaged over all MBPs. The γ histogram
is peaked close to this value and ranges from γ ≈ 0 to γ ≈ 4 (see
Fig. 3). We suspect, however, that this wide range in the γ distri-
bution does not reflect the presence of different diffusion regimes
(i.e. sub-, normal- or super-diffusive; as described in Sect. 3.2),
but that it is possibly due to realisation noise (around the mean
value representing a single diffusion category) due to our rela-
tively short-lived MBPs (mean lifetime ≈8 min). The short life-
time may in turn be due to the fact that we consider only small
(<0.3 arcsec diameter) internetwork MBPs.

We also explored the distribution of the diffusion index with
the help of a Monte Carlo simulation (see Sect. 4.2). It demon-
strated that the migration of internetwork MBPs is consistent
with a random walk (due to intergranular turbulence and gran-
ular evolution) superposed on a systematic velocity (caused by
granular as well as meso- and supergranular flows). We note that
a part of the motion of the Ca ii H MBPs can be due to kink
waves excited in the underlying magnetic elements, whose ef-
fects were not separated in our study from that of random mo-
tion. The simulation clarified and confirmed that the deduced γ
values of almost all MBPs are consistent with a single underly-
ing γ of 1.69 ± 0.08 and that the large scatter of γ values of in-
dividual observed MBPs is indeed caused by the short lifetimes
of these MBPs and the associated realisation noise. Hence, the
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Table 3. Comparison of the mean values of diffusion index γ and diffusion coefficient D of small magnetic elements obtained in this study with
some of those in the literature.

Reference Origin Telescope/ Spatial Featurea Lifetimeb,c γc Db,c

of data Spacecraft resolution [s] [km2s−1]
This study Stratospheric Sunrise/SuFI 0.′′14 IMBP 461 1.69 257

balloon
Chitta et al. (2012) Ground SST/CRISP – IMBP 180–240 1.59 (≈90)
Abramenko et al. (2011) Ground BBSO/NST 0.′′11 IMBPd (10–2000) 1.48 (19–320)
Manso Sainz et al. (2011) Space Hinode/SOT 0.′′32e IMBP <900 0.96 195
Utz et al. (2010) Space Hinode/SOT 0.′′22 f IMBP 150 (≈1) 350
Chae et al. (2008) Space Hinode/SOTg – MEd – – 0.87
Lawrence et al. (2001) Ground SVST 0.′′23 NMBP 9–4260 1.13 –
Cadavid et al. (1999) Ground SVST 0.′′23h NMBP 18–1320 0.76 –

1500–3450 1.10 –
Hagenaar et al. (1999) Space SOHO/MDI 2.′′3i MFC <1.0 × 104 (≈1) 70–90

>3.0 × 104 220–250
Berger et al. (1998) Ground SVST ≈0.′′2 NMBPd (100–3800) 1.34 60
Lawrence & Schrijver (1993) Ground BBSO – MEd – 0.92 250

Notes. (a) IMBP: Internetwork Magnetic Bright Point; NMBP: Network MBP; MFC: Magnetic Flux Concentration; ME: Magnetic Element.
(b) Mean values; otherwise a range is given whenever it was available. (c) Values in parentheses are not directly reported in the papers, but are
computed from the given plots/tables. (d) See their paper for other types of regions. (e) From Martínez González & Bellot Rubio (2009). ( f ) From
Table 1 of Abramenko et al. (2011). (g) From SOT magnetograms with the smallest pixel size of 116 km. (h) From Lawrence et al. (2001). Cadavid
et al. (1999) reported a much lower resolution element of 0.′′4. (i) For five-minute averaged and spatially smoothed high-resolution magnetograms.

dispersal of the studied Ca ii H MBPs in the quiet Sun is mainly
super-diffusive.

We note that excluding the network regions in the present
study most likely has also excluded most MBPs located at stag-
nation points and hence, sub-diffusive MBPs may be under-
represented in our sample, compared to the entire quiet Sun.

Our main result is in rough qualitative agreement with that
of Lawrence et al. (2001), who found γ = 1.13 ± 0.01 (on
average) for MBPs, using high spatial and temporal resolu-
tion images in a network region of enhanced magnetic activ-
ity. However, the features we studied display a much stronger
super-diffusive behaviour. Super-diffusivity has also been re-
ported by Abramenko et al. (2011) and Chitta et al. (2012) in
recent investigations. They deduced values of the diffusion in-
dex in a given type of region by averaging the displacements
over all MBPs. Abramenko et al. (2011) obtained γ = 1.48 for
quiet Sun, γ = 1.53 for plage, and γ = 1.67 for coronal hole
areas, while Chitta et al. (2012) reported a diffusion index of
1.59 for their relatively short-lived MBPs (with a mean lifetime
of about 3−4 min) observed in quiet-Sun regions. The mean γ
for the quiet Sun obtained in both studies are roughly consistent
with the average γ = 1.69 ± 0.08 that we found in the present
work, although their values are slightly smaller. This may have to
do with the fact that earlier γ values were obtained from ground-
based observations and could be affected by differential seeing-
induced deformations (introducing artificial turbulences), while
we determined 〈γ〉 using the Sunrise/SuFI data unaffected by
seeing.

Lepreti et al. (2012) used the same datasets as Abramenko
et al. (2011) to determine γ (for timescales < 400 s) for
pair dispersion of MBPs (i.e. from measuring the mean-square
separation of pairs of MBPs). They found the same γ (≈1.48)
for MBP pairs observed in all the three regions (i.e. quiet-
Sun, plage, and coronal hole areas), from which they inter-
preted the diffusivity properties as the results of the local correla-
tions in the turbulence’s inertial range. In addition, Lepreti et al.
(2012) concluded that the diffusivity of individual MBPs studied

by Abramenko et al. (2011) (that differs in the three regions)
depends on the detailed structure of the flows.

Manso Sainz et al. (2011) found in contrast to other recent
studies a mean value of 0.96 (nearly corresponding to normal-
diffusion) averaged over a wide distribution of γ for magnetic
internetwork elements. We suspect that such a small value is due
to their criterion of tracking only the footpoints of small-scale
magnetic loops. The motion of this freshly emerged field is only
partly driven by flows at the solar surface, while to a signifi-
cant extent it also reflects the dynamics and subsurface structure
of the emerging field. Hence their results may not be directly
comparable with ours.

Some published values of γ, of the diffusion coefficient (D),
and of the mean lifetimes of the investigated features are com-
pared with those obtained in this study in Table 3. Since the ef-
fect of atmospheric seeing may be important, it is indicated if
the observations are space, ground, or balloon-based. The spa-
tial resolutions of the observations are provided where known.
The types of solar regions that were investigated can be deduced
from the names of the features. With the exception of the in-
vestigations finding super-diffusive motions, discussed earlier,
almost all other authors interpreted their results as indicative
of normal- or sub-diffusive processes. Berger et al. (1998) did
find a γ = 1.34 ± 0.06. However, they interpreted it in terms
of normal-diffusion with a slight indication for super-diffusivity,
since the area coverage of their network MBPs as a function of
time could be well explained by a Gaussian model. Cadavid et al.
(1999) found normal-diffusion (γ = 1.10 ± 0.24) for timescales
longer than 25 min and sub-diffusive MBPs (γ = 0.76±0.04) on
timescales shorter than 22 min, both based on tracking MBPs in
a network area.

5.2. Diffusion coefficient

We also determined a mean diffusion coefficient (D; the area
that a MBP moves across per unit time) of 257 ± 32 km2 s−1
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averaged over all studied MBPs. The diffusion coefficient values
reported in the literature and summarised in Table 3 lie between
0.87 km2 s−1 and 350 km2 s−1. One source of such a large range
could be that different values could refer to different features.
Schrijver et al. (1996) noted the flux dependence of the diffusiv-
ity of flux concentrations, with the smaller concentrations mov-
ing faster compared to the larger ones. Tracking small features
on relatively short timescales is another source of bias, since the
potential effects of larger scales (e.g. supergranular flows) are de-
tected more clearly when measuring for a sufficiently long du-
ration (Schrijver et al. 1996). By tracking magnetic features in
the large FOV of MDI magnetograms, Hagenaar et al. (1999)
found that the diffusion coefficient, D = 70−90 km2 s−1, de-
termined for intervals of time less than 1.0 × 104 s is smaller
than that measured on timescales longer than 3.0 × 104 s, which
gives 220 ≤ D ≤ 250 km2 s−1. They interpreted this differ-
ence (using a model) as the effect of supergranular flow that acts
as a negligible drift on short timescales. Berger et al. (1998)
determined D = 60.4 ± 10.9 km2 s−1 for network MBPs
by assuming, for simplicity, Gaussian (normal) diffusion (i.e.
D = sd/2dτ), whereas the γ they obtained, γ = 1.34 ± 0.06,
corresponds to the super-diffusive regime. They also found a
D = 285 km2 s−1 in quiet-Sun internetwork regions by tracking
markers (so-called corks) added on frames of image-sequences.
Cadavid et al. (1999) discussed the mismatch between differ-
ent reported diffusion coefficients in the literature due to the as-
sumption of normal-diffusion for all investigated features (i.e.
determining D by assuming γ = 1 in Eq. (5) for simplicity, re-
gardless of actual diffusion indices) in most of the studies to that
date. Roudier et al. (2009) estimated D = 430 km2 s−1 from
Hinode/SOT observations using floating corks on a relatively
large scale (larger than 2.5 Mm; since they used granules to de-
termine the flow). Chae et al. (2008) reported the smallest value
of D = 0.87 ± 0.08 km2 s−1 from Hinode/SOT magnetograms.
They estimated D by modelling the change of magnetic field
in individual pixels between two frames (taken 10 min apart
in time), based on solving the equation of magnetic induction.
Their unusually small value, however, could likely be caused by
the use of individual pixels instead of clearly separated magnetic
features in their somewhat different method of diffusivity mea-
surements. Later, Utz et al. (2010) found D = 350 ± 20 km2 s−1

for internetwork MBPs observed by the same telescope (i.e.
Hinode/SOT). They obtained this value in the framework of the
normal-diffusion process. Manso Sainz et al. (2011) used the
same instrument and found D = 195 km2 s−1 for footpoints of
small-scale internetwork magnetic loops. We speculate that this
relatively small value compared to that found in the present work
is due to the fact that they considered only freshly emerged small
loop footpoints, which may not follow surface flows to the same
extent as our magnetic features.

Cameron et al. (2011) described the decay of the magnetic
field by turbulent diffusion through 3D radiative MHD simula-
tions. They characterised the decay in terms of diffusion coeffi-
cients and found D to lie in the range of 100−340 km2 s−1. This
range encompasses the mean value of D = 257 ± 32 km2 s−1 we
obtained from the dispersal of Sunrise Ca ii H MBPs.

5.3. A relationship between diffusion coefficient
and timescale

Furthermore, we found a direct correlation between D and
timescale (τ) computed from trajectories of all MBPs (see
Fig. 5). We note that the dependence of D(τ) on γ is not sur-
prising though, since it follows the relationship expressed in

Eq. (5). The D(τ) trend we obtained from our super-diffusive
MBPs tends to be steeper than those measured by Lawrence
et al. (2001) and Abramenko et al. (2011) for internetwork super-
diffusive features. Abramenko et al. (2011) compared such a re-
lationship with other types of regions (e.g. network areas, active
regions and a coronal hole area) and other diffusion regimes re-
ported in the literature. They showed that such a direct correla-
tion between D and τ is only observed for the case of super-
diffusion (γ > 1). Values of D independent of τ for γ = 1
(Schrijver et al. 1996; Berger et al. 1998; Hagenaar et al. 1999)
as well as anti-correlations between D and τ (Berger et al. 1998;
Cadavid et al. 1999) for γ < 1 are also observed.

5.4. Migration of MBPs over a supergranule

As stated earlier, our Monte Carlo simulation describes the mo-
tion of our MBPs as the superposition of a directed system-
atic velocity vs and a random velocity vr. A comparison of the
model output with observations of the horizontal motion of the
Ca ii H MBPs allowed us to determine both the random and sys-
tematic components as well as the effective coherence time of
the random walk flows. We determined the mean values of these
velocities to be vr ≈ 1.2±0.1 km s−1 and vs ≈ 0.75±0.06 km s−1.
A coherence time of 62± 3 s was found for the random velocity.

The random component of the velocity obtained here is con-
sistent with that computed for the rms value of the horizontal
transport of the magnetic concentrations in intergranular areas
from 3D radiative MHD simulations (Cameron et al. 2011).

Horizontal flows in supergranules can be measured through
the tracking of corks, for example. Spruit et al. (1990)
tracked corks over a mesogranule and found a cork velocity
of 1.0 km s−1 as they move towards the mesogranular bound-
aries (on timescales of about 10–30 min). They showed that
the flow speed decreases when approaching the mesogranular
boundaries, reaching a minimum of about 0.5 km s−1. This range
of systematic velocities caused by the combination of granular,
meso- and supergranular flows is comparable with that found in
the present work. The vs obtained in our investigation is also
in good agreement with that of Del Moro et al. (2007), who
found a horizontal flow speed of 0.75 ± 0.05 km s−1 inside a
supergranule via cork tracking. Our determined systematic ve-
locity is, however, slightly larger than the mean horizontal flow
velocity of ≈0.4 km s−1 within supergranules, reported by Title
et al. (1989), Wang et al. (1995), and Hathaway et al. (2002) and
the ≈0.3 km s−1 reported for mesogranular flows by Leitzinger
et al. (2005).

Recently, Orozco Suárez et al. (2012) studied the horizon-
tal velocity of both convective flows and internetwork magnetic
elements (IMEs) over a SG during a 13 h uninterrupted observ-
ing campaign with Hinode/NFI. They found that the IMEs are
almost at rest at the centre of the SG where they start acceler-
ating radially outward. The IMEs also tend to decelerate while
approaching the SG boundaries.

We speculate that a hypothetical long-lived internetwork
MBP (that may appear or disappear at any location in the body of
a SG) would gently accelerate over the SG’s bulk. This is caused
by the increasing velocity with radial distance of the supergran-
ular flow profile due to mass conservation assuming a constant
upflow over most of the SG’s area. The supergranule’s flow sys-
tematically advects all MBPs within its bulk towards its borders.
In addition, granular and mesogranular flows (that act on shorter
spatial scales) would impart the MBP with additional velocity
components that change as these convection cells evolve. The
trajectory of such a MBP is expected to follow a super-diffusive
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regime, although with a lower γ than expected from the SG
flow alone, because of the random motions imparted mainly by
granular evolution (which for a very long-lived MBP contributes
mainly to vr) and intergranular turbulence. This MBP would start
decelerating when approaching the SG boundary. Once the MBP
finds itself in the network region, it is trapped in the sinks (stag-
nation points) due to inflows from opposite directions, i.e. from
neighbouring SGs. The ever-evolving granular flows will keep
acting on small spatial scales. The trajectory of the MBP at this
stage of its evolution is probably best explained by a normal-
and/or sub-diffusion processes.

This scenario may explain why the sub- and normal- diffu-
sive MBPs were almost the only diffusion regimes reported in
the literature before ≈2000 (Berger et al. 1998; Cadavid et al.
1999; Lawrence et al. 2001); older studies most likely concen-
trated on network areas in which MBPs are easier to observe
compared to internetwork regions. For ground-based observa-
tions, another effect is also important: the residual aberrations
and distortions due to variable seeing introduce an artificial tur-
bulent motion into image time series. The artificial turbulence
motion leads to slower growth of sd with time which in turn
results in artificially small γs (see Eq. (2)). It is worth not-
ing that lower spatial resolution observations need not lead to
smaller γ values and the larger scale flows (e.g. supergranular
flows) would be detected more easily compared to smaller scale
motions. This effect results in a larger γ value.

5.5. Summary

To summarise, we characterised the motions of Sunrise
Ca ii H MBPs by turbulent diffusion theory. The MBPs (mean
lifetime ≈8 min) were observed in seeing-free high-resolution
image sequences in an internetwork area of the quiet Sun. A
mean diffusion index of γ = 1.69 ± 0.08 and a mean diffusion
coefficient of D = 257± 32 km2 s−1 were obtained. The γ corre-
sponds to super-diffusion which describes the MBPs as features
whose squared displacement (sd) from the first observed loca-
tion grows faster than linearly with time. It is, to our knowledge,
the largest γ value for MBPs reported in the literature so far.
The parameter D lies within the range of decay rate of the mag-
netic field from MHD simulations and is among the largest D
values obtained for small-scale magnetic features found in the
literature. We found that D increases as the timescale increases,
but generally lies in the range of those obtained by other inves-
tigations for larger spatial extent and longer durations. The mi-
gration of relatively short-lived features such as MBPs is com-
posed of a superposition of random motions due to granular evo-
lution and intergranular turbulence and systematic motions due
to more steady granular evolution, mesogranular, and supergran-
ular flows.
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