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Summary. An expansion technique is employed to derive a model
of magnetic fluxtubes in the solar atmosphere which takes into
account the effects of field line curvature, internal structural vari-
ations, and the merging of the tube with its immediate neigh-
bours as it expands. The merging is accomplished by the use of
a small ‘seed’” magnetic field between the tubes which, in the
limit of vanishing strength, has no influence on the solution. For
conditions where the internal temperature of an untwisted tube
is taken to be the same as that outside, the fluxtube properties
are independent of the magnetic field strength at the base and
depend only on the initial diameter and filling factor. For a fixed
filling factor, the merging height is almost a linearly increasing
function of base diameter whereas, for a fixed base diameter, the
merging height increases as the filling factor decreases. For filling
factors of about 0.1 or less, the merging is predicted to take place
in the chromosphere. For unequal internal and external tem-
peratures, the merging height does depend upon field strength
and increases with increasing field strength if the tube is hotter
than its surroundings and vice versa if it is cooler.

For our solutions, the internal magnetic structure of the tube
evolves in height in a decidedly non-self-similar manner. How-
ever, for the special case when the internal temperature is both
uniform and equal to the external temperature, the gas pressure
can vary self-similarly. The axial magnetic field declines outward
from the axis if the base gas pressure is either uniform or
increasing outward, but may initially increases outward if the
pressure declines. In the vicinity of the merging height, the field
approaches uniformity consistent with a vertical tube with con-
stant cross-section. For twisted tubes the number of turns per
unit length along the tube remains approximately constant, so
that the pitch angle of the field increases rapidly with height as
the tube expands. It then reaches a maximum and decreases to
a constant asymptotic value when merging takes place.

Key Words: Fluxtubes — magnetic fields — hydromagnetics —
faculae

1. Introduction

It is now well established that the solar magnetic field outside
sunspots below chromospheric levels is not uniformly distributed,
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but concentrated into discrete fluxtubes (Howard and Stenflo,
1972) where the field strength is about 1000-2000G (Stenflo,
1973; Harvey, 1977). The structure is determined by a force bal-
ance between the magnetic field and gas pressure inside the tube
with the gas pressure outside. Since this external gas pressure de-
clines upward rapidly, the fluxtube must then expand with height
in an appropriate manner in order to maintain equilibrium with
its surroundings.

Theoretical modeling of thin fluxtubes has received an in-
creasing amount of attention. The first crude models employed
the so-called “thin fluxtube approximation” where the internal
magnetic field is assumed to be purely axial and uniform across
the cross-section (cf. Defouw, 1976; Roberts and Webb, 1978;
Unno and Ribes, 1979: Meyer et al., 1979; Spruit, 1981). In these
models, all other quantities such as pressure, temperature, etc.
are also taken to be uniform. Potential field models of small flux-
tubes have been constructed by Spruit (1976) and Simon et al.
(1983), and models employing the similarity approximation, in-
troduced by Schliiter and Temesvary (1958), have been developed
by Wilson (1977a,b), Solanki (1982), and Osherovich et al. (1983).
Finally, Deinzer et al. (1984a,b) have recently published fully self-
consistent MHD models using a two dimensional slab geometry.

Since the fluxtubes, if unobstructed, would expand indefi-
nitely with height, we expect that any discrete set of tubes would
eventually merge together at some height and coalesce into larger
field distributions. It is this effect we wish to study in some detail
in this paper and we hope to be able to elucidate the dependence
of the merging properties of fluxtube collections upon various
relevent parameters such as filling factor, tube radius, magnetic
field strength, etc. Others (Gabriel, 1976; Anzer and Galloway,
1983a,b) have considered a similar problem for entire network
and active regions using the potential field approximation. We
wish here to relax this assumption and study the phenomenon
from the MHD standpoint and also to study small individual
fluxtubes instead of the network or active region as a whole.
We desire a model which possesses internal structure as opposed
to the thin fluxtube models, but still not constrain ourselves to
similarity theory. Similarity models force the field to have the
same form at all heights. This is incompatible with the merging
of fluxtubes, as we shall see in Sect. 3. They also place a constraint
on the temperature variation across the tube. This seems some-
what artificial since no energy equation is used. We shall return
to this point later.

The approach we will use here is to expand the MHD equa-
tions in a power series about the tube axis so that the thin flux-
tube approximation is the zeroth order solution and higher terms
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represent corrections to this introduced by finite width. A similar
expansion approach has been recently suggested by Browning
and Priest (1984). Because our model will give two-dimensional
information on fluxtube structure and because, unlike similarity
models, we can consider arbitrary temperature distributions or
incorporate an energy equation, we hope that it could serve as
a basis for future two-dimensional empirical models. For such
work it has the advantage of being relatively simple and easy to
compute compared to a completely self-consistent treatment,
based for example on a relaxation technique (Deinzer et al.,
1984a,b) or on the method of Pneuman and Kopp (1971). Here,
it is relatively simple to separate out various interacting effects
and assess their relative importance.

2. Basic method and equations

Consider a model vertical fluxtube as shown in Fig. 1.7, 0, and z
are ordinary cylindrical coordinates and the tube is assumed
rotationally symmetric about the z axis. We define the reference
values for the axial field strength, gas pressure, temperature and
other quantities at a reference level z =0 and at the tube axis
r = 0 as B¥, P*, T* etc. respectively. R* denotes the tube radius
at z = 0. The radius of the tube is R(z). In this coordinate system,
the force balance in the three coordinate directions plus the
expression V - B = 0 yield

4n(;—f= Bz(%—%> —%g("BO) )
0= %g(rsa) + B, aai @
0= 2 om)+ 2 @

where P is the gas pressure, B,, By, and B, the three compontents
of the magnetic field, and H the scale height defined by

ey KT@RY

Gm,M

Fig. 1. Schematic of fluxtube geometry showing pertinent definitions

k being Boltzmann’s constant, T the temperature, R, the solar
radius, G the gravitational constant, m, the mean particle mass,
and M the solar mass. We now put Egs. (1)—(4) in nondimen-
sional from by defining x = r/H*, y = z/H*, b = B/B*, p = P/P*
and ¢ = T/T* to obtain

p , (0b, 0Ob,\ by 0

ﬂa_x_b’<6_y—_6_x>_;$(xb") (%)
0= b3 (xbg) + b, o (6)

x 0x oy

op p\_ ob, 0b, 0Obg
ﬁ<ay+; = br(ay 6x> boﬁ ™
10 ob,

0= X ox (xb,) + By ®

where H* = kT*R%/(Gm,M ) and B = 4nP*/B*2,

We now expand all variables in a power series in x. As for
the case of potential fields as well as analytic force-free fields (cf.
Ferraro and Plumpton, 1966), we express b, as an even series in
x and b,, b, as odd series, i.e.,

b, = ho + hyx* + hyx* + - -
b, = fix + fo5x3+ -
by=g;x +g3x> + -
The form of the Egs. (5)—(8) suggests that p and ¢ are also even.!
P=Dpo+ pax® + pax* + -
=0+ 0,x2 +oxt+---
Now Egs. (5)—(8) assume the form
2B(p; + 2pax* + )
=(ho + hox® + - W(fL + [5x4+ ) — (2hy + dhyx? + -+ 2))

— (g1 +g3x> + )29, +4g3x* +- ) )
0=2(fi + fsx* + )91+ 295%" + )
+ (ko + hox® + -+ )(gh + g5x> +-+7) (10)

B((@0 + 02x* + )P + Pox* + ) + (po + p2x™ + 7))
=00 +0x” + = (fix + 57+ W ([ox + [ + )
—(Qhpx + hex® + ) = (g% + g3x° + - )(ghx + g5x%)
' (11
0=(2f +4fsx* + )+ (W + hpx* + ) (12)

where the prime denotes differentiation with respect to y. Equat-
ing equal powers of x up through terms of O(x?) yields

x° terms:

GoPo + Po =0 (13)
ho(fy — 2h,) — 297 = 2Bp, (14
2f191 + hogy =0 15)
2+ hy=0 (16)

! Tt can be shown that this form of expansion for b, p, and ¢ is
the only one that leads to a solvable system of equations for
finding successively higher order terms

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1986A%26A...154..231P

FTI98BARA - ZI547 TZ31P0

G.W. Pneuman et al.: Structure and merging of solar magnetic fluxtubes 233
2 .

s b= =5 — o= p(pe + [ S an)ewn(-{2) 9

Bloop> + 026 + p2) = — 0o f1(f1 — 2h2) 17) o

ho(f's — 4ha) + ho(fy — 2hy) — 69193 = 4Bpa (18) a= N (29)

4,95 + 291 f3 + hogs + hagy = 0 (19) °

4, + K, =0 (20) Consider now a collection of vertical cylindrically symmetric

Since we are considering a fluxtube with a discrete boundary,
we must also satisfy two additional equations — that for the conti-
nuity of P + B?/87n and the conservation of total axial magnetic
flux, i.e.,

2Bp + b)u =@

a
[ b.x dx = const.
0

where @ = (8nP, + B2)/B*?, P, and B, being the external gas
pressure and magnetic field strength respectively, and a = R/H*.
As before, we also expand the above two equations in powers of
x up through terms of order x? (actually a® here) to obtain

(2Bpo + h3) + a*(2Bp, + f1 + g7 + 2hoh,) = @ (21)
hoa® = a*? (22)

where a* = R*/H*. In the above, we have now introduced the
additional unknown a(y). If we were to append an energy equa-
tion to the system, the temperature would also be a variable
unknown. However, we will not attempt this here and, therefore,
have the liberty to arbitrarily specify o, and o,. In similarity
solutions, constraints are put upon the temperature in order to
satisfy force balance and, hence, an energy equation in general
cannot be satisfied. Here, we are not encumbered by this problem.

Equations (13)—(22) represent 10 equations in the 11 un-
knowns py, Pa, Ps» ho» ha» has f15 f35 915 93, and a. Note, however,
that Eq. (18) expresses only a relationship between p, and h,,
which appear nowhere else in the system. Hence, if we omit
Eq. (18), we have 9 equations in 9 unknowns and a closed system.
If one wished to find p, and h, explicitly, the x* term of Eq. (9),
ie.,

Blopi + pa + 02P5 + 04P0)
= —oo(f1f5 _fsf'1 + 4f1hy + 2f3hy)
—0o(fif1 — 2fiha) — 0o(g195 + 9391 —

could be used along with Eq. (18) to solve for these quantities
in terms of the others which are known. We actually will do this
later to check the smallness of p, and h, and, hence the validity
of our solution.

We can now use Eqgs. (13)—(17) and (22) to write py, f1, 91,
D2, hy, and a in terms of h, and the temperature.

629191 (23)

vd
Po = exp(—j —y) (24)
009
ho
fi=—3 25)
g1 = gtho (26)
Yy o Ydy
= h.| p* —2 4 =
D2 0<P2 + _(‘; o2y J’> exp< '.[0'0) (27

fluxtubes which, at the level y = 0, occupy a certain fraction of
the area given by a filling factor «. Since our model has a well
defined and sharp boundary there is no ambiguity in the defini-
tion of a. As these fluxtubes each expand individually with height,
they will eventually merge with each other when their areas
(assuming they are all equal) have increased by the fraction 1/a.
Actually, when these tubes begin to merge, the assumption of
cylindrical symmetry will break down since there is no way to
fill all space with a collection of cylinders. However, by this time
the internal fields will have become vertical and uniform anyway,
so the assumption of cylindrical symmetry is really not necessary.
This is not true for twisted fields, and these shall be discussed
separately (see Sect. 3.3).

In order to obtain smooth merging it is convenient to use a
small seed magnetic field external to the tubes to simulate the
presence of the neighbouring fluxtubes. This seed field is used
only for convenience and in no way restricts the scope of our
study since, if this field is sufficiently small at the reference level,
all properties of the solution such as tube shape, merging height,
etc. are independent of the strength of the seed field. Moreover,
the use of this small external field might even be physically quite
realistic since we hardly expect the magnetic field strength
between the fluxtubes to be identically zero. If the magnitude of
the seed field is B, and it fills all available space between fluxtubes,
then the conservation of flux yields

B, = B* h0<h—_°;>
(1]

where B¥ is the value of B, at y = 0. This relation for B, clearly
shows that as the fluxtube expands and the value of h, approaches
o, B, becomes large, mimicking the effect of a neighbouring flux-
tube by forcing the model tube to become straight. We now
substitute Egs. (24) to (29) into Eq. (21) to obtain

(1) rom
1 wapaf 1= 2
— <8nP + B*2h <ho >>) (30)

where u = a*2g*2.2 Similarly Egs. (18) and (19) can be used to
write f; and g5 1n terms of h, and h,.

by = 5 e =

1
fr=—gHs G1)

g ! 7
g3 =i (g: 2 o i (ko — Zhaho) dy) (32)
If needed f; and g5 can easily be rewritten in terms of h, alone,
but the resulting expressions are pondersome and offer no new
insight.

% For the case when h, = g5 = 0, u = tan®y where 7 is the pitch

angle at R = R*
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An examination of Eq. (30) without the seed field and for
u = 0 shows that the right-hand-side, if set to zero, is just the
thin fluxtube approximation for a uniform B, field. The left-hand-
side represents the contributions due to the radial field and to
curvature. One interesting question we can ask at this point is
— How important are these corrections to the slender fluxtube
equations likely to be? We can estimate this by solving Eq. (30)
without the left-hand-side (slender fluxtube equation) calculating
the left-hand-side from that solution, and comparing it to the
first term on the right-hand-side. Neglecting twist and the external
field for the moment, we write Eq. (30) in the form

1 2h3

g — 5= (Ho)* — —3 = —0(y)
a

o (33)

where

2 (8nP, vd
) =a—(;— + ﬂCXP<—£6—z>>-

From the slender fluxtube approximation we have

a*
he = — Q12
N
a*
- Q—1/2Q/
N

. <Q' g Lo 3’2(Q’)2>
22 2
For simplicity, let us neglect the internal gas pressure (f = 0).
Then
16nP,
Q=g
If we now let the external gas pressure decline upwards expo-
nentially, i.e.
P, = P*e~7/He

where H, is the scale height and

B*?
Pr=—o.
8
then
— —z/He
- a*? €

and the ratio, R,, of the correction terms hj — 55-(ho)* to the
slender fluxtube term 2a*?/h3 is just

a* L3\ 1 (R¥V z
k=30 (QQ —4© ’2>‘T€<E> e""(w)

Thus, even though the initial radius of the tube may be small as
compared to the scale height, the correction terms will always
eventually become important over distances of the order of a few
scale heights. This, of course, is due to the rapid broadening of
the tube with height.

As the individual fluxtubes expand upward, we will consider
them merged when the quantity hy/h, becomes less than some
small arbitrary value. Not far above this height the internal field

becomes uniform (h, — 0) and h, approaches the constant value

B
hoza+(1—oz)§—*—

for the case when there is no twist (u =0). In the limit of a
vanishing seed field (B¥ =~ 0), the tube is now vertical and straight
with its boundary lying immediately adjacent to that of its neigh-
bours. Hence, at this and higher heights, the concept of individual
fluxtubes has lost its meaning.

Even excluding the merging there are big differences between
this approach and that of similarity theories such as those of
Schliiter and Temesvary (1958), Yun (1971), Solanki (1982), and
Osherovich et al. (1983). These differences are in the field distri-
bution with radius and the treatment of the temperature, and
they are related to the force balance in the axial direction. Simi-
larity solutions constrain the radial form of the field and pressure.
When this is done, then for a given vertical temperature structure
the radial force balance can be satisfied exactly, but axial force
balance can be achieved point by point for only one particular
horizontal temperature distribution. In our approach, we specify
the temperature arbitrarily (or through an energy equation) and
determine the radial variation of field and pressure, which inci-
dently will be shown to be not self-similar, to satisfy both radial
and axial force balance simultaneously. We think this has distinct
advantages since the temperature can be determined either em-
pirically or through the incorporation of an energy equation into
the framework of the theory, which can be done quite easily.
Similarity contradicts the use of this equation in any form.

For specifying the external gas pressure, we will employ the
HSRASP (Chapman, 1979) model, which combines the HSRA
(Gingerich et al, 1971) with a downwards extension obtained
from Spruit’s (1974) convection zone model. We choose our ref-
erence level, y = 0 at the 754500 = 1 level of that model.

The actual numerical integration of Eq. (30) is carried out
using the backward differentiation formula technique (cf. Gear,
1971), which is an implicit multistep method. In order to carry
out the integration we must specify h, and hy at y = 0. hy equals
unity there by definition and hj is adjusted so as to make h,
smoothly approach a constant value (given by the filling factor
o) at large distances.> Moreover, as we proceed to deeper and
deeper layers for y < 0, we expect h, to approach the thin fluxtube
solution to a closer and closer degree. This means that, wherever
we choose our reference level to lie, the degree of depth in the
physical atmosphere must be reflected in a relationship between
the reference values on the right-hand-side of Eq. (30). If the
internal temperature is identical to the external temperature then,
the deeper the reference level, the closer the right-hand-side ini-
tially must be to zero. This amounts to a relationship between
P*, B*, P* B¥, and p which is
Y = 8n(P* — P*)— B*? + (1 — wB** 2 0 (34)
if the reference level lies deep enough down in the atmosphere.
¥ is not identically zero because of radial variations in the base
conditions. In practice, we here use Eq. (34) to determine P*.

3 It can be shown that, unless hj, has one specific value at the
origin, the solution will diverge to either + oo or O at a finite
value of y
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The small difference in ¥ from zero is a weak function cf a* and
is adjusted until a solution is found which is well behaved as y
increases in the negative direction.

3. Discussion of results

We will begin this section by ignoring the effects of twist and
treat that subject separately in Sect. 3.3. If radiative coupling
between the tube and its surroundings is efficient, we might expect
the temperature inside the tube to be close to the temperature
outside and fairly uniform across the cross-section. For the most
part, we shall use this consideration here for determining po(c,)
and neglect o, and higher order terms in the temperature. How-
ever, later we shall investigate some solutions in which the inter-
nal temperature differs from that outside. For example, it is of
interest to investigate models in which the internal temperature
is lower than that outside, at equal geometric height, as suggested
by the theoretical model results of Deinzer et al. (1984b). If the
internal and external temperatures are equal then, as long as Eq.
(34) is satisfied, the solution of Eq. (30), in the limit of a vanishing
seed field, is independent of the value B* and is determined only
by the values of the initial radius, a*, and the filling factor, o.

3.1. Cross-section and merging height

Figure 2 shows the variation of cross-section with height for
different values of the seed field strength. We have taken the base
pressure in the tube here to be uniform so that p, = 0. The initial
radius is chosen to be 100 km and the filling factor 0.1. This filling
factor lies between the lower values for network fields in quiet
regions and the higher values corresponding to strong plages
(Solanki and Stenflo, 1984). The value for the radius is close to
that given by Muller and Keil (1983) for facular points in con-

1000 - -
0.067
0.033
Be
B = {0010
0.003
g 0.001
3
< s00 o =
=
&0
g
=
0 { - .
0 200 u0o

radius (km)

Fig. 2. Variation of the fluxtube cross-section with height for different
values of the ratio of seed field strength (B¥) to the internal field strength
(B*). We have chosen an initial radius (R*) of 100km and a filling factor
(«) of 0.1. The vertical line represents the radius for complete merging.
We see that, as the seed field strength becomes vanishingly small, the
solution becomes essentially independent of its magnitude. Also, the
merging height is almost independent of the seed field strength

1500 L L I 1 L

1000 =

height (km)
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L\
\
\*_
\
N
\
\
\
\
T T

500 = r
Temperature
minimum

0 f f T T T T T

0 200 oo 600 800
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Fig. 3. Height variation of cross-section for different initial base diameters
and a filling factor of 0.1. Here, larger base diameters correspond to
fewer fluxtubes per unit volume. The horizontal line is the level of the
temperature minimum and the dashed curve is the locus of the merging
heights. Note that this curve is almost a straight line

tinuum observations of the quiet sun network. Since the pressure
is uniform across the cross-section here, the calculated fields are
potential. As expected, the smaller the seed field strength, the

. NP 1
closer the tube expands towards its theoretical limit R, = \/: R*.
o

Note that, as the seed field becomes very small, the solution
becomes essentially independent of its magnitude. Since the tubes
merge asymptotically, we consider them merged when hy/h, (a
measure of how vertical the field is) declines to some arbitrary,
small value. In practice, we choose this value as 0.05. The merging
height defined in this way appears to be approximately indepen-
dent of the seed field strength.

Spruit and Zwaan (1981) find that, in active regions, small
fluxtubes exhibit a broad range of diameters ranging from below
their best resolution up to 1.6” (fluxtubes larger than this are
seen as pores). We have therefore also studied the effect of fluxtube
diameter on the merging height, although we have concentrated
mostly on the so called facular elements, which according to
Spruit and Zwaan (1981) have diameters <0.5”. The cross-section
variation and merging height for different values of R* but a
fixed filling factor of 109 is shown in Fig. 3. The dashed curve
represents the locus of merging heights which, curiously, is essen-
tially a linear function of R, and, hence R*. Since the filling
factor is fixed, a larger value of R* corresponds to fewer fluxtubes
per unit surface area on the Sun. We see then that, the larger the
fluxtubes, the higher the level above 15000 = 1 that they merge.
The horizontal line in the figure represents the temperature min-
imum level of the HSRA which we shall consider to be the
base of the chromosphere. Hence, unless the tubes are very thin
(R* < 25km), merging takes place in the chromosphere for this
filling factor.

A crude expression for the dependence of the merging height
on the relevant physical parameters can be obtained by com-
bining the conservation of magnetic flux with the thin fluxtube
approximation in an isothermal external atmosphere (Spruit,
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1983). This yields

z,= —Hlna (35)

where z,, is the merging height and H the isothermal scale height.
Thus, according to Eq. (35), the merging height should be inde-
pendent of R*. Fig. 3 shows, however, that this is clearly not the
case indicating that field line curvature effects have a significant
influence on the merging height.

In Fig. 4, we fix the fluxtube radius to be 100km and vary
the filling factor from 0.025 up to 1.0. As expected, the merging
height (indicated by the dashed curve) varies inversely with filling
factor. The shape of this curve is approximately logarithmic in
accordance with that predicted by Eq. (35), but the constant of
proportionality between z,, and In « does not correspond to the
appropriate scale height. For « < 0.1 corresponding to network
fields, the merging takes place in the chromosphere. In strong
plages, however, the filling factor can be considerably larger and
merging can occur in the photosphere. Stenflo and Harvey (1985)
have studied the properties of fluxtubes as a function of magnetic
flux (~amplitude of Stokes V). Since the field strength in small
fluxtubes appears to be almost independent of flux, the latter
quantity is simply proportional to the filling factor. If we take
their relationship between a and the maximum Stokes ¥ ampli-
tude of the Fer 5250.2 A line: o = 7.6V, 5250 and apply this to
their point with largest Stokes ¥ amplitude we get a filling factor
approaching 409%. This value is corrected for a presumed factor
of 2 calibration error in the polarisation of the McMath telescope.
The line weakening according to Stenflo (1975) is taken into
account but not the effects of the difference in temperature struc-
ture between active region and quiet network fluxtubes (Solanki
and Stenflo, 1984; Solanki, 1984).

If we no longer constrain the temperature in the tube to be
equal to that outside, the merging height then depends upon the
value of B*. Suppose the internal and external temperatures differ
by a constant factor over the height range of the HSRASP model.
In Fig. 5, we show the dependence of merging height upon the
ratio of external (T,) to internal (T;) temperatures for three dif-

1500 ! L L
a=0.1
1600 — L
B a=1025
<
=2 B a=05
b0
& | 4 Temperature
500 _ / minimum -
/
/
o ! | . ;
8] 200 400 600
radius (km)

Fig. 4. Variation with height of the cross-section for a fixed base radius
of 100km and different values of the filling factor. As in Fig. 3, the
dashed curve represents the locus of the merging heights

800 | L L
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= | L
£ / B* = 1700 G
g yoo H 7 -
£ s B* = 1500 G
o - .
< 7 /\
£ < —— B* = 1300G
~
200 —+— -
0 ; | ‘ [ .
0.0 0.5 1.0 1.5 2.0
Te/T:

Fig. 5. Dependence of merging height upon ratio of external (T,) to
internal (T;) temperature for different base magnetic field strengths. At
T,/T; = 1, the merging height is independent of the field strength. For
T,/T; > 1 the height decreases with increasing field strength and for
T,/T; < 1 the reverse is true

ferent values of B*.* For T,/T; < 1, the merging height increases
with increasing B* whereas, for T,/T; > 1, the reverse is true.
The reasons for this behaviour are the following. For T,/T; < 1,
the internal gas pressure falls off more slowly with height than
the external gas pressure and, at some height they become nearly
equal. Here, the internal magnetic field must become small in
order to satisfy the boundary conditions and the cross-section
then becomes large enough to ensure merging. Since Eq. (34)
must be satisfied at the reference level, the internal pressure, P*,
has to be lower for larger field strengths, B*. This means that the
height at which the internal gas pressure becomes larger than
the external gas pressure increases with increasing B* resulting
in a correspondingly higher merging height. Due to the presence
of the seed field term in Eq. (30), which dominates over the
pressure terms near the merging height, valid solutions can be
obtained even above the level at which the internal gas pressure
becomes larger than the external gas pressure. Due to magnetic
tension the fluxtubes do not become straight suddenly at this
height, so that the merging height (defined in Sect. 3.1) can lie
above this level. The lines in Fig. 5 are drawn dashed for small
T,/T; since the low merging height and the related very rapid
expansion of the tube lead the model to the limit of its validity.
For T,/T; > 1, on the other hand, the internal pressure falls so
rapidly with respect to the external pressure that it soon becomes
unimportant. Now, the internal magnetic pressure dominates and
produces more rapid expansion and quicker merging as the field
strength is increased. Note that, as T; becomes very small
compared to T,, the merging height approaches an asymptotic
value independent of T;. This is because the internal gas pressure
now decreases so rapidly with height that it becomes totally
unimportant not far above the reference level.

4 Since we are fixing T, by the HSRASP model atmosphere, the
variations in T,/T; reflect changes in T; only
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3.2. Internal structure

Figure 6 shows the variation of B, and B, across the tube at
different heights in the atmosphere for a uniform base pressure
(P* = 0). The heights shown here are incremented in 100km in-
tervals upwards from the reference level. We see that, at low
heights, B, is almost uniform, in line with that expected from the
thin fluxtube approximation. As we proceed upward, the axial
field becomes more nonuniform declining outward from the cen-
ter of the tube. Then, near the merging height, it becomes more
uniform again and is, of course, constant after merging. This
variation of B, with radius and height is clearly not self-similar.
Note that the correction terms to h, and f; (x2h, and x>f3) are
not large but also certainly not negligible.

In Fig. 7 we show an example where the pressure at the base
is not uniform but increases outward from the center of the tube,
ie., a*?p¥ = 1. The field behaves in a similar way at large dis-
tances from the reference level but is distinctly much more non-
uniform near y = 0. This is because an outward magnetic pressure
gradient is needed to balance the imposed inward gas pressure

(km)

800

600

oo

200

variation of B, and B, at different heights

T I
0 100 200 300
radius (km)

Fig. 6. Radial variation of B, and B, at different heights for a typical
fluxtube of initial radius equal to 100km and a filling factor of 0.1. For
this case, the base gas pressure is taken to be uniform. To interpret this
figure and others like it properly, visualize the figure of the overall flux-
tube geometry to be subdivided into groups of subfigures placed at dif-
ferent heights in the tube. Each subfigure contains three curves. At the
bottom is a horizontal line defining the height. Above it is the radial
variation of B, shown dashed and, above that, the variation of B, (solid).
As in all figures of this type, both B, and B, are normalized to the
value of B, on the axis. Here, the axial field at the base is essentially
uniform but then begins to decline outward as the height increases. But,
near the merging height, it approaches uniformity again consistent with
a uniform vertical cross-section

(km) L 1 1 1 1

800

o)}
o
o

400

200

variation of B, and B, at different heights

0 |
0 100 200 300
radius (km)

Fig. 7. The same as Fig. 6 but with a base gas pressure increasing out-
ward from the axis. Now, the axial field is no longer uniform at the base
since its pressure gradient must now balance the inward gas pressure
gradient. At large heights, however, the gas pressure is no longer im-
portant and the field approaches uniformity as in Fig. 6

gradient at the lower boundary. As opposed to the variation of
the magnetic field quantities, the gas pressure does behave self-
similarly if the temperature inside the tube is the same as that
outside. This can be seen by using Egs. (24) and (27) to write the
expression for the total pressure for the case of a horizontally
uniform temperature (g, = 0),

»d
p=po+x’py+-=(1+ xzpz‘ho)exp<—fa—y>
(U]

But, from Eq. (22) we have hy, = (a*/a)?, so

2
PR (1 + p§a*2<£> )exp(—jy'd—y>
a 00p

Obviously, this is a singular case since the self-similar property
disappears if the internal and external temperatures are unequal
or if the internal temperature varies with x. The above equation
shows that the lateral pressure gradient persists even after the
fluxtubes have merged. This means that the magnetic field cannot
be exactly uniform after merging. But the pressure is declining
exponentially and this nonuniformity damps out rapidly as can
be seen in the figure.

The case where the pressure at the lower boundary decreases
with radius (a*?p, = —1) is shown in Fig. 8. The result is as
expected with the axial magnetic field now increasing outward
in the lower part of the tube in order to provide the required
inward magnetic pressure gradient. Higher up, the solution is
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Fig. 8. The same as Fig. 6 but with the base gas pressure now decreasing
outward. As expected, the axial field at the base now increases outward
to counterbalance the outward gas pressure gradient but then begins to
decline outward as the influence of the pressure declines. Eventually, as
in the previous cases, the field becomes uniform near the merging height.

similar to the other cases. The similarity of all three solutions in
the higher reaches of the tube is due to the rapid decline in gas
pressure so that the fields there have essentially forgotten the
distribution of pressure at the base.

3.3. Effects of twist

Because the higher order terms in the expansion become quite
large if the twist is too significant, it is safe within the context of
the expansion method we are using to investigate only relatively
small values of the initial twist. Nevertheless, several interesting
results do emerge from the investigation of even quite small pitch
angles. For initial pitch angles less than 15°, the twist has only a
small effect upon the cross-section and merging height, the cal-
culation to second order showing a slight decrease in the cross-
section at greater heights as compared to the untwisted case.
However, we believe this result could be spurious for the fol-
lowing reason: As can be seen from Eq. (30), the net effect of B,
(in the terms containing p) is of the same sign as the external
pressure and tends to enhance the axial field at the axis, A, in
agreement with the results of Parker (1974). However, the flux
condition correct to second order, Eq. (22), contains only hya?
and not the fourth order term in the axial field h,a*. Because h,
is enhanced, the final calculated cross-section from Eq. (29) will
be underestimated without the inclusion of the fourth order term
which can become significant at great heights where, in this case,

the radial gradient of B, becomes large. Therefore, our finding
from the second order expansion that the cross-section is slightly
decreased should not necessarily be taken as a contradiction to
the contrary results of Parker (1974, 1976)°. It may merely show
the inadequacies of a second order expansion when the twist
becomes large (as it does near the merging height). In any case,
the effect on the cross-section is expected to be quite limited due
to the restrictions imposed by merging. We feel that, despite this
problem, some qualitative conclusions on twisted tubes can still
be reached.

Since, to first order, the pitch angle of the field, n,, is given by
15 _ tan"'g¥a

z

1Ny, = tan"~

we see that the twist increases with height as the fluxtube broad-
ens in accordance with the results of Parker (1974). Moreover,
the number of turns per unit length along the tube remains ap-
proximately constant, i.e.,

1
N ~ —tann ~ const.
a

Figure 9 shows a plot of the tangent of the pitch angle as a
function of height for three values of the initial twist. These curves
are calculated correct to second order, i.e.,

_1 910+ g9:a°

=tan™! T ——2_
1 ho + hya?

(36)
As mentioned previously, we see that the twist initially increases
strongly with height. However, when the fields begin to merge,
the pitch reaches a maximum and then begins to decrease to an

1.5 L 1 L L ! L L
tann® = 0.225
1.0 -
it tann* = 0.150
I N .
= tang* = 0.075
s
0.5 - |
0.0 : ; . ; : . , : -
0 200 400 600 800 1000
height (km)

Fig. 9. Variation of pitch angle with height for a twisted fluxtube for
different values of the initial twist at the the base. For all these tubes,
R* = 100km and o = 0.1. We see that the twist increases strongly with
height. But, near the merging height, it reaches a maximum and then
declines to a constant value

> Although, our analysis is quite different from that of Parker
(1974, 1976) in that we specifically include the radial component,
B,, in our treatment
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asymptotic constant value. This decrease is due to the second
order terms in Eq. (36), primarily the decrease of h, (which is
negative) as the axial field becomes more uniform at and above
the merging height. The constant asymptotic twist at large heights
is, of course, consistent with a constant fluxtube radius. Its value
is given approximately by

1
tann, ~ — tann*
o

where n* is the initial pitch angle at the surface and #; the final
value after merging. This result must be viewed with caution
since our assumption of cylindrical symmetry breaks down in
these regions. Also, it is only approximate since, for twisted tubes,
h, does not become zero above the merging height (cf. Fig. 10).

Figure 10 shows the variation of B, and B, across the tube
cross-section at different heights. We begin at the base with B, «
B, but, consistent with Fig. 9, the azimuthal field at great heights
eventually dominates at the surface. This azimuthal field pro-
duces an inward magnetic pressure force which must be balanced
by an outward magnetic pressure force from the axial field (since
the lateral gas pressure gradient in this solution is zero). Hence,
we find that, with increasing height, the axial field strength
declines outward from the tube center correspondingly more
rapidly. As opposed to the case shown in Figs. 6, 7, and 8, the
axial field here remains nonuniform at all heights — even after
merging.

800 —_—— -

600 = ~

upo

200

variation of B, and By at different heights

T T
300

0 100

200
radius (km)
Fig. 10. Radial variation of B, (dashed) and B, (solid) at different heights

for tann* = 0.225, R* = 100 km, and o = 0.1. This figure reflects the same
properties as in Fig. 9 showing the strong increase in twist with height
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Fig. 11. Comparison of fluxtube cross-section obtained from our expan-
sion technique carried to second order with the thin fluxtube approxi-
mation (dashed) also modified through the use of a seed field. The figure
shows that the thin fluxtube approximation is quite good near the base
but that the deviations from our model become more and more marked
as the height increases

3.4. Departures from the thin fluxtube solutions and significance
of higher order terms N

In Fig. 11, we compare the differences in cross-section for our
second order solutions from those obtained using the thin-flux-
tube approximation, also modified by the use of a seed field. We
use our ‘standard’ model here (temperature inside and outside
equal, pressure laterally uniform, o« = 0.1) and show tubes with
base radii of 25, 50, 75, and 100 km respectively. The differences
between the two approximations increase with increasing height
and are largest in the vicinity of the merging height. Our solu-
tions show merging at a greater height, due to decreased
expansion of the tube, as expected from the presence of magnetic
tension. This effect increases with increasing radius (cf. Sect. 3.1).
For the thin fluxtube model, the merging height is practically
independent of fluxtube radius in accordance with the approxi-
mate results of Spruit (1983).

In order to estimate the validity of our expansion technique
in general, we show in Fig. 12 plots of the second order and
fourth order terms in the expansion of the axial magnetic field
strength at the boundary, normalized to its value on the axis, i.e.,
bz h2 2

hy
2142 4
b +hoa +h0

a4

Again this plot corresponds to the ‘standard’ model with o« = 0.1,
R* = 100km, no twist, and with the temperature and pressure
uniform over the cross-section. For this case, Egs. (18), (23), and
(28) yield simply

pa=0
1
h2=—zh3
1 1
- — //=_h([V)
N 16 2 64 °

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://cdsads.u-strasbg.fr/abs/1986A%26A...154..231P

FTI98BARA - ZI547 T Z31P0

240

0.3 1 1 1 1

0.2 o -

h4a4
@ ho
£ 0.1 A L
2
= i -
E)
3 0.0
£
.6 - -
3
s -0.1 4 -
5
< - L
=
=
‘8 -0.2 \ +
S 4 hza L
0
-0.3 - -
-0.4 ; T : : . . : :
0 200 400 600 800

height (km)

Fig. 12. Variation of the second and fourth order terms in the expan-
sion for B, with height. The curves show the ratio of these terms to the
zeroth order terms. The second order term grows with height and actually
becomes significant near the merging height but then drops quickly to
zero. The fourth order term is very small at low heights but also increases
near the height where the fields merge. This figure corresponds to our
“standard” model with R* = 100km and o = 0.1. For fluxtubes thinner
than this, these terms should become correspondingly smaller

We see that both the second and fourth order terms are small
near the base but the second order term grows with height until
just below the merging height (at about 750 km) when it quickly
drops to zero. The fourth order term, which is proportional to
the curvature of the second order term, remains quite small until
merging begins to occur where it begins to reflect the adjust-
ment of h, towards zero. p, and h, remain small for most of
the models studied by us, including those with p, # 0. h, may,
however, become large for tubes with large twist. Of course, for
a thinner fluxtube than this, the correction terms should become
correspondingly smaller.

4. Summary and conclusions

In this paper we have constructed a fluxtube model with two
major goals in mind. One was to treat the tube within the con-
text of a collection of similar tubes, which may or may not be
twisted, so that merging of the tubes as they expand with height
must be considered. The second goal was to examine higher order
departures from the thin fluxtube models to obtain information
on the effects of magnetic field curvature and other higher order
effects upon the tube structure and merging properties without
restricting ourselves to similarity theory. The similarity models
cannot treat arbitrary temperature distributions across the cross-
section and also places severe restrictions upon the internal struc-
ture. To accomplish these goals we chose to use an expansion
technique in which the appropriate variables such as magnetic
field strength, gas pressure, and temperature are expanded in
power series in the radial variable perpendicular to the tube axis
and then solve the appropriate MHD equations for the height
variation of the various coefficients by equating equal powers
in the equations to any ascending order of accuracy desired. If

this process is carried out to second order, one ultimately obtains
a nonlinear second order differential equation for the magnetic
field along the tube’s axis which must be solved numerically.

In order to treat the merging of the tubes with each other
conveniently, we chose to specify a small ‘seed’ field existing be-
tween the fluxtubes to simulate the presence of neighbouring
tubes. This seed field is used for mathematical convenience and
has no effect upon the solution for merging height, structure, etc.,
as long as its magnitude is small as compared to that of the field
in the tube. The use of this field external to the tubes allows
them to merge smoothly as expected physically.

For all our models, we specified the external atmosphere by
the HSRASP (Chapman, 1979). The reference level where the
boundary conditions are applied was taken at 75400 = 1 of that
model. For most cases we chose the internal temperature to be
uniform across the tube and, assuming efficient radiative coupling,
equal to the external temperature at all heights. We also chose
the base gas pressure to be uniform. For these conditions, the
solution for an untwisted tube is independent of the magnetic
field strength at the base and is a function only of the initial
radius and filling factor. For a fixed filling factor, the merging
height is essentially a linearly increasing function of radius (for
a fixed filling factor, increased radius corresponds to fewer flux-
tubes per unit area) and, for tubes greater in diameter than about
25km, merging takes place in the chromosphere for filling factors
of 0.1 or less. For a fixed fluxtube diameter, on the other hand,
the merging height varies inversely with filling factor as expected.

If the internal temperature is no longer constrained to be
equal to that outside, then the solution does depend upon field
strength. If the internal temperature exceeds that outside, the
merging height increases with increasing field strength whereas,
if it is less, the reverse is true. As discussed in the text, this
behaviour reflects the difference in the decline of the internal
and external gas pressures due to the different scale heights in
the two regions.

In general, we find that the thin fluxtube solution is quite
good low in the atmosphere as we might expect but, as the tubes
expand, the deviations soon become apparent with the greatest
departures occuring near the merging height. Our solution shows
that the effects of magnetic field line curvature extends the
merging to greater heights than predicted by the thin fluxtube
approximation modified by the use of a seed field. But the de-
partures are not so enormous, that we can say that this approxi-
mation can be a useful tool for many applications.

Turning now to the internal structure of the tube, if the base
gas pressure is uniform, then the axial field at the base is also
uniform but then begins to decline outward from the axis more
and more markedly as the fluxtube expands upward. But near
the height where merging occurs, the axial field again tends to-
wards uniformity consistent with a vertical fluxtube of constant
cross-section. If the base pressure increases outward from the axis,
then the base axial field strength decreases correspondingly so
that the outward magnetic pressure gradient can balance the in-
ward gas pressure gradient (the curvature has little influence at
this height). However, the axial field again approaches uniformity
as the tube merge. If, on the other hand, the base gas pressure
decreases outward from the axis, the reverse is true with the axial
field strength initially increasing outward.

At this point it is necessary to point out that, for all our
solutions the variation of the magnetic field distribution with
height is decidedly not self-similar. The gas pressure distribution,
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however, does behave self-similarly with height, but only when
the internal temperature is uniform and also equal to the external
temperature. Self-similar solutions require one specific tempera-
ture distribution with radius in order to satisfy force balance in
both directions, even though an energy equation is not used.
Here, we are specifying the temperature distribution indepen-
dently so that self-similarity should not be expected. We think
this is a decided advantage since, in principle, an energy equa-
tion could easily be incorporated into our formalism.

For a twisted fluxtube, the higher order terms in our expan-
sion become significant if the initial twist is too large and our for-
malism cannot really be trusted. However, we feel we can safely
discuss some physical implications of slightly twisted fields. For
the cases we consider, the twist does not have a large effect on
the overall cross-section and merging height. In accordance with
the results of Parker (1974), the pitch angle increases strongly
with height since the number of turns per unit length remains
approximately constant while the cross-section increases rapidly.
However, as the fields begin to merge, the pitch angle reaches a
maximum and then begins to decrease towards a constant asymp-
totic value consistent with a constant cross-section. Though the
azimuthal field at the surface is small as compared to the axial
component there at the base, it eventually dominates at great
heights. This produces a strong inward magnetic pressure gra-
dient and curvature force which must be balanced by an outward
magnetic pressure force due to the axial field (since the gas pres-
sure at these heights is small). Hence, the axial field must de-
crease outward from the axis and continues to do so even after
merging. Presumably, after merging, fields of opposite polarity
will come in contact with each other resulting in magnetic re-
connection which could serve to combine tubes integrally with
their neighbours (Parker, 1983).

It is generally agreed that the magnetic field of unipolar
regions expands until it comes into contact with field lines coming
from neighbouring regions. Different theoretical models have
been proposed for this expansion (e.g. Gabriel, 1976; Anzer and
Galloway, 1983b). The results from these models have been inter-
preted to give “canopy heights” of around 1500km above the
photosphere in quiet regions, where “canopy height” is inter-
preted as the height at which the atmosphere begins to be do-
minated by the magnetic field. On the other hand Giovanelli
(1980), Giovanelli and Jones (1982), and Jones and Giovanelli
(1983) have found evidence from magnetograph recordings for
magnetic canopies lying between 500 and 800km in the atmo-
sphere, near both active and quiet network regions. Here canopies
are regions of magnetic field lying over non-magnetic regions.
If their interpretation of the observations is correct, then we
should expect on the basis of our analysis that the individual
fluxtubes would not be fully merged when the canopy begins to
form, i.e. when the fields become strongly inclined. Consequently,
there clearly is a need to study the structure and merging of non-
vertical fluxtubes.

In conclusion, we think the present model offers distinct ad-
vantages over the thin fluxtube approach since it does elucidate
the effects of field line curvature, nonuniformities in the internal
structure, and merging properties due to the presence of neigh-
bouring tubes. Although we only carry our analysis through terms
of second order in radius this approach, in principle, can be
carried out to higher orders of accuracy if so desired. However,
the numerical complexity increases enormously. In the meantime,
we hope that the present model will be useful for empirical

modeling of such structures in the solar atmosphere. Ultimately,
however, exact MHD solutions for this problem are certainly
feasible. This has been demonstrated, for example, by the time-
dependent relaxation technique employed by Endler (1971),
Steinolfson et al. (1982), and Suess (1983) for the coronal streamer
problem and by Deinzer et al. (1984a,b) for fluxtubes in slab
geometry. An equally promising method would be the iterative
method used by Pneuman and Kopp (1971) for streamers, which
has recently been applied to sunspots by Pizzo (1985).
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