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ABSTRACT

Our aim is to model the three-dimensional magnetic field structure of the upper solar atmosphere, including regions
of non-negligible plasma beta. We use high-resolution photospheric magnetic field measurements from SUNRISE/
IMaX as the boundary condition for a magneto-static magnetic field model. The high resolution of IMaX allows us
to resolve the interface region between the photosphere and corona, but modeling this region is challenging for the
following reasons. While the coronal magnetic field is thought to be force-free (the Lorentz force vanishes), this is
not the case in the mixed plasma β environment in the photosphere and lower chromosphere. In our model,
pressure gradients and gravity forces are self-consistently taken into account and compensate for the non-vanishing
Lorentz force. Above a certain height (about 2 Mm) the non-magnetic forces become very weak and consequently
the magnetic field becomes almost force-free. Here, we apply a linear approach where the electric current density
consists of a superposition of a field-line parallel current and a current perpendicular to the Sunʼs gravity field. We
illustrate the prospects and limitations of this approach and give an outlook for an extension toward a nonlinear
model.
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1. INTRODUCTION

While the corona, at least above active regions, has a low
plasma β and is usually modeled by the assumption of a
vanishing Lorentz force (see Wiegelmann & Sakurai 2012, for
an overview of solar force-free fields), this is not true in the
lower solar atmosphere (see Wiegelmann et al. 2014, for a
recent review on magnetic fields in the solar atmosphere). In
the photosphere and lower chromosphere, low- and high-β
regions exist side by side and non-magnetic forces have to be
taken into account to the lowest order with a magneto-static
model where the Lorentz force is compensated for by the
gradient of the plasma pressure and the gravity force.

The most accurate measurements of the solar magnetic field
are available in the photosphere. In active regions, the full
magnetic vector can be measured accurately, e.g., with SDO/
HMI, whereas in quiet Sun regions only the line of sight or
vertical field is available with sufficient accuracy for a reliable
extrapolation because in weak-field regions there is too much
uncertainty in the transverse field components. (Noise in the
Stokes vector translates into an uncertainty in the inferred
values for the magnetic field; see Borrero & Kobel 2011, 2012.)
These photospheric measurements are extrapolated into the
solar atmosphere under certain model assumptions, here using
a magneto-static approach. The vertical resolution of the model
scales with the horizontal resolution of the photospheric
measurements, e.g., about 1400 km for SOHO/MDI-magneto-
grams and 350 km for SDO/HMI. As the non-force-free layer
containing the photosphere and lower chromosphere is rather
thin (typically less than 2000 km), one can hardly resolve
magnetic structures here for models using SOHO/MDI- or
SDO/HMI-magnetograms as the boundary condition. The
high-resolution magnetograms from SUNRISE/IMaX with a

pixel size of only 40 km now allow us to model this layer
vertically with about 50 points.
A special class of magneto-static solutions which allow for

separable solutions has been proposed by Low (1991). An
advantage of this approach is that the resulting equations are
linear (for nonlinear cases, see Neukirch 1997) and can be
solved effectively by a Fourier transformation or a Greenʼs
function implementation (see Petrie & Neukirch 2000). Separ-
able and linear solutions have also been found in spherical
(Bogdan & Low 1986; Neukirch 1995; Al-Salti & Neukirch
2010) as well as cylindrical coordinates (Neukirch 2009; Al-
Salti et al. 2010). The solutions found in spherical coordinates
especially have been used for modeling the global magnetic
field of the Sun (e.g., Bagenal & Gibson 1991; Gibson &
Bagenal 1995; Gibson et al. 1996; Zhao et al. 2000; Ruan
et al. 2008) and other stars (e.g., Lanza 2008, 2009).
Usually, these models require only the line of sight or

vertical photospheric magnetic field as boundary condition, and
the solutions contain free parameters and/or free functions.
Nonlinear magneto-static solutions are more demanding
numerically and observationally because they require photo-
spheric vector magnetograms as input (see Wiegelmann &
Neukirch 2006; Wiegelmann et al. 2007, for a cartesian and
spherical implementation, respectively). Within this work, we
apply the linear magneto-static solutions proposed by Low
(1991) to a high-resolution magnetogram observed with
SUNRISE/IMaX. The outline of the paper is as follows. In
Section 2, we briefly discuss the basic equations and model
assumptions. Section 3 describes the employed photospheric
magnetograms, which we use as boundary condition for our
magneto-static model in Section 4. In Section 5, we finally
discuss the prospects and limitations of this approach and
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provide an outlook for a generalization of the method toward a
nonlinear numerical approach.

2. BASIC EQUATIONS

We use the magneto-hydro-static (MHS) equations

j B P , 1( )r´ =  + Y
B j, 20 ( )m ´ =

B 0, 3· ( ) =

where B is the magnetic field, j is the electric current density,
P is the plasma pressure, ρ is the mass density, Ψ is the
gravitational potential, and 0m is the permeability of free space.
To find separable solutions for this set of equations, we apply
the following ansatz for the electric current density (see Low
1991, for details):

B B ef z B , 4z z0 ( ) ( )a ´ = +  ´

where 0a is the force-free parameter and f z( ) is a free function
which controls the non-magnetic forces. The first part, B0a ,
corresponds to a field-line-parallel linear force-free current and
the second term, ef z Bz z( ) ´ , defines a current perpendicular
to the gravitational force (in the z-direction) or, in other words,
parallel to the Sunʼs surface x y, .( ) It is then possible to reduce
the MHS equations to a single partial differential equation (see,
e.g., Neukirch & Rastätter 1999, for a particularly simple
formulation) that can often be solved by the separation of
variables. For convenience, here we use (as proposed in
Low 1991)

f z a zexp , 5( ) ( ) ( )k= -

with a free parameter a which controls the non-magnetic forces
in the photosphere. We note that κ in Equation (5) controls the
non-magnetic forces and should not be confused with the scale
height of the plasma pressure. Obviously, for the choice of
a=0, this approach reduces to linear force-free fields. Above
a certain height in the solar atmosphere, one expects that the
solution will become approximately force-free due to the low
plasma β in the solar corona. Consequently, f z( ) has to
decrease with height and here we choose as the scale height the
distance of the upper chromosphere above the solar surface,
leading to 1 2 Mm.k = With κ fixed, our MHS solution
contains two free parameters, α and a.

As boundary conditions we use the measured vertical magnetic
field B x y, , 0z ( ) in the photosphere. We solve the equations by
means of a Fast-Fourier-Transform method similar to the linear
force-free model developed by Alissandrakis (1981). A main
difference from the linear force-free approach is that the resulting
Schrödinger equation for Bz in Fourier space contains a Bessel
function instead of an exponential function.

One finds the following solution for pressure and density
(see Low 1991, for the derivation):

P P z f z B
1

2
, 6z0

0

2( ) ( ) ( )
m

= -

B
g
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dz g

df

dz
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f B
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m
= - + + 

The first term in Equation (6) contains a 1D solution (in the z-
direction) that is independent of the magnetic field and must

obey P .r = - Y The second term is the disturbance of this
1D pressure profile by the magnetic field. Here, the pressure
and density compensate for the non-vanishing Lorentz force.
This disturbance is negative (if a 0> ) and obtains its highest
absolute values in regions of the highest vertical magnetic field
strength Bz. Because the total plasma pressure (sum of both
terms) has to be positive, we obtain the following inequality for
P z0 ( ):

P z a kz
B

zexp
Max

2
, 8

z
0

2

0

( )( ) · ( ) · ( ) ( )
m

> -

where zBMax

2
z

2

0
( )( )

m
is the maximum at a given height z. As we

will see later, this condition has severe consequences for an
application to data with strong locally enhanced magnetic fields
in the photosphere. To satisfy condition (8) in these regions, the
background pressure P0 has to be so high that the plasma β in
weak-field regions (and also on average) becomes unrealisti-
cally high, see Figure 3. Within this limitation, the choice of
P z0 ( ) has some freedom. Our choice is given in Section 4.1.

3. DATA

We apply our newly developed code to the photospheric
magnetic field measurements taken with the balloon-borne
SUNRISE solar observatory in 2009 June. For an overview of
the SUNRISE mission and scientific highlights of the first
SUNRISE flight see Solanki et al. (2010), Barthol et al. (2011),
Berkefeld et al. (2011), and Gandorfer et al. (2011). For a
description of the IMaX instrument, we refer to Martínez Pillet
et al. (2011). The photospheric magnetic field was computed by
inverting the IMaX measurements using the VFISV code as
described in Borrero et al. (2011). The linear force-free
extrapolation code, and the particular case of an 0a =
potential field has been applied to data from SUNRISE/IMaX
before for a single magnetogram by Wiegelmann et al. (2010)
and to analyze a time series by Wiegelmann et al. (2013).
Chitta et al. (2014) carried out nonlinear force-free extrapola-
tions from IMaX magnetograms and added vertical flows at
low heights to simulate non-force-free effects in the photo-
sphere and chromosphere. Here, we apply our newly developed
linear MHS-code to a snapshot of the quiet Sun, also observed
with SUNRISE/IMaX. We apply our code first to the full field
of view of IMaX, as shown in Figure 1, and in a subsequent
step we investigate a subfield (marked with a black rectangular
in Figure 1) in more detail. The data set used here was observed
in a period of 1.616 hr starting at 00:00 UT on 2009 June 9
(image 220 from this series), see Martínez Pillet et al. (2011).

4. RESULTS

4.1. Application to the Full IMaX-FOV

In our first computation, we apply our model to the full
phase-diversity reconstructed IMaX magnetogram of a quiet
Sun region of 37×37Mm, which has been resolved by
936×936 pixels (pixel size on Sun 40 km), see Figure 1. As
our main interest lies in the mixed plasma β regions of the
photosphere and chromosphere, we extrapolate up to a height
of z=4Mm or 100 pixels. A few sample field lines for a
magneto-static solution with 3.0a = and a 0.5= are shown in
in Figure 1(b).
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In Figure 2(a), we show the pressure disturbance in the
chromosphere at a height of z 1 Mm= as calculated with the
second term f z Bz

1

2
2

0
( )-

m
on the right-hand side of Equation (6).

This term obviously becomes largest above those regions with
the highest photospheric field strength, as seen in the large
negative peaks. Of course, the total pressure has to be positive
and consequently a lower bound for the 1D background
pressure P0 is given by Equation (8). P0 describes a 1D
equilibrium between the gravity force and the vertical pressure

gradient. One has to solve

dP z

dz
g z 90 ( ) ( ) ( )r= -

for a constant gravity g. Assuming an equation of state of the
form P RT0 r= , we get

dP z

dz

gP z

RT
, 100 0( ) ( )

( )= -

Figure 1. Panel (a): SUNRISE/IMaX magnetogram of a quiet Sun area. The black rectangular marks the region of interest. Panel (b): Sample field lines for a MHS-
model.

Figure 2. Plasma pressure disturbance f z B
1

2 z
0

2( )
m

- at a height of z 1 Mm= for the full IMaX and the small FOV in panels (a) and (b), respectively. Panel (c) shows

an equi-contour surface for 1b = in the small FOV.
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which leads to the well-known atmospheric exponential decay

( exp ,z

H2( )µ - with H 180 km» ) for a constant temperature of

T T ,0= which is, however, not realistic for describing
structures reaching from the photosphere through the chromo-
sphere and into the corona. Equation (10) can be (numerically)
integrated for any choice of a temperature profile T z ,( ) e.g.,
from 1D models of the solar atmosphere. Another alternative
(because we already computed the 3D magnetic field from
Equations (4) and (5)) is to prescribe the average plasma z( )b
as a function of z, e.g., from the literature (Gary 2001), leading
to

P z
z B

2
, 110

ave
2

0

( ) ( ) ( )b
m

=

where B zave ( ) is the horizontally averaged B x y z, , .z ( ) The
allowed ranges for z( )b are bounded from below, however, by
Equation (8). A choice which ensures a total positive pressure
is obtained by using Equation (8) directly

P z P z a kz
B

zexp
Max

2
, 12

z
0

2

0

( )( ) ( ) · ( ) · ( ) ( )
m

= + -

where P z( ) is the (prescribed) minimum value of the total
pressure at a given height. For P z 0( ) = , the total plasma
pressure becomes zero at the maximum of Bz and remains
positive elsewhere. Taking this into account, we can calculate
the full average plasma β (including the pressure disturbance)
from Equation (6), as shown in Figure 3 by the rightmost curve
labeled MHS, IMaX-FOV in Figure 3. The limitations from
Equation (8) and a magnetogram with some high peak values in
an otherwise weak-field region cause values of plasma β which
are too high and outside the range given by Gary (2001; dotted
curves). We have to conclude that the linear MHS model

cannot realistically be applied to the whole FOV of the
SUNRISE magnetogram. The reason for this is that through
Equation (12) the 1D background pressure, and thereby the
maximum pressure in weak-field regions, is coupled with the
highest values in the photospheric magnetogram, which is not
very realistic.

4.2. Application to a Small Part of the FOV

Due to the difficulties involved with applying the linear
MHS model to a full magnetogram, we restrict our analysis in
the following to the smaller sub-region marked by the black
rectangle in Figure 1(a). Figure 4 shows a few sample field
lines for (a) a potential field model, (b) a linear force-free
model with 3a = , and (c) a magneto-static solution

a3, 0.5.a = = In the linear force-free case, the field lines
become sheared compared with the potential field, and for
some lines the connectivity changes. The influence of a non-
vanishing Lorentz force (but using the same value of α as in the
linear force-free case) has additional effects, which seem,
however, to be smaller. The maximum heights of the loops are
somewhat reduced and some additional field lines change their
connectivity, e.g., in the MHS model no lines are connected
with the positive (red) flux region close to the front boundary.
Compared with the potential fields, the number of field lines
connecting to this region was already reduced in the linear-
force-free model.
The pressure disturbance in this smaller FOV is shown in the

center panel of Figure 2. The absence of strong peaks in the
photospheric field in this region leads to a much smoother
distribution of the pressure disturbance. We use Equation (12)
to compute the background pressure, and in Figure 3 the solid
line marked MHS, local FOV shows the averaged plasma β as
a function of the height. At least in the photosphere and
chromosphere, the plasma β is within the limitation given by
the dashed lines from the literature (Gary 2001). The true 3D
plasma β distribution, however, is not a function of z only, but
varies significantly in the horizontal direction. Figure 2(c)
shows the equi-contours for 1.0.b = As one can see, the

1.0b = surface is by no means plane-parallel, but is strongly
corrugated. This behavior impacts methods for extrapolating
force-free fields. Traditionally and for numerical simplicity,
one extrapolates from a plane parallel surface (or the Sunʼs
spherical surface) by assuming that the field above this lower
boundary of the computational domain is force-free. In reality,
however, the force-free domain is also bounded below by a
corrugated surface. This is also true for planned measurements
of the chromospheric magnetic field vector with Solar-C, and
so magnetic field extrapolation techniques bounded by non-
plane-parallel surfaces should be developed. In the non-force-
free region between the photosphere and the corrugated
chromosphere, plasma pressure and gravity must be taken into
account.

5. DISCUSSION AND OUTLOOK

The linear MHS approach used in this paper has two free
parameters, the linear force-free parameter α and the force
parameter a. Additionally, one also has to prescribe, in addition
to the vertical magnetic field component at the lower boundary,
the height in the solar atmosphere where the magnetic field
becomes approximately force-free, here 1 2 Mm.k = Apply-
ing these solutions to large-scale areas has its limitations. These

Figure 3. Plasma β in the solar atmosphere. The dotted lines are taken from
Gary (2001). The thin solid line shows the (horizontally averaged) plasma β
profile computed with our MHS model for the full IMaX FOV and the thick
solid line represents the same for the selected small area.
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are, first of all, the well-known limitation of α being constant,
which these solutions share with linear force-free configura-
tions. Additionally, the pressure gradient (which compensates
the Lorentz force) is coupled to the vertical magnetic field. As a
consequence, the pressure disturbance, which is negative,
becomes very large above strong fields in the photosphere. In
order to maintain a positive total pressure, the background
plasma pressure must be so strong that the average plasma β
becomes too high. This limitation of the method has to do with
the fact that the two free parameters α and a have to be the
same in the entire computational domain. This limitation is
similar to that for linear force-free fields, where one has only
one free parameter α which has to be globally constant. While
linear force-free fields cannot be used to model force-free
configurations containing strong current concentrations in part
of the domain (leading to localized high values of α), a similar
restriction occurs here for the linear magneto-static approach.
Strong magnetic elements in an otherwise weak-field magneto-
gram cannot be modeled by this class of MHS solutions.

These limitations do not occur, however, for applications to
regions with smaller fields of view because the assumption that
α and a are constant is naturally more reasonable the smaller
the investigated domain is. How should one proceed to derive
global magneto-static solutions? One possibility would be to
compute the solutions discussed here only locally (with
different values of α and a in different regions) and to merge
these configurations together. This will, of course, lead to
solutions which are not entirely self-consistent and to
inconsistencies at the boundaries between the different regions.

Another idea would be to use a numerical scheme, e.g., an
optimization approach as suggested by Wiegelmann &
Neukirch (2006) and Wiegelmann et al. (2007), to relax these
merged solutions toward a self-consistent (nonlinear) MHS-
equilibrium. Wiegelmann & Neukirch (2006) and Wiegelmann
et al. (2007) developed nonlinear magneto-static codes in
Cartesian and spherical geometry, respectively. For the small-
scale features measured with SUNRISE, one would naturally
apply the cartesian version. These codes require photospheric
vector magnetograms as input, which are not available with the
required quality for the investigated quiet Sun region because
of the poor signal-to-noise ratio (for horizontal fields) in weak-
field regions. Nonlinear approaches (both force-free and
magneto-static) are well suited to dealing with local strong
enhancements (e.g., current concentrations and strong flux
elements). It is a weakness of any linear approach that they
cannot deal with strong localized enhancements of relevant
quantity.
To be able to carry out nonlinear magneto-static (or

nonlinear force-free) extrapolations, measurements of the
horizontal photospheric magnetic field would be helpful.
During the re-flight of SUNRISE in 2013, high-resolution
vector magnetograms of active region(s) were measured with
IMaX. We plan to use these measurements for self-consistent
nonlinear magneto-static modeling in our future work.

The German contribution to SUNRISE is funded by the
Bundesministerium für Wirtschaft und Technologie through
Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), grant

Figure 4. Small field of view (rectangular box in Figure 1(a)). (a) Potential field; (b) linear force-free field; (c) magneto-static field.
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