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Abstract

The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior.
Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity
plays an important role in the identification and tracking of such features. In this paper, we continue studies of the
temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic
features or on subjective assumptions about their identification and interaction. We propose a data analysis method
to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to
the regular Markov process. We build a representative model of fluctuations converging to the unique stationary
(equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of
convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the
data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to
observations of magnetic fields of the relatively quiet areas around an active region carried out during the second
flight of the SUNRISE/IMAX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on
board the Solar Dynamics Observatory satellite.
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1. Introduction

The dynamics of magnetic fields in response to the surface
turbulence seen as magnetic features in the solar photosphere is
a challenging subject in solar physics. Physically, features
behave unlike rigid objects with sharp boundaries, so mutual
interaction between them and between turbulent flows is
ill-defined in the observations, which is worsened by the
instrumental restrictions and artifacts. Critical analysis of
feature-tracking methods (Lamb et al. 2013) motivated us to
study physical properties of the magnetic flux concentrations in
the quiet Sun (QS), without relying on subjective assumptions
about interaction and identification of the features. We propose
an alternative approach, which employs methods of statistical
mechanics and thermodynamics for statistical characterization
of temporal dynamics of the observable magnetic flux
distribution, regardless of the flow configuration, particular
events, or any other mechanisms that caused the observed
distribution as defined in the magnetochemistry by Schrijver
et al. (1997); see also DeForest et al. (2007). We apply
the concept of a statistical ensemble, its realizations, and the
stochasticity of (micro/macro-) states, in contrast to the
feature-tracking and its calculus (e.g., DeForest et al. 2007).

Here, we demonstrate that the statistical complexity of the
line-of-sight component (BLOS ) in the restless turbulent solar
photosphere can relax to a canonical ensemble under certain
idealizations, which we will discuss.

By abandoning the concept of magnetic features and their ill-
defined interactions (Lamb et al. 2013), we consider the
magnetic field as a “flow” passing through a grid of detectors
(image pixels). The grid of pixels provides sampling of this
flow with a finite tempo-spatial resolution. Then, we define a
state of local flow to be the current value of BLOS at a given
time and space element (pixel). Every image pixel registers a
time series of fluctuating states, which is interrupted by the
noise; the noise is discarded. This consideration stems from
the hydrodynamical experiments and leads to leads to
characterization of the magnetic field variations ignoring
(sub-) emergence mechanisms and all effects on account of
advection, at least at this stage of our research.
It was shown by Gorobets et al. (2016) that temporal, pixel-

recorded fluctuations of the quiet photosphere magnetic field
permit a description as space/time discrete Markov random
variables, i.e., Markov chains (MCs). A random variable is
considered Markov if its future outcome is given only by the
current value, i.e., it is independent of the past realizations. The
Markov properties were verified for longitudinal and transverse
components, as well as their sum of squares, i.e., magnetic
pressure variables.
The analysis was applied to the QS observations with a

resolution of 0 15–0 18 and 33s cadence from the IMAX
instrument on the first SUNRISEmission (Solanki et al. 2010,
2017; Barthol et al. 2011; Berkefeld et al. 2011; Gandorfer
et al. 2011; Martínez Pillet et al. 2011).
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The Markov property implies that a stochastic process is
completely described by probabilities independent of their
distant past values (microstates) in time. That is to say, the
future random outcome of BLOS is given only by the current
value, i.e., there is no “memory” in the process.

A special class of MCs, so-called regular Markov chains
(RMCs), evolve in time toward configurations with increased
entropy. Namely, an initial distribution of states tends to attain
a time-independent limit, that is, there is a relaxation
(thermalization) of a system described by a RMC toward the
equilibrium configuration with maximum entropy.

In the equilibrium, transitions between states in MC
become statistically independent, i.e., they become indepen-
dent even of the present state, so conditional state-to-state
transition probabilities degenerate into trivial state occurrence
probabilities.

The rate at which a system reaches the equilibrium
distribution characterizes its “distance” from the equilibrium
and thus can characterize a system’s complexity. This is
because higher organized state configurations have less
entropy, i.e., less uncertainty. Qualitatively, a less disordered
system dissolves the memory on the initial configuration
slower, and thus stands further away from the equilibrium
configuration in which any transition is equiprobable. In the
language of thermodynamics, the above process of thermaliza-
tion can be described by the following thought experiment.
Consider a large volume of gas steadily perturbed away from
its equilibrium macrostate and characterized by some (in
general, time-dependent) probability density of microstates. At
time t0, we confine a smaller subvolume of the gas by
impenetrable walls such that this subvolume (subsystem)
becomes isolated from any interaction with the rest of the
original volume (system). Then, according to the second law of
thermodynamics, the subsystem eventually relaxes to the time-
independent thermodynamical equilibrium macrostate (therma-
lization process).

The thermalization time of the subsystem counting from t0
would depend on the nature of the fluctuations in the initial
non-equilibrium macrostate and the physical properties of the
system itself.

By analogy with this thought experiment, we analyze the
relaxation time of the BLOS fluctuations and its dependence on
the spatial resolution of the observations considered as the
system’s free parameter. We propose and show in this paper
that the complexity and rate of fluctuations depends on the
spatial scale on which they occur: on larger scales magnetic
structures interact (evolve) slower than on smaller ones. So,
magnetic concentrations at higher resolutions “forget” (dis-
solve) their past configurations faster with respect to those at
lower resolutions, and thus relaxation should run faster.

Physically, this can be explained by the difference in
characteristic length scales of the photospheric turbulence
revealed by different linear scales of the resolution elements. At
low resolution, magnetic fields are instrumentally averaged on
larger scales and thus a smoother structure is observed, which
incorporates spatially more distributed fluctuations than at
higher resolution. Consequently, the low-resolution pixel
physically has more extended and thus more complex structure,
which evolves slower since more time is required for turbulent
motions to operate on larger scales to alter magnetic topology.
In our analysis, we show how spatial resolution influences the
thermalization time.

The thermalization is an unobservable process but is
theoretical scheme being used to obtain a quantitative measure
of the observable BLOS. During the thermalization, the observed
Markov pairwise stochastic dependence between future and
current BLOS samples vanishes for all possible pairs of pixel-
recorded BLOS samples, gathered in the entire field of view
for the time of the observational campaign. Physically, the
thermalization causes the BLOS ensemble to have only statistical
independent realizations, as well as samples forming them.
And more specifically, we aim to use the time required for

thermalization as a characteristic measure of the fluctuations’
complexity in the observed data, in the empirical model in
which pixel-to-pixel BLOS fluctuations have the possibility of
becoming statistically independent in the long time limit. This
empirical model of fluctuations conceptually is analogous to an
isolated thermodynamical system, which we infer by reducing
MCs in the data to the RMCs. In other words, we verify the
existence of the unique equilibrium distribution for the QS line-
of-sight magnetic field density Markov fluctuations under
restrictions imposed by the RMCs. We focus on the evolution
of “extracted” RMCs from the data and estimate the rates of
thermalization corresponding to the observations at different
resolutions with comparable cadences.
The RMCs are built by the state’s transitions of some

particular properties. The mathematical conditions for an MC
to be a regular one are mathematically more strict than those for
the conventional Markov property. Thus, the requirements for
stochastic data to follow RMC are not revealed by the Markov
property test in Gorobets et al. (2016). Therefore, applicability
of the necessary conditions for RMC requires dedicated study,
which is presented in this paper. We study regularization of the
Markov fluctuations for the observational data obtained at
spatial resolutions of 0 15–0 18, 0 22, and 1″ .
We use high-resolution IMAX data of comparatively quiet

regions observed during the second SUNRISEflight (referred to
as SUNRISE II/IMAX) and low-resolution QS data taken by the
Helioseismic and Magnetic Imager on board the Solar
Dynamics Observatory satellite (SDO/HMI). Note that SDO/
HMI was not available at the time of the first SUNRISE flight, so
this analysis had to wait for the availability of new IMAX data
from Sunrise.
We investigate qualitative and quantitative differences

between the stochastic dynamics of BLOS observed at different
spatial scales with variable pixel selection criteria9 by
comparison of the so-called long time limit behavior of the
RMCs extracted from every data set.
In Section 2 we describe the instruments and the observa-

tional data preprocessing, in Section 3.1 we provide a short
introduction to the regular Markov random variables, and in
Section 3.2 we compare data at different spatial scales from the
point of view of the RMCs. The results are discussed in
Section 4. Conclusions are presented in Section 5.

2. Observational Data and Inference of Physical
Parameters

2.1. Sunrise II/IMAX

We use a time series recorded from 23:39 to 23:55UT
on 2013 June 12 during the second science flight of the

9 The observational data from both instruments are parameterized by the
threshold cutoff of noisy pixels, which leads to a number of data sets we work
with (see Table 1).
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balloon-borne solar observatory SUNRISE when the telescope
pointed to the trailing part of the active region AR11768
(heliocentric angle 0.93m = ). For details of the 1 m aperture
telescope and the gondola, we refer to Barthol et al. (2011).
Updates to the instrumentation operated during the second flight,
as well as an overview of the flight and the obtained data, are
given by Solanki et al. (2017). The influence of the disturbing
Earth’s atmosphere was minimized because 99% of the airmass
was below the telescope at the average flight altitude of 36 km.
Image stabilization was achieved using a tip/tilt mirror placed in
the light distribution unit (Gandorfer et al. 2011) and controlled
by a correlating wavefront sensor (Berkefeld et al. 2011). The
data considered in this study were recorded with the Imaging
Magnetograph eXperiment (IMAX; Martínez Pillet et al. 2011),
which scanned the Zeeman sensitive Fe I 5250.2Å line
(Landé factor g= 3) at eight wavelengths (offset by 120,-

80, 40, 0, 40, 80, 120,- - + + + and +227mÅ from the line
core) with a spectral resolution of 85mÅ and a cadence of

t 36.5 sD = . IMAX had a field of view of 51 51 ´  at a plate
scale of 0 0545 per pixel.

After the usual dark-field and flat-field correction, the data
were demodulated and fringes and residual cross-talk were
removed. An inflight phase-diversity measurement allowed the
determination of the point-spread function (PSF), which was
used to reconstruct the data. In contrast to the IMAX data used
by most other studies (whose reduction is described in Martínez
Pillet et al. 2011; Solanki et al. 2017), the data used in this study
were not interpolated with respect to time prior to inversion
(which is usually done to correct for the influence of the solar
evolution during the 36.5 s IMAX cycle time) because the time
interpolation is a weighted average of two IMAX cycles and
introduces a coupling between the data of successive cycles.
After a 25% global stray-light correction, the data were inverted
with the SPINOR inversion code (Frutiger 2000; Frutiger
et al. 2000) using a simple but robust atmospheric model: at
three optical depth nodes (at log 2.5, 0.9, 0t = - - ) for the
temperature, and a height-independent magnetic field vector, line
of sight velocity, and micro-turbulence. Maps of BLOS show a
noise level 14 Mx cm 2s = - , determined as the standard
deviation in small quiet regions.

To be consistent with the analysis of Gorobets et al. (2016),
we limit the SUNRISE II/IMAXdata to have only regions of the
relatively quiet photosphere as shown in Figure 1. We exclude,
from the whole 16 minutes series, pixels (and a 3-pixel
surrounding) that present values higher than 1.0 kMx cm 2 -

in even just one cycle of the observations.
In the following, we refer to the SUNRISE II/IMaX data as

the one with median resolution of 0 165. We also analyze the
same series but without PSF reconstruction, which has a
resolution of 0 22 and 7 Mx cm 2s = - .

2.2. SDO/HMI

To analyze magnetic field fluctuations at a low spatial scale,
we consider uninterrupted HMI observations of the QS at the
disk center, represented by a sequence of 9000 magnetograms
in Fe I 6173Å line from 2015 November 28, 23:59:39UT until
2015 December 4, 16:33:24UT with a cadence of t 45 sD =
and resolution of 1 (Scherrer et al. 2012).

The images were preprocessed with the hmi_prep.pro
procedure from the SolarSoft package, and then cropped to
the 500×1000 pixel area at the disk center.

To reduce “fast” oscillations in the BLOS signal, the running
local average is subtracted for three consecutive images, such
that the local zero level is uniform in the data samples (see
Equation (1)).
To eliminate all possible induced “memory effects” by the

data pipeline, we use the series hmi.M_45s_nrt, which
interpolates filtergrams linearly over three temporal intervals,
instead of the sinc spatio-temporal interpolation over five
intervals in the regular (non-nrt) data series (Martínez Oliveros
et al. 2011; Kleint 2017).
The noise level of 10.3 Mx cm 2s = - is used according to

estimates by Liu et al. (2012) for the 45 s cadence
magnetograms.

3. Data Analysis

In Section 3.1, we present a brief theoretical overview of
RMCs. In Section 3.2 we apply theoretical concepts to the
statistical estimates inferred from the observational data.

3.1. RMCs: Theory and Definitions

The data analysis is based on the same assumptions as the
technique by (Gorobets et al. 2016), which excludes tracking of
the magnetic features.
Namely, we consider pixels with a signal that is above the

noise in three consecutive images simultaneously to form MC
realizations (Equation (1)). Technically, only evolving BLOS
above the noise cutoff for, at least, t2 3 exposure timeD + ´ ,
is analyzed,so the unknown structure of the weak fields below
the noise cutoff and field disappearing into noise are excluded
from our computations, since transitions from/to noise pixels
to/from data pixels and noise to noise transitions are
intentionally ignored.
Consequently, our view of BLOS fluctuations has no field

“emergence” from the void and “decay” to the noise level. Our
attention now focuses solely on BLOS variation at a pixel
location rather than a specific event causing it. Thus, a specific
state of the flow responsible for the advection is unnecessary to
be specified.

Figure 1. Snapshot of the BLOS component of the magnetic field, from the
SUNRISE II/IMAXdata set. The outlined regions designate the strong field
areas and their boundaries, which are excluded from the analysis.
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We attribute apparent motions of the magnetic concentra-
tions to general field fluctuations as well. In other words, if a
transition b bt t t +D at a given pixel is just due to trivial
displacement of magnetic element, we still attribute this change
in BLOS to a general field change (fluctuation), irrespective of
the mechanism had caused it.

Following Gorobets et al. (2016), consider a time and space-
discrete stochastic Markov process (chain) b(t)

b b b , 1t t
xy

t t t
xy

t t t
xy

21 2 3
 = = +D = + D  ( )

where tD is the cadence time (Section 2), and bxy is the
observable variable BLOS inferred at image pixel (x,y). The
random variable b is defined over a finite set of all possible
discrete values of bxy (state space). The state space  has S
distinct elements representing equal bins of size db. The
optimal value of db is computed as in Knuth (2006) to be
coarse-grained enough to smooth out a reasonable fraction of
transitions due to noise. Nevertheless, the noise-induced
transitions are impossible to filter out completely, since noise
is always present in every data pixel as an additive random
term, say ξ. Also, note that ξ is zero mean Gaussian, thus
frequent transitions have zero contribution of ξ on average.

Let p pi i = Î( ) be a probability density function (PDF) over
the state space  such that p dbi is the occurrence probability of
an observable bxy in the state space bin i i db, +[ ). The fixed
bin size db has been introduced for the estimation of the
probabilities, and it is henceforth neglected in the equations for
simplicity.

The tD -step conditional PDF w w b j b iij t t t= = =+D( ∣ ) is
defined such that wij is the probability for b(t) to have value j at
time t+Δt if the random variable b(t) already had a value i at
earlier time t, with the normalization condition w 1j ijå =Î .

The S S´ transition matrix of one-step ( tD ) transition
probabilities w b bt t t+D( ∣ ),

W w , 2ij i j, Î≔ [ ] ( )

provides useful and important information on the temporal
evolution of an MC. Namely, for a t2D transition

W

w b j b i

w b j b k w b k b i

w w

.

3

t t t

k
t t t t t t t

k
jk ki

ij

2

2

2 

å

å

= =
= = = = =

=

=

+ D

+ D +D +D

Î

( ∣ )
( ∣ ) ( ∣

( )
( )

Then, by induction (e.g., Privault 2013), for a general case we
have

Ww b j b i n, 0. 4t n t t i j
n

, = = =+ D Î[ ( ∣ )] ( )

That is, a transition probability between states separated by
an arbitrary length in time is determined by one-time-step
transition probabilities, which can be inferred from the data by
considering two nearby images in the sequence.

In practice, Equation (4) offers remarkable diagnostic
capabilities for the homogeneous (time-independent transition
probabilites) MCs using their transition matrices: its nth power
allows computation of the probability of a jump of any length n
in time.

In general, transition probabilities change with the jump
length W Wm m 1¹ + . However, for a large enough exponent n,
the power of W stays practically the same as n grows further.
In fact, in the long run (n  ¥), RMC transition

probabilities become independent of the initial state

w b j b i i jlim , , . 5
n

t n t t j p= = = Î
¥

+ D( ∣ ) ( )

Thus, the RMC is said to have a limiting PDF π if the limit
exists for all elements in , with the natural condition

1j jpå =Î . The transition probability w in the long time limit
transforms into a simple probability of the final state. The
limiting PDF π is the unique and stationary (equilibrium)
solution of the equation Wp p= , which leads to t 0p¶ ¶ = .
This convergence imposes certain conditions on the temporal

behavior of the MCs. Namely, an MC is regular if it is
irreducible and aperiodic. We seek these properties in the MCs
obtained from the data.
The property of being irreducible means that every state of 

is accessible from (communicates with) every other state of ,
in a finite time (number of jumps). That is, phase space 
cannot be split into (reduced to) disjointed subsets of states
with no common elements.
The aperiodic chain revisits every state i in  at random

times t such that the greatest common divisor (gcd) of these
recurrence times for every state is 1:

t t w b i b i t i1: , gcd 1, . 6ii t ii0 = = = = " Î{ ( ∣ )} ( ) ( )

Otherwise, a chain with a periodic structure would have states
with recurrence times being a multiple of some t.
The RMC with the limit (5) visits state i on average once

every tiiá ñ steps: therefore,

t . 7i ii
1p = á ñ- ( )

This is a fundamental relation between the limiting PDF and
the state’s average recurrence time (for proof see e.g., Karlin &
Taylor 1975, p. 83).

3.2. Estimates

In the following, we examine conditions for RMC and the
existence of the stationary PDF for 16 minutes restored 0 165
and non-restored 0 22 SUNRISE II/IMAXseries and unin-
terrupted nrt HMI series of 4.7» -days long at a resolution
of 1″.
The two SUNRISE II/IMAXdata cover the same solar region,

so we can exclude the influence of the observed object
morphology on our estimates.
Pixels strongly affected by noise are removed by the fixed ks

threshold cutoff applied to the magnetograms before counting
chain statistics. The integer k is a free parameter in our study. It
will be shown that the chain dynamics is strongly influenced by
the pixel selection due to increasing k. Therefore, to assure the
effect of a high cutoff level, we set k up to an extreme value of,
say 12s. In addition, the upper limit of 1.5 kMx cm 2 - for
BLOS is applied for HMI data sets and 1.0 kMx cm 2 - for
SUNRISE II/IMAX.
It turns out that theoretical conditions for RMC, when

applied to the data, work like as a fine filtering of statistically
insignificant states. The fraction of these states is less than 1%
for series with a rich statistical base, for which we assume that
the regularity conditions are not underestimated (see Table 1).
We attribute the existence of such states to the different sorts of
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imperfections in the data, but first of all we attribute them to
rare events inherent to statistical sampling, since these states
appear predominantly in the tails of the PDF (see Figures 3
and 4). Physically, the filtered-out rare events belong to the
domain of strong fields, which is imposed by the nature of the
QS, as seen by pixel-to-pixel analysis.

3.2.1. Irreducibility

Qualitatively, the noise threshold cutoff governs the
irreducibility of a chain: at low ks, the chain transitions
connect both polarities in BLOS (   and  ), and at
higher values of ks phase space splits into non-communicating
subsets of opposite polarities (only  ). Therefore,
corresponding transition matrices have different structures,
which are schematically summarized in Figure 2.

In Figure 2, plume-like patches designate nonzero entries wij

of transition matrices with color-coding for polarities (red:
positive, blue: negative). The dashed black lines show the

ks threshold cutoff around the zero level. In the top panel,
patches with the gradient fill are the mixing (altering) polarity
transitions. For example, a sign-altering transition b bt t t

0 0>
+D
<

is shown by the path abc, and its sign-preserving statistical
counterpart for the same initial state bt

0> is shown by the path
ade. With increasing k, polarities stop communicating and
transition matrices have a structure like the one sketched in
the bottom panel of Figure 2. In this case, all transitions are
sign-preserving, as shown by the colored dashed lines.

Theoretically, irreducibility (all over communication in )
has properties like the equivalence relation (=) i.e., (1)
reflexivity i=i, (2) symmetry if i=j then j=i, (3) transitivity
if i=k and k=j then i=j. Therefore, to convert the
transition matrix obtained from the data into the transition
matrix representing the irreducible chains, we remove all
asymmetric elements with respect to the main diagonal of W .
In other words, if a transition i i has no corresponding
reverse transition i i¬ after collecting all possible transitions
in the data set, we set such matrix elements to zero. This
procedure guarantees satisfaction of all the properties of the
mutual communication « (equivalence relation).

It is also possible to verify irreducibility explicitly, but at
greater computational expense, by means of tracing the
overlapping subsets of the matrix elements, which had been
attended by counting all available realizations of Equation (1)
in the data sets. This procedure revealed the same results as
those obtained by the method of removing the asymmetric
transitions.

Physically, irreducibility is related to the ergodic properties of
the fluctuations. Namely, if a particular observed value bt at time t
is never succeeded by b t t¢ +D at t+Δt (the transition b bt t t ¢ +D
never occurs) it is always possible to construct a chain sample (not
necessary observable in itself) such that b and b¢ will belong to the
same realization in virtue of a intervening sequence of observed
transitions b b b bt t t t t t m t2   ¢¢¢  ¢ +D + D + D . In
other words, in irreducible MCs it is always possible to find a
sequence of observable transitions between any two time-ordered
states bt1 and b t2¢ , t t1 2< .

Table 1
Percentage of Removed Transitions Due to Regularization of the Markov

Chains in the Analyzed Data Sets

Cutoff Level SUNRISE II/IMAX HMI

ks 0 165 0 22 1″
k % % %

3 3.00 15.64 0.32
4 4.51 13.05 0.46
5 4.11 15.43 0.62
10 La La 0.58
12 La La 0.11

Note.
a Not applied due to poor statistics.

Figure 2. Schematic representation of the transition matrices obtained in the
data analysis for irreducible Markov chains. Top panel: the scheme of the
transition matrix for chains whose states communicate between states of
different polarities. Bottom panel: the transition matrix of sign-preserving
chains whose states do not communicate with states of opposite polarity. The
dashed lines are examples of transitions. See the text for more details.
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3.2.2. Aperiodicity

The aperiodicity is examined for states in every stochastic
realization of Equation (1) by counting occurrence times in
units of n tD , where n is the “local time” index. That is, every
second sample bt n t

xy
+ D in Equation (1) is always counted at the

local time n=1 in all realizations.
The greatest common divisor is computed for every single

state for all possible recurrence times from all observed
realizations. The rows and columns of W with any number of
aperiodic states (gcd 1> ) are set to zero. Those states that do
not form transition pairs in Equation (1) or that form
insufficient short-length realizations, are considered to be of
undefined aperiodicity; for them we keep gcd 0= , and they are
discarded.

An example of an aperiodicity test is shown in Figure 3: the
black line is the test for aperiodicity for HMI data with a 10s
noise cutoff, and the red line is the state bt

xy PDF
p p p b ii t

xy= = =( ) ( ( )). Initially, gcd is set to zero, which
is the blank value for all states. The test results in three types of
gcd values: gcd 0= for undefined aperiodicity, gcd 1> for
periodic states, and gcd 1= for aperiodic. The first two cases
correspond to the excluded states from the analysis.

In the vicinity of zero, gcd 0= , since there are no chain
realizations in that region due to noise cutoff. In the tails
gcd 0= with p 0i ¹ and w 0ij ¹ , due to undefined aperiodi-
city of the short-length realizations. In the test for aperiodicity,
we search for repetitions of any state in a chain realization, and
a state’s aperiodicity becomes undefined when realizations are
too short to contain any repetitions. A closer look at the
changes of W due to regularization (compare the left and
middle panels in Figure 4) shows that we cut rare transitions
along the borders of the cloud-shaped nonzero entries of the
transition matrices. Apparently, such insignificant transitions
present rare and short-length realizations, which cannot provide
information about a state’s aperiodicity.

The oscillating regions of the gcd plot show periodic states
whose occurrence probabilities are relatively low. These
oscillating parts contain values of gcd 1= as well. In the case
of the SUNRISE II/IMAXdata sets the gcd estimation is
unreliable in the tails due to shorter series of 16 minutes.
Therefore, for all SUNRISE II/IMAXdata sets we set the gcd
oscillating regions to zero until the first unity value in the
continuous plateaus. This makes the data surely clean from
possible underestimated long periods.

3.2.3. Convergence to the Stationary Limit

The equilibrium PDF π of an RMC can be computed from
the matrix Wn in the long time limit. According to the theory
(e.g., Suhov & Kelbert 2008, page 75), Wn¥ should have all
rows equal to each other, and these rows as well as the main
diagonal are the PDF π:

Wlim

...

...

...

. 8
n

n

S

S

S

1 2

1 2

1 2

p p p
p p p

p p p

=
¥    

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

( )

Thus, it is sufficient to analyze convergence by checking the
normalization condition for π using the main diagonal elements
of Wn (i.e., trace operator):

Wlim Tr 1. 9
n

n

j
jå p= =

¥
( )

So, when this limit is achieved at n  ¥, the entire matrix
converges to the unique PDF π in the main diagonal and rows.
By raising transition matrices to a numerically large power n,

we found for all data sets the existence of the theoretical limit
(9). In Figure 4, we show examples of transition matrices at
different stages in our analysis: the occurrence number of
transitions with sporadic entries due to bad data (left column
panels); irreducible matrices after application of the conditions
for regularity (middle panels); and the corresponding limiting
matrices (panels on the right). Note that due to the plotting
software the main diagonal of W shows a y-axis symmetric
transformation in the schemes of Figure 2 and in Figure 4.
In Table 1, we demonstrate the effect of regularization of the

observed chains. The table summarizes the percentage of
transitions that had been removed by application of conditions
for regularity (middle plots in Figure 4). It turns out that
HMI data provide very reliable estimates, and less than 1%
transitions are discarded. We assume that with longer series of
high-resolution data we would get similar results.
In both noise cutoff cases shown in Figure 4, the limiting

matrices Wn¥ (right panels) have rows that are equal to each
other, which is in agreement with the theory (see Equation (8)).
These equal rows are the normalized equilibrium PDF π
(Equations (5) and (9)). This simple structure of constant values
in columns of Wn¥ implies that every long time transition
probability w b j b it tn 0= =¥( ∣ ) is independent of the initial
state b it0 = . Remarkably, this is the key property of the
equilibrium state: all transitions are equiprobable and have no
memory of the initial configuration (states).
Hence, we found a subset of BLOS fluctuations whose

idealistic isolated evolution in the long time eventually reaches
the stationary state, in which conditional probabilities w j( ∣·) will
be replaced by simple occurrence probability j tjj

1p = á ñ-( ) .

Figure 3. Aperiodicity of the states and occurrence probability density vs.
phase state variable for the case of AN HMI data set with a 10s noise cutoff.
bt

xy. Black line: the greatest common divisor estimated in the aperiodicity test.
Red line: the state occurrence PDF p p bt

xy= ( ).
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For the case of a sign-preserving MC(right middle panel in
Figure 4), the limiting matrix has two independent submatrices
that each have a structure as in Equation (8) but for states of a
single polarity. That is, the diagonal (and every row) of each
submatrix is independently self-normalized as n grows according
to Equation (9), just as the whole matrix for the sign-altering
chain. Hence, the total sum of W is equal to 2 in this case.

It turns out that the convergence rate toward the limiting
PDF π depends on the resolution and cutoff threshold. In

Figure 5, we show the dependence of the main diagonal sum
(trace operator) ofWn on power n, which is converted into time
units of hours.10 The top panel shows WTr n¥( ) for low
threshold cutoffs of 3s and 4s, corresponding to a sign-altering
RMC, and in the middle panel we plot the convergence of the

Figure 4. Transition and limiting matrices for HMI data sets with 3s (upper row),10s (middle row), and 0 165 SUNRISE II/IMAX 3s (bottom row) threshold cutoffs.
Left panels: non-normalized transition counts from the data series. Middle panels: regularized transition matrices i.e., transitions between asymmetric and periodic
states are removed. It is seen that sporadic and rare transitions in the tails are gone. Right panels: limiting matrices in which all rows are the same and columns are
constants according to Equation (8). In the case of 10s, non-communicating submatrices should be considered as independent limits of the corresponding irreducible
matrices, shown in the middle column, for each polarity separately. For the sake of simplicity, they are shown in the same grid.

10 With growing n (see Equation (9)) time changes on different scales for
different instruments, since tD for HMI and SUNRISE II/IMAXis not the same.
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transition matrices at high cutoffs of 10s and 12s for HMI data
when fluctuations of BLOS do not change the polarity.

We say that function Wf n Tr n=( ) ( ) has converged to unity
at equilibration (thermalization) time teq, when

t n f nmin 1: 1 10 . 10eq
7= - < -{ ( ) } ( )

In other words, we seek precision, to at least six decimal places,
for all cases shown in Figure 5.
In general, operator WTr n( ) is a slowly decreasing function of

n. For example, the exponent n has to be about 106 in the case of
4s cutoff for HMI data to achieve a particular equilibrium
convergence limit of WTr 10n 7< -( ) . In Figure 5 , for better
illustration, every plot of f (n) is accompanied by a corresponding
vertical line of the same color and style to mark the value of n at
which the prescribed precision by Equation (10) is met for the
first time.
Remarkably, single polarities at low resolution converge as

fast as mixed polarity high-resolution data at 0 165, with no
strong dependence on the cutoff level. In the middle panel of
Figure 5, vertical lines mark the 10−7 convergence time
corresponding to the independent polarities; they lie close to
the red mark of the 0 165 SUNRISE II/IMaX data with sign-
altering transitions.
We summarize equilibration times in Table 2, in which the

larger teq are also presented in days. At lower resolutions with
mixed polarity transitions, the equilibration time is longer
because the structures are supposed to be more complex than
those at higher resolution (see Section 4).
To demonstrate the entropy growth to the maximum in the

limit n  ¥, we plot (see Figure 5, bottom) conditional
entropy (Shannon 1948; Cover & Thomas 2006)

H b j b i p w wlog , 11n t n t
xy

t
xy

i
i

j
ij ij

1

 
å åa= = = -+ D

-

Î Î

( ∣ ) ( ) ( )

versus n, where wij are given by the elements of the transition
matrix Wn. The normalization constant Hna = ¥ is the same
conditional entropy but for the case of equilibrium state: pi is
replaced by ip and wij are taken from Wn with n 109= . The
non-decreasing functions Hn emphasize a route of the
thermalization processes toward the equilibrium state with
maximum entropy. The convergence of Hn to the unity in the
limit of large n characterizes how close the estimate of the
occurrence probability p is to the limiting PDF π, since due to
normalization H 1n  when pi ip . In the case of the 3s
HMI data, this convergence is almost satisfied.

4. Discussion

We studied whether it is possible to restrict Markov BLOS
fluctuations at different spatial scales in the quiet (and

Figure 5. Long time convergence. The trace operator in Equation (9) (top and
middle panels) and conditional entropy Hn in Equation (11) (bottom panel) are
plotted as a function of the matrix exponent n (in time units). Top: cases of 3s
(solid lines) and 4s (dashed lines) cutoff are shown for the data with sign-
altering transitions. The color corresponds to the resolution: 0 165 (red), 0 22
(green), and 1″ (blue). The vertical lines indicate the minimal value of the
exponents at which the prescribed precision of 10−7 is reached. Middle: the
convergence of the transition matrices for the HMI data with sign-preserving
transitions due to high cutoff 10s (purple) and 12s (black). Transitions for
negative BLOS are shown by solid lines and positive ones are shown by dashed
lines. To highlight fast convergence of RMC with sign-preserving polarities,
the red line of high-resolution SUNRISE II/IMaX data convergence is extended
through the entire panel. Bottom: conditional entropy (11) for the data sets
plotted in the above panels, with corresponding color and line styles. The case
of 10s is abandoned to make the plot less crowded.

Table 2
Equilibration Times Shown in Figure 5

Cutoff Level SUNRISE II/IMAX HMI

ks 0 165 0 22 1″
k hr hr hr

3 11.33 212.57 8.9 days( ) 1985.18 82.7 days( )

4 34.82 748.66 31.2 days( ) 12695.1 529 days( )

10 La La 9.36B 0LOS >

10.45B 0LOS <

12 La La 8.44B 0LOS >

11.88B 0LOS <

Note.
a Not applied due to poor statistics.
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comparatively quiet SUNRISE II/IMAX case) Sun photosphere
to a more restrictive class of the regular Markov processes. The
answer for all data sets we have analyzed is positive: the vast
majority of the observed transitions in fluctuating BLOS are
found to be consistent with the RMC.

The fundamental property of RMCs is their time evolution
asymmetry: in the long run, they try to reach a unique and
stationary (equilibrium) state distribution with maximum
entropy.

It is found that a stationary limit exists for every combination
of resolution and cutoff of the 11 considered cases of the data
parameterization (see Table 1).

In a nutshell, the meaning of the “long run” term differs
according to the spatial-scale-dependent structure of W and
according to the noise level cutoff controlling the amount of
mixing-polarity weak fields that enter the calculations. In the
following, we try to analyze these factors one by one; however,
they are hardly separated due to strong interdependence
between them.

The rate at which the chain attains the stationary limit is
much faster (up to 2 orders of magnitude) for fluctuations on
smaller spatial scales with respect to the fluctuations on large
scales with the same cutoff (see Figure 5, top). Note that σ
noise estimates in the data of 7, 10.3, and 14 Mx cm 2- are
nearly comparable. The first crucial factor influencing teq is the
structure of the transition matrix W , specifically its spread
along the diagonal that characterizes interrelations between
states. For higher resolution, the spread in W is wider,
indicating more random evolution of BLOS .

The influence of a threshold cutoff on teq is at least twofold,
since it controls the amount of weak fields considered and the
total presence of mixing-polarity transitions.

First, the relative amount of weak BLOS fluctuating fields
(with fast random dynamics) decreases with increasing noise
cutoff level, and apparently the thermalization rate increases.
Remarkably, this is the universal behavior for all resolutions
with mixing-polarity transitions.

Second, the strong BLOS of single polarities of low
resolutions converge to the limit contrastingly fast; the rate is
of the same order (or even less) as the rate for small-scale
mixing-polarity (see the middle panel in Figure 5). Thus,
mixing-polarity transitions themselves play an essential role in
modifying teq.

Indeed, the influencing factor of the “weak fields amount” is
inseparable from that of the “presence of polarity-mixing
transitions.” This is because the observed polarity-altering
transitions occur in the region of weak fields and almost all of
the them are shaded by the noise level.

Therefore, it is difficult (with present resolutions and
sensitivities) to infer whether sign alternation in the data is
instrumental due to unresolved noisy transitions or if it is
intrinsically of solar origin. Nevertheless, the noise removal
keeps polarity-mixing transitions, albeit at a relatively low
occurrence, and they appear as “bottleneck” transitions (with
small but no vanishing probability, in the case of HMI data)
when keeping states of different polarities in the same phase
space. Hence, it should take more time for sign-altering
fluctuations to overcome these constrains at equilibration, when
all transitions should be equiprobable.

In contrast, at high resolutions, the occurrence of polarity-
mixing transitions increases and becomes more ingrained in the

dynamics (notice the wider cloud around the diagonal in the
bottom right panel of Figure 4). Thus, we would describe them
as the second main factor that decreases teq at high resolutions,
when their presence becomes more statistically significant.
The observed mixing-polarity fields are used to argue for the

existence of the small-scale (fluctuating) dynamo (e.g.,
Martínez Pillet 2013). If we assume that the observed pixel-
to-pixel polarity-mixing transitions in our data are of solar
origin, then this “imprint” of the dynamo action is the process
speeding up the thermalization by a more rapid mixing of the
states. Extrapolating the left column in Figure 4 to higher
resolutions and sensitivities (unavailable yet), the mixing-
polarity transitions (and weak fields as well) could achieve a
more distinct occurrence, giving more spherical symmetry to
W , i.e., blurring in greater amount its diagonal structure; thus,
one can expect vanishing statistical difference between
polarities and increasing overall mixing of the states (teq is
expected to be very small in this case).
The observations of the QS BLOS fluctuations with a

sampling cadence of 33 45 s– reveal a stochastic system at non-
equilibrium. This follows from the transition matrices shown in
the left and middle panels of Figure 4, which have diagonally
symmetric structure that is distinct from the equilibrium limit
shown in the right panels of Figure 4 (see also Equation (8)).
Biasing factors. In general, spectro-polarimetric inversion

techniques and various post-processing routines are able to
induce memory artifacts on the temporal evolution of the
observable BLOS . To minimize such artifacts we use non-
interpolated SUNRISE II/IMaX data and nrt HMI series (see
Section 2). In our method, the exact value of teq is sensitive to
the noise estimates influencing the pixel selection, bin size db,
and prescribed precision in Equation (10) as well. Thus, values
in Figure 5 should be read with a certain caution. The length of
the data record influences statistics in the tails; for example, we
expect to have more strong fieldsincluded in the calculation in
case of longer SUNRISE II/IMAXseries for that domain.

5. Conclusions

We propose a data analysis method to quantify fluctuations
of the line-of-sight magnetic field. By means of reducing the
temporal evolution of BLOS to the regular Markov process, we
build a representative fluctuating system converging to the
unique stationary (equilibrium) distribution and thus maximiz-
ing entropy in the long time limit. The method is applied to the
QS observations at different spatial resolutions.
Different rates of maximizing entropy at fixed noise cutoff

indicate that the high-resolution BLOS fluctuations “forget”
their initial distribution relatively fast compared to the low-
resolution fluctuations. Thus, both qualitatively and quantita-
tively, we may say that SUNRISE II/IMAXobserves fluctua-
tions that are closer to an equilibrium state than the fluctuations
we analyzed taken with the HMI instrument.
Remarkably different rates of convergence to the long time

limit are determined by the data-specific structure of the
transition probabilities at different spatial resolution, in which
the statistical significance of mixing-polarity transitions plays
one of the main roles (if not the principal one).
While neglecting the effect of specific technical features on

the instruments, different solar conditions and timing, we
attribute the complexity of fluctuations, as well as its variability
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with the spatial resolution, to the nature of the overwhelming
turbulence of the photospheric background.

We assume that the estimated relations between transition
probabilities (i.e., the structure of the transition matrix) in our
data sets arise from a universal property of the photospheric
turbulence Thus, the relative proximity of the high-resolution
BLOS fluctuations to the equilibrium is also valid in the general
context of the global properties of the turbulent photosphere.
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