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Abstract

Standing slow-mode waves have been recently observed in flaring loops by the Atmospheric Imaging Assembly of
the Solar Dynamics Observatory. By means of the coronal seismology technique, transport coefficients in hot
(~10MK) plasma were determined by Wang et al., revealing that thermal conductivity is nearly suppressed and
compressive viscosity is enhanced by more than an order of magnitude. In this study, we use 1D nonlinear MHD
simulations to validate the predicted results from the linear theory and investigate the standing slow-mode wave
excitation mechanism. We first explore the wave trigger based on the magnetic field extrapolation and flare
emission features. Using a flow pulse driven at one footpoint, we simulate the wave excitation in two types of loop
models: Model 1 with the classical transport coefficients and Model 2 with the seismology-determined transport
coefficients. We find that Model 2 can form the standing wave pattern (within about one period) from initial
propagating disturbances much faster than Model 1, in better agreement with the observations. Simulations of the
harmonic waves and the Fourier decomposmon analy51s show that the scaling law between damping time (7) and
wave period (P) follows 7 o< P* in Model 2, while 7 o P in Model 1. This indicates that the largely enhanced
viscosity efficiently increases the dissipation of higher harmonic components, favoring the quick formation of the
fundamental standing mode. Our study suggests that observational constraints on the transport coefficients are
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important in understanding both the wave excitation and damping mechanisms.
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1. Introduction

Fundamental standing slow-mode waves in flaring coronal
loops were first discovered with the Solar Ultraviolet
Measurements of Emitted Radiation (SUMER) spectrometer
onboard the Solar and Heliospheric Observatory (SOHO; see a
review by Wang 2011). These oscillations have a period in
the range of 7-31 minutes and an exponential decay time
comparable to the period (Wang et al. 2003a). The wave modes
are identified based on their phase speed, which is close to the
speed of sound at the loop’s temperature, and a quarter-period
phase shift existing between velocity and intensity oscillations
(Wang et al. 2002, 2003a, 2003b; Yuan et al. 2015). Thermal
conduction is believed to be the dominant wave-damping
mechanism (Ofman & Wang 2002; De Moortel & Hood 2003);
however, other physical processes, such as compressive
viscosity, radiative cooling, and heating function, may also
importantly affect the wave damping in some special condi-
tions (e.g., Al-Ghafri et al. 2014; Wang et al. 2015; Kumar
et al. 2016; Nakariakov et al. 2017). The slow-mode waves
have been applied to derive the magnetic field strength in
coronal loops using seismology techniques (Wang et al. 2007;
Jess et al. 2015).

The excitation mechanism of standing slow-mode waves is
still poorly understood, despite the investment of much effort in
both observation and theory. Observations from SOHO/
SUMER showed that excitation of the slow-mode standing
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waves in hot coronal loops has the following features (Wang
et al. 2003a, 2003b, 2005, 2007). (1) The wave events are often
triggered by small (or micro-) flares at one footpoint of the loop
with a heating time less than half a wave period. (2) The
standing wave patterns are quickly produced within about one
wave period (or after only one reflection of the initial
disturbance). (3) The loop plasma is impulsively heated to
above 6-10 MK and then cools down gradually. Theoretical
analysis and simulations based on 1D loop models show that a
footpoint heating pulse with much shorter duration than the
wave period generates only (reflected) propagating waves in
the loop (Selwa et al. 2005; Taroyan et al. 2005). Fang et al.
(2015) confirmed this conclusion using a 2.5D MHD model
with a similar driver. Selwa & Ofman (2009) and Ofman et al.
(2012) found that a fundamental standing slow-mode wave can
be excited quickly in isothermal 3D MHD simulations of hot
loops by a fast-mode wave, velocity pulse, or impulsive onset
of flows at one footpoint.

Recently, the Solar Dynamics Observatory (SDO; Pesnell
et al. 2012)/Atmospheric Imaging Assembly (AIA; Lemen
et al. 2012) also detected flare-excited longitudinal loop
oscillations (Kumar et al. 2013, 2015; Wang et al. 2015;
Mandal et al. 2016; Nisticé et al. 2017), which bear physical
properties similar to the slow-mode waves previously detected
with SOHO/SUMER. From the nearly in-phase temporal
relationship between temperature and density disturbances,
Wang et al. (2015, hereafter Paper I) derived that thermal
conductivity is strongly suppressed in a flare-heated loop. This
result also suggests that compressive viscosity needs to be
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greatly enhanced to interpret the observed strong wave
damping. In Section 2, we describe and analyze observations
of this event to constrain the wave driver and provide
motivations for our modeling study. In Section 3, we describe
the 1D loop models for simulations of wave excitation. We
compare the numerical results of the two types of models with
the classical and observationally constrained transport coeffi-
cients in Section 4 and analyze the corresponding dissipation
properties in Section 5. We discuss wave trigger and excitation
mechanisms, as well as the validity of linear theory for small-
amplitude waves, in Section 6, and finally present our
conclusions in Section 7.

2. Observations
2.1. Hints for the Wave Trigger and Loop Heating

A wave event occurring on 2013 December 28 in NOAA
Active Region (AR) 11936 was first studied in Paper I, where
the transport coefficients were determined from measurements
of the wave and plasma thermal properties by coronal
seismology. Here we first analyze the event trigger to constrain
the wave driver for modeling. Figures 1(a) and (b) show that
the observed longitudinal waves propagate along a large
hot loop (marked L1) seen in the AIA 131 A band (dominated
by FeXXI, formed at ~11 MK) and the Be_med filter of
the Hinode/X-Ray Telescope (XRT; Golub et al. 2007). The
waves were generated by a GOES C3.0-class flare at the
footpoint of the loop, which is characterized by circular ribbons
(see Figure 1(c)). We reconstruct the coronal fields using a
nonlinear force-free field (NLFFF) extrapolation (Wiegelmann
2004; Wiegelmann et al. 2006) based on the photospheric
vector magnetic fields observed with the SDO/Helioseismic
and Magnetic Imager (HMI; Scherrer et al. 2012) at 12:46 UT.
The magnetic skeleton involving the flare ribbons is calculated
(see Figures 1(d) and (e)), showing a dome-shaped fan-spine
topology. Inside its fan dome, the field lines (pink and blue)
overlying the polarity inversion line (PIL) are strongly sheared
(see panels (f) and (g) for the close-up). The destabilization
of the shear field can drive slipping-type reconnection within
the fan dome and null-point reconnection, energizing the
larger-scale spine loops and eventually powering a flare (e.g.,
Aulanier et al. 2000; Masson et al. 2009; Wang & Liu 2012;
Sun et al. 2013).

We note that three longer hot loops (marked L1-L3 in
Figure 1(b)) are associated with the flare, which cannot be well
reconstructed by the NLFFF model (see the extrapolated field
lines in red and yellow). There are many possible reasons for
the mismatching, such as non-force-free magnetic configura-
tion of the flaring loops, noise in the boundary condition,
nonnegligible plasma-beta, imperfect numerical algorithm, etc.
(see Schrijver et al. 2008; DeRosa et al. 2015). Nonetheless, the
magnetic topology calculated by the NLFFF extrapolations
appears to be basically coincident with the observed emission
features, particularly in the vicinity of the footpoints of these
loops (e.g., at regions A and B). We suggest that this flare is
triggered by slipping-type reconnections at a coronal null point
in the fan-spine magnetic topology. The impulsive magnetic
energy release heats the large spine loop, and the associated
pressure disturbances propagate and are reflected back and
forth in the hot loop, ultimately forming the standing slow-
mode waves.
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To explore the timing between loop heating and wave
excitation, we compare the light curves of the EUV/UV and
soft X-ray (SXR) emissions measured at different locations.
Figure 2(a) shows that the flare emissions measured at region A
in the AIA 131 A band and XRT filter evolve coincidentally
with the GOES SXR flux in the rise phase. They peaked almost
simultaneously at about 02:46 UT, preceding the peak time of
the loop brightening measured at region C by tpc = 264 s. If
we assume that the loop brightening at region C is caused by
the initial (compression) disturbance traveling (or the injected
hot plasma moving) from flare site A, its propagation speed can
be estimated from the traveled distance (Lpc = 110 Mm)
along the 3D loop (see Wang et al. 2016). We obtain V, =
Lac/tac = 417kms™ !, which corresponds to the sound speed
(Cy = (vks T [pm,)!/? = 166(T/MK)1/2 kms™') at temperature
T = 6.3 MK, where v =5/3, kg is the Boltzmann constant,
and m,, is the proton mass. We take 1 = 0.5 to be consistent
with that used for simulations in Section 3.

We use the AIA UV 1600 A light curve (flare emission
dominated by CIV from the upper chromosphere to the
transition region) to characterize the heating source in flares, as
the 1600 A emission, like the hard X-ray (HXR) emission,
indicates the immediate response of the lower atmosphere to
impulsive energy deposit (Fisher et al. 1985; Qiu et al. 2012;
Liu et al. 2013). Figure 2(b) shows that the peak time (02:44 UT)
of flare emission at 1600 A is consistent with that of the GOES
flux time derivative, which is a proxy of the HXR light curve
during the impulsive phase (Dennis & Zarro 1993). Using the
method of Qiu et al. (2012), we assume the heating function to
be symmetric in time (here taken as a full triangle) and estimate
the heating duratlon (tqur) as twice the rise time of the impulsive
phase in 1600 A. We obtain tqur = 4.2 minutes based on linear
fitting (see the dashed line in Figure 2(b)). We will use this
measurement to constrain the duration of the wave driver in
simulations.

Heating of the spine loop is also evidenced by an occurrence
of brightening at its remote footpoint (called the remote
brightening relative to the flare site) seen in the AIA 1600 A
band (marked B in Figure 1(c)). The remote brightening may
be caused by energized particles or intense heat flux flowing
from reconnections near the null along the spine loop (Masson
et al. 2009; Sun et al. 2013). Figure 2(b) shows that the 1600 A
remote brightening is delayed by 264 s in peak time compared
to the 1600 A flare emission. It is plausible to assume that the
loop here is heated by a thermal front because heating by
energetic nonthermal particles typically happens on a much
shorter timescale (Aschwanden 2004). For example, for a
coronal loop of length L = 200 Mm, it takes an electron at
relativistic speed less than 7s to travel from one end to the
other. We may also exclude the slow shock as a possible
heating source, as the observed waves bear very linear
properties (see Figures 2(c) and (d)). Taking this time lag to
be the traveling time of the heating front along the whole loop,
we estimate its propagation speed V), = 680 kms ™' from the
3D loop length (L ~ 180 Mm; Wang et al. 2016). We find that
the heat propagation is faster than the wave disturbance
(Vi ~ 1.6V,). This suggests that the spine loop L1 may be
heated preceding the arrival of the initial disturbance at the
remote footpoint. This may explain the fact that the initial
disturbance propagates with a speed close to the speed of sound
in the plasma of 72 6 MK. In addition, some numerical
simulations also showed that thermal fronts propagate with a
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Figure 1. Trigger of standing slow-mode waves by a flare in AR 11936 on 2013 December 28. (a) SDO/AIA 131 A image. The oscillating hot loop (indicated with L1
in panel (b)) is outlined with a thick white curve. Box A marks the flare region. (b) AIA 131 A base difference image. L2 and L3 indicate two hot loops that are
commonly rooted with loop L1 at the flare site. The inset shows a cotemporal Hinode/XRT image with the Be-med filter. (c) AIA 1600 A base difference image. Box
B marks a remote brightening at the footpoint of loop L1. The inset shows the contours (at 200 DN s~ ') of the flare ribbons in region A overplotted on an HMI vector
magnetic field map (observed at 12:46 UT). The background indicates the longitudinal component scaled between +500 G with the positive/negative polarities in
white /black. The arrows indicate the transverse component with field strength in the range 100-1000 G. The reference AIA images used in panels (b) and (c) were
observed at 12:40 UT prior to the flare. Light curves measured in regions A, B, and C are shown in Figure 2. (d) Top view of the magnetic skeleton, superposed on the
AIA 131 A image. The field of view is shown in panel (a) with a dashed box. Field lines (red, yellow, and green) traced from around a null outline a dome-shaped fan
surface and the spine. The pink and blue field lines inside the fan dome show strong shear above the PIL. Magnetic reconnection near the null between two flux
systems inside and outside the fan may trigger the flare and excite longitudinal waves in the large spine loop. (e) Side view of the magnetic skeleton, superposed on an
HMI radial field map (with smoothing and scaled between +1100 G). (f) and (g) Close-up of panels (d) and (e), showing the low-lying sheared field lines (pink and
blue) inside the fan dome.
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Figure 2. (a) Light curves of the flare ribbons (in region A) and the loop brightening (in region C) from AIA 131 A and XRT Be-med images and of GOES 1-8 A
SXRs. Diamonds and triangles show the XRT SXR flux measured from regions A and C, normalized to the maximum of the 131 A band for comparison. The peak
times of the light curves in the AIA 131 A band are indicated by vertical dotted lines. (b) Light curves of the flare ribbons (in region A) and the remote brightening (in
region B) from AIA 1600 A images and the time derivative of the GOES SXR flux. The peak times in the AIA 1600 A band are indicated by vertical dotted lines. The
impulsive rise phase of the 1600 A light curve of the flare is fitted to a triangle function (dashed line). (c) Time profile of the temperature (crosses) normalized to
the slowly varying trend measured at region C and the best fit to an exponentially damped sine function (red solid line). (d) Same as (c) but for electron density. The
measured physical parameters of the waves are marked on the plot. The green solid line in (c) is the predicted variation of temperature derived from the observed
density variation (n/no) for an adiabatic process. Panels (c) and (d) are from Wang et al. (2016).

speed faster than sound waves and the evaporated hot flows in
hot flare loops (Arber & Melnikov 2009; Liu et al. 2009).

2.2. Motivation for Modeling

Based on the finding that the density and temperature
oscillations are nearly in phase (see Figures 2(c) and (d)), we
concluded in Paper I that the thermal conduction is strongly
suppressed and the compressive viscosity is the dominant
wave-damping mechanism. The suppression of thermal con-
ductivity in hot loops implies that variations in temperature and
density approximately follow an adiabatic relation, T /Ty =
(n/ng)’~!, when wave amplitudes are small. Here v = 5/3,
T and n are the temperature and number density of the plasma,
and Ty and n, are the corresponding slowly varying trend.
Figure 2(c) shows that the predicted temperature variation from
the adiabatic process agrees well with the observed data,
supporting this supposition. Our first motivation in this article
is to validate the seismological results obtained in Paper I based
on the linear wave theory, using more advanced 1D nonlinear
MHD simulations. We will show that the models with
seismology-determined transport coefficients can reproduce
the observed wave properties much better than the models with
transport coefficients calculated from the classical (Spit-
zer 1956) theory.

Our second motivation is to understand how the fundamental
standing slow-mode wave can be excited in a very short
timescale by a footpoint flare, as observed in this event.
Figures 2(c) and (d) show that the temperature and density
variations agree well with a (damped) sinusoidal function with
a period that is close to that of the fundamental mode

(P =2L/C, = 12 minutes). It is peculiar that the observed
wave with initial large amplitudes (V/Cy =~ n,,/ny = 0.23)
manifests neither the nonlinear effect (such as the steepened
front) nor coexistence with higher harmonics. We will show
that the models with seismology-determined transport coeffi-
cients can successfully generate the fundamental standing
mode with excitation time and wave properties consistent with
the observation, while the models with classical transport
coefficients will fail. Our analysis suggests that the more
efficient dissipation of higher harmonic components in initial
disturbances due to the large enhancement of viscosity may be
the main cause for the quick formation of the fundamental
mode.

3. Loop Models

To simulate the propagation of slow-mode waves in a
coronal loop, we solve the nonlinear 1D MHD equations in
Cartesian geometry. The magnetic field of the loop is taken to
be along the x-direction, and it enters into the model only as a
wave guide. The gravity is neglected, since the loop height is
much smaller than the pressure scale height (H ~ 500 Mm) for
hot plasma of T~ 10 MK. We also neglect radiative losses in
the energy equation, as the radiation cooling timescale
(Traa = 570 minutes) is much longer than the oscillation period
(see discussions in Paper I). The equations, including the terms
for compressive viscosity and thermal conduction, are

9p

ot M

0
+ —(pV) =0,
ax(p)
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The viscous force due to compressive viscosity is F, = (4/3)
70(0%V /Ox?), the viscous heating term is S, = (4/3)n,
(OV/0x)?, and ~=5/3. The classical Braginskii com
pressive viscosity coefficient is given by 7, = 2.23 x 10713
T3 /2 / InA gem ™' 57!, where 7; is the ion temperature (consi-
dering protons only) and InA = 8.7 — In(n'/2T;3/2) is the
Coulomb logarithm, weakly dependent on 7; and the number
density n. The heat conduction term along the magnetic field
(x-direction) is H. = 0/0x [k|(0T,/Ox)], where T, is the
electron temperature and | is the classical Spitzer thermal
conductivity parallel to the magnetic field given by
k=78 x 10T ergem ' s 7' K" (Spitzer 1956, 1962).
In the single-fluid MHD model employed here, the electron and
ion temperatures are assumed to be equal (7, = T; = T). We
also assume that the loop density and temperature are initially
uniform. In the numerical simulations, we use the following
loop parameters measured in Paper I: loop length L = 180 Mm,
density no = 2.6 x 10°cm >, and temperature T, = 9 MK.
With these parameters, the corresponding sound speed
C, = 498kms ', the classical compressive viscosity 7y =
24.6gem 's™!, and the heat conduction £ = 1.90 x
10" erg em s KL

To simulate the flare-induced perturbation, we inject an
impulsive flow along the magnetic field at the boundary,

1 2mt
5 1 - < < ur/s
Vix=0,1) = ZVO[ cos(tdur)] O <7< faur)

0 (t > tdur)'

“)

We take the pulse amplitude Vy = (n,,/no) C; = 023 C, =
115kms ™", where M/ Mo is the measured maximum amplitude
of the density perturbations (see Figure 2(d)). We take the pulse
duration t4,, = 4 minutes based on the loop heating duration
obtained in Section 2.1. The MHD equations are solved by
adopting the fourth-order Runge—Kutta method in time and
fourth-order derivatives in space using 256 grid points (Ofman
& Wang 2002). Numerical convergence is tested by doubling
the resolution and comparing the results. The boundary
conditions at both ends of the loop are V(0, ©) = V(L, 1) =0
(except the flow injection V(0, 0 < f < t4,,)) and zero-order
extrapolation for the rest of the variables.

4. Comparison of Simulations between the Two Models

Using the 1D MHD model described above, we simulate the
flare-generated standing slow-mode waves reported in Paper I for
two cases: the first model, with the classical transport coefficients
K = 1.90 x 10" ergem™'s 'K and 7o =24.6gem 's7!
(Model 1), and the second model, with the observation-
constrained transport coefficients ngbs = 15 79 when assuming

Wang et al.

obs

k| =0 obtained in Paper I (Model 2). Figure 3 compares
the temporal evolution of velocities (V), perturbed densities
(n1/ng = (n — ng)/no), and perturbed temperatures (Ty/T =
(T — Ty)/To) along the loop between the two models. Here T and
n are the temperature and number density of the plasma and
Ty and ny are the corresponding equilibrium quantities. The
“zigzag” pattern, which is obvious in the first two wave periods
for V and T;/T,, suggests that a propagating wave is excited
and undergoes reflections from the footpoints in Model 1. The
propagating wave tends to transition to the standing wave after
four to five reflections, as indicated by the formation of in-phase
oscillations along the loop in V. In Model 2, a fundamental
standing wave is excited immediately after the reflection of the
initial perturbations at the remote footpoint (x = L), as evidenced
by the spatial and temporal features: (1) the velocity perturbations
along the loop are in phase, (2) the two legs of the loop oscillate
in antiphase in n,/ng and T, /Ty, and (3) the oscillations between
V and n;/ng have a quarter-period phase shift. In addition, the
standing slow-mode wave pattern formed in the simulations is in
accord with that predicted by the linear theory of a cylinder
model (comparing with Figure 3 in Yuan et al. 2015).

We estimate the propagation speeds of density perturbations
by measuring the slope of ridges seen in Figures 3(b) and (e).
Figure 4 shows the linear fits to the peak positions of the first
three ridges of n;/ngy in Model 1 and the first ridge in Model 2.
From the slope of the ridges, we estimate the wave propagation
speed fo“ = 1.01, 0.92, and 0.92 C, for Model 1 and Vlﬁ“ =
1.24 C, for Model 2, where C, = 498 kms ' is the adiabatic
sound speed for the loop at T, Note that the initial
perturbations (before reflection) in Model 2 can be regarded
as a propagating wave, so we can estimate its phase speed from
the slope of the ridge, but this technique cannot be used to
estimate the phase speed for the standing wave that has been
established. We find that the waves propagate with a phase
speed close to the speed of sound, and the propagation speed of
the initial perturbations in Model 2 is supersonic and higher
than that in Model 1 (by ~23%).

To investigate the factors that affect the propagation speed of
the initial perturbation, we run the simulations for various cases
and list the measured phase speeds in Table 1. Through a
comparison between the two cases that vary only in one
parameter (i.e., the control parameter), we examine its influence
on the wave speed. The control parameter could be a different
physical quantity in each set of runs. For short, we define the
scenario of Case i versus Case j (where i and j take values in
1-10 but i not equal to j) as testing how the wave speed
depends on the control parameter by comparing the modeling
results of the two cases. We find that the propagation speed of
the initial perturbation strongly depends on the initial flow
amplitude, and the effect is most evident in the scenarios where
no viscosity is included. For example, large-amplitude pulses
increase the phase speed by more than 30% due to strong
nonlinearity that steepens the wave front in the scenarios
of Case 5 versus Case 6 and Case 7 versus Case 8. The
perturbation speed also depends on thermal conductivity. The
high thermal conduction leads to the waves propagating at
the lower, (near-) isothermal sound speed (see the discussion in
Section 6.2), whereas strongly suppressed conduction causes
wave propagation at the higher, adiabatic sound speed (e.g., the
scenarios of Case 7 versus Case 5 and Case 1 versus Case 9).
The compressive viscosity plays a weak role in changing the
wave propagation speed, and its effect is different for small and
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(d) V for Model—2
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Figure 3. Comparison between two models for slow-mode wave excitation by a flow pulse at footpoint x = 0 Mm of the loop with length L = 180 Mm. (a)—(c)
Time—distance maps for velocity (V), perturbed density (n;/no), and perturbed temperature (T;/7,) along the loop, simulated based on the model with classical
thermal conduction and compressive viscosity (Model 1). (d)—(f) Same as (a)—(c) but based on the model with observation-constrained transport coefficients, i.e., the

zero-value conductivity and 15 times enhanced viscosity (Model 2).
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Figure 4. Peak position of density perturbations along the loop measured for
three ridges of Model 1: ridge-1 (pluses) during ¢ = [138, 444]s, ridge-2
(asterisks) during ¢ = [624, 846] s, and ridge-3 (crosses) during ¢ = [1086,
1260] s. For ridge-2, the peak positions are measured from x = L and are
plotted with the time of + — 378 s. For ridge-3, the peak positions are plotted
with the time ¢ — 768 s. The peak positions of ridge-1 (diamonds) for Model
2 are measured during ¢ = [156, 318] s. The solid lines are the best fit to the
data points, and their slope values (Vlf") are marked on the plot.

large flow amplitudes. In the case of a small-amplitude pulse,
the viscosity enhancement increases the wave speed due to its
dispersive effect on the wave (e.g., the scenarios of Case 9

versus Case 3 and Case 7 versus Case 1). In the case of a large-
amplitude pulse, the viscosity enhancement slightly reduces the
wave speed, likely due to its smoothing effect on nonlinearity
(e.g., the scenarios of Case 10 versus Case 4 and Case 8 versus
Case 2). The above analysis suggests that the fact that the initial
propagation speed of Model 2 is higher than that of Model 1
mainly results from the suppression of thermal conduction (see
the scenario of Case 2 versus Case 10 versus Case 4).

Figure 5 compares the temporal evolution of velocity,
density, and temperature perturbations between the two models
measured at a location (x = 0.88L) of the loop near the remote
footpoint. It indicates that identifying whether the waves are
propagating or standing can also be based on their temporal
features at a fixed spatial location. The time profiles of V and
ny/ng for Model 1 clearly deviate from a (damped) sinusoidal
function, or they are a nonsinusoidal wave (see Figures 5(a)
and (b)), while the time profiles for Model 2 look to be a nearly
harmonic wave (see Figures 5(d) and (e)). We estimate the
wave period (P) by averaging the time intervals between
successive peaks in the velocity (or density) profile and the
damping time (7) by fitting the wave peaks to an exponentially
damped function (f(r) = Ag + A, exp(—t/7)). The measured P
and 7 are marked on the plots. We find that the waves
simulated by both models have periods and damping times
close to the observed values (P, = 12.4 minutes and
Tobs = 10.7 minutes for n;/ng). It is noted that the wave
period of Model 2 is slightly shorter than that of Model 1,
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Table 1

Propagation Speed Measurements of Initial Disturbances in Various Cases of Simulations
Case Conductivity Viscosity Coeff. Flow Amplitude Propagation Speed Model
1) (@) (3 @ ® ©
1 RS e 0.01 V, 0.81 C, Model 1A
2 RS e Vo 1.01 C, Model 1
3 0 15 nf)l““ 0.01 V, 1.17 Cy Model 2A
4 0 15 nslass Vo 1.24 C; Model 2
5 0 0 0.01 Vy 1.00 C;
6 0 0 Vo 1.31 C;
7 RS 0 0.01 Vo 0.79 C,
8 Rﬁlass 0 V() 1.09 CS
9 0 ks 0.01 V, 1.00 C,
10 0 n;]ass VO 1.27 CS

Note. Column 1 is the case number. Column 2 is the thermal conductivity parallel to the magnetic field. Column 3 is the compressive viscosity coefficient. Column 4

is the amplitude of a flow pulse with V; = 0.23 C;, where C; = 498 km s !

is the adiabatic sound speed at 7 = 9 MK. Column 5 is the measured propagation speed

for initial disturbances. Column 6 gives the name of the model whose simulations are shown in the paper.

consistent with the fact that the phase speed in Model 2 is
higher than that in Model 1, as measured above.

The simulations show the presence of a large phase shift
between density and temperature perturbations for Model 1
(see Figure 5(b)) and a nearly in-phase relationship between
them for Model 2 (see Figure 5(e)), confirming the predicted
results from linear MHD theory (see discussions in
Section 6.2). We measure the phase shift (A¢) by applying
the cross correlation to the time profiles of n/ny and T,/T,,
which are first normalized to the damped amplitudes by
(s(®) — s0)/(fi(¥) — s0), where s represents n; /ng or Ty /Ty, f,(?)
is the best-fit exponentially damped function, and sq is the
average of s(f) over time. For Model 1, we obtain a time shift
fohire = 2.14 minutes between n;/ng and T;/T, (see Figure 6)
and calculate the phase shift as A¢ = 360°(tyyn/P) = 57°,
where P = 13.5 minutes is the wave period measured for
ny/ng. For Model 2, we obtain A¢ = 0° using the same
method.

Assuming that a polytropic description holds for the loop gas
—s0 p < p“, where p, p, and « are the gas pressure, mass
density, and polytropic index—and applying the ideal equation
of state, we obtain T/Ty = (n/ng)*~!. Taking T =T, + T,
and n = ny + n;, the following relationship can be derived
using the linear approximation (e.g., Van Doorsselaere
et al. 2011):

T n
—_ = — 1H)—. 5
T ( )no (5)

We measure the polytropic index « by fitting the scaling
between Ty /Ty and n;/ny after first removing their phase shift
A¢. Using this method, we obtain a = 1.390 £+ 0.003 for
Model 1 (see Figure 5(c)) and oo = 1.684 £ 0.002 for Model 2
(see Figure 5(f)). We find that the measured value of « in
Model 2 is very close to the adiabatic index v = 5/3 as
measured from the observational data in Paper 1.

Figure 7 compares the evolution of the perturbed velocity,
density, and temperature profiles along the loop of the two
models. The difference is noticeable in the profiles at times #,
and 1, between Model 1 and Model 2. The velocity and density
pulses in Model 2are much more spread out than those in

Model 1. This feature is caused by the significant enhancement
of the viscous force F, in Model 2, which is 15 times higher
than that in Model 1 (see discussions in Section 6.3). The
higher viscous force greatly reduces the spatial gradients of
velocity or efficiently smooths the velocity pulse in space. The
effect is equivalent to effectively increasing the dissipation of
higher harmonics in the waves. An animation of Figure 7
(available in the online version) is also helpful in identifying
the mode (propagating or standing) of the excited waves. The
animation shows that for Model 2, the velocity oscillations
become nearly in phase along the loop (indicating a setup of
standing waves) after the propagating pulse reflects once, while
for Model 1, it takes many reflections for the propagating pulse
to form the in-phase oscillations.

5. Dissipation of Higher Harmonics

The simulations have shown that for the same initial and
boundary conditions, the standing wave can be set up much
quicker in Model 2 than in Model 1. This implies that the
change of the transport coefficients from the classical values to
the observation-constrained values leads to more efficient
dissipation of the higher harmonic components in the initial
pulse. In this section, we analyze the difference in the
dependence of the damping rate on wave frequency for high
harmonics between the two models using two methods.

In the first method, we simulate the standing waves by
setting the initial velocity profile in the form used in Ofman &
Wang (2002),

V(x,t=0) =V sin(kmx/L), 6)

where V is the amplitude of the wave at r = 0 and k is the
harmonic number with values of 1, 2, 3, ... corresponding to
the fundamental mode, second harmonic, third harmonic, ....
The harmonic waves with kK = 1-6 for the two models are
simulated with two different initial amplitudes: V, = 0.23 and
0.023 C,. We measure the wave period and damping time from
the velocity oscillations using the same method as in Section 4.
Figure 8(a) shows the damping time with the period and best-fit
scaling for the two models. We find that the power of the
scaling is 0.96 + 0.04 for Model 1 and 2.0 & 0.1 for Model 2.
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Figure 5. Temporal evolution of (a) the velocity V and (b) the perturbed density n;/ng and temperature T;/T, at the location x = 158 Mm for Model 1. The
exponential decay time fit follows the dashed line. (c) Scatter plot of perturbed density and temperature (pluses) and its best fit (solid line) for Model 1. The measured
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Figure 6. Amplitude-normalized density (solid line) and temperature (dashed
line) perturbations obtained from Model 1. The temperature profile has been
corrected relative to the density profile by a phase shift of 7y = 2.14 minutes,
which corresponds to the maximum correlation between them.

It is noted that each case (in V) of Model 2 shows only three
data points, corresponding to the harmonics £k = 1-3. Because
the higher harmonics with k > 4 are damped out within one
wave period, the measurement of their damping times becomes
uncertain. In addition, we find that the measurement results of

wave period and damping time in the simulations with
Vo = 0.23 and 0.023 C; are nearly the same, indicating that
the obtained scaling laws for the two models are insensitive
to the variability in the initial amplitude of different harmonics.
The approximate linear scaling (7 o< P) between the damping
time and wave period for Model 1 agrees with the result
obtained in Ofman & Wang (2002) based on a similar model.
The slope of this scaling is smaller than that (7 o< P?) expected
by linear slow wave dissipation theory (Porter et al. 1994).
Ofman & Wang (2002) attributed the smaller slope to the
nonlinearity of the observed oscillations. Here our simulations
indicate that the scaling 7 o< P also holds for the waves with
small amplitudes (V,/C,; = 0.023), suggesting that the small
dissipation approximation used in the derivation of the scaling
relation by linear theory cannot be met in our case. In other
words, the nonlinear effect (including the scaling 7 o< P) for
Model 1 in the case of small amplitudes may result from the
large dissipation by thermal conduction at higher temperatures.

In the second method, we directly analyze the simulations
presented in Section 4 using Fourier decomposition. As
velocities along the loop satisfy the condition, V(0, ¢) =
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Figure 7. Spatial distributions of (a) the velocity and (b) the perturbed density (solid lines) and perturbed temperature (dashed lines) along the loop at r = 2.7, 5.5, 9.6,
and 16.0 minutes (indicated with #,—4 in Figure 5) for Model 1. (c) and (d) Same as (a) and (b) but for Model 2. The accompanying animation shows the evolution of
the velocity, density, and temperature perturbations in the two models from ¢ = 0.0 to 47.7 minutes. The animation duration is 7 s.

(An animation of this figure is available.)

V(L, t) = 0, after the flow driving at x = 0 is stopped (i.e.,
t > tqur), the velocity profile V(x, #) in 0 < x < L at time ¢ can
be extrapolated as an odd function into the domain
—L < x < L. Then we can decompose V(x, ) in the Fourier
sinus series in the x-direction as

Vix, 1) = i Vk(t)sin(%), (7

k=1

where
2 L . mkx
Vk(z)zzj; Vix, t)sm(T)dx. (8)

We calculate the amplitude V(¢) of the Fourier components for
k = 1-9. Figures 9(a) and (b) illustrate the comparison between
Model 1 and Model 2 in the temporal evolution of V(?),
indicating clearly that their fundamental-mode components
have a similar damping rate, while the higher harmonics in
Model 2 are damped much quicker than those in Model 1. For a
quantitative comparison, we measure the wave period and
damping time of the decomposed components by fitting the
amplitude profile Vi(f) to an exponentially damped sine
function. Figure 8(b) shows the measured damping times with
periods for the two models. It is noted that for Model 2, only
three data points (corresponding to k = 1-3) are available. No
measurements for the higher harmonic components with
k > 4 are available, because these harmonics are damped out

within one wave period. We find that the first three Fourier
components follow the scaling 7 «« P for Model 1, while they
follow 7 o< P? for Model 2, consistent with the results obtained
using the first method. We also notice the difference from the
first method in Model 1 that for the higher harmonic
components with k£ > 4, the damping time does not decrease
with the wave period but varies in the range of about 6-11
minutes. This flattening feature could be caused by nonlinear
mode coupling, through which the lower harmonics of large
amplitudes leak energy into the high harmonics.

To quantitatively estimate the excitation time of the
simulated standing waves, we calculate the proportion of the
kinetic energy of the fundamental-mode component (E;(f)) in
the total kinetic energy of the waves (E;(f)). By defining the
kinetic energy density as e(x, 1) = V2(x, f)/L and applying
Equation (7), we obtain the total kinetic energy in the loop,

L 1,
Eral () = j; (e, Ndx = = 37 V(). ©)
k=1

and the kinetic energy of the Fourier k-harmonic component,

: 2
E(1) :f(;L (Vk(t)sm(kax/L)) dr

Thus, it follows that Eiu (f) = > 5o Ex (7). Figures 9(c) and
(d) show the temporal evolution of Ey,(f) and E(f) calculated
for the two models. Figure 10 shows the ratios of E () to

1
= Ev,f(z). (10)
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Figure 8. (a) Damping time vs. period of the velocity oscillations with different wavenumbers for Model 1 (circles and crosses) and Model 2 (diamonds and pluses).
The circles and diamonds represent the case with initial velocity amplitude V, = 0.23 C,, while the crosses and pluses represent the case with V) = 0.023 C;. The
solid and dashed lines are the best-fit power-law functions of the form 7 = aP®. (b) Damping time vs. period of the decomposed Fourier components for Model 1
(filled circles) and Model 2 (filled diamonds). The solid and dashed lines are the same as in panel (a).

Eo(?) calculated at the peak times of Ey(f), indicating that
the proportion E;/E . tends to 1 in Model 2 much faster than
in Model 1. We fit the data for Model 1 to a three-degree
polynomial, f(¢) = ag + ait + a»t* + ast?, and obtain ay =
0.53, a; = 0.031, a, = —7.0 x 107*, and a3 = 5.3 x 10°°.
We fit the data for Model 2 to a function in the form
f@® =1 — by In(1 + b, /t*) using the IDL function curvefit
and obtain b; = 3.1, b, = 3.1, and b3 = 3.6. The main reason
for fitting Model 2 to this functional form is to ensure that the
physical restriction E/E(f) < 1 is met and its quality of fit
(with x> = 1.8 x 1077 is much better than the polynomial fits
(with y* = 3.3 x 107%).

If we assume that a standing wave is set up when
E1/Eiora = 0.99, we estimate the excitation time of a standing
wave to be fe. = 35.8 minutes for Model 1 and 7., = 6.6
minutes for Model 2. We have measured the wave period of the
velocity oscillations, P = 14.5 minutes for Model 1 and P =
12.1 minutes for Model 2 (see Figures 5(a) and (d)). Thus, we
get fo./P = 2.5 for Model 1 and f.,./P = 0.5 Model 2. That
is, for a velocity pulse as the wave exciter, the excitation of
standing waves for Model 1 takes about five reflections, while
it takes only one reflection for Model 2. This confirms the
results of mode identification based on the qualitative analysis
in Section 4.

6. Discussion
6.1. Wave Trigger Mechanism

We analyzed the magnetic configuration and related loop
heating for a slow-mode wave event triggered by a footpoint
flare. The NLFFF extrapolation and emission features such as
circular ribbons with a remote brightening suggest that the
wave event may be generated by slipping-type reconnections at
a coronal null point in a fan-spine magnetic topology. We
estimated the propagation speed of heat flux from the 3D loop
length and time lag between the 1600 A light curves measured
at two footpoints and found that it is much faster than the wave
propagation speed. This suggests that the spine loop may have
been heated (to ~10 MK) by energetic particles or heat flux
from the reconnection region before the waves travel along it.
Thus, it is plausible to simulate the wave excitation in a hot

10

loop. In addition, from the 1600 A light curve of the flare, we
estimated the impulsive heating time (4, ~ 4 minutes) and
used it to constrain the duration of the wave driver for
simulations.

The coordinated Yohkoh/SXT and RHESSI observations
have shown that standing slow-mode waves in hot loops
observed by SUMER were often associated with a footpoint
brightening (Wang 2011). As known in the literature, nearly all
impulsively generated slow-mode wave events observed with
AIA occurred in a hot coronal loop heated by a confined flare at
one footpoint displaying a feature of circular ribbons (e.g.,
Kumar et al. 2013, 2015; Mandal et al. 2016), suggesting that
they may be associated with a fan-spine topology like the case
studied here. Recently, Pant et al. (2017) reported a standing
slow-mode wave event suggesting a different trigger mech-
anism. The waves were triggered along coronal fanlike loops
due to impact by a global EUV wave originating from a distant
AR. The new case has the distinct feature that those oscillating
loops are not involved in heating by flares. In our studied case,
the energy release process by the null-point reconnection is
largely confined in a closed fan-spine field configuration, where
longitudinal wave disturbances are trapped in the hot spine
loop, which forms by filling hot plasma through chromospheric
evaporation. A detailed explanation for flare trigger and related
loop thermal dynamics can be found in Sun et al. (2013).

By analyzing SUMER spectra, Wang et al. (2005) found that
the initiation of oscillations in hot loops is often associated with
high-speed (100-300kms~ ") flow pulses, which may be
produced by ejections of a small flux rope or minifilament
in fan-spine topology as shown in 3D simulations (e.g.,
Jiang et al. 2013; Wyper et al. 2017). Signatures of related
minifilament eruptions were observed in the AIA 171 and
304 A bands in some events (Kumar et al. 2013, 2015; Mandal
et al. 2016). Some 3D MHD simulations have shown that
quasi-periodic outflows or single-flow pulse injected at the
footpoints of coronal loops inevitably generate slow magneto-
acoustic waves propagating upward along the loop (Ofman
et al. 2012; Wang et al. 2013; Provornikova et al. 2018).

Motivated by the above facts, we simulated the excitation of
the observed wave event using a flow pulse injected at a
footpoint using 1D models. As no traceable ejection was
observed to be associated with the hot loop showing the
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Figure 10. Ratio of the kinetic energy of the fundamental-mode component
(E,) in the Fourier decomposition to the total kinetic energy (E o). The circles
represent the values measured at the peak times of E, for Model 1, and the
crosses represent those for Model 2. The solid and dashed lines are the best fits
(see the text). The dotted line indicates the ratio level of 0.99.

longitudinal oscillations, we estimated the flow velocity from
the maximum amplitude of density perturbations based on the
linearized continuity equation. The measurements show that the

11

initial perturbations (before reflection at the remote footpoint)
simulated in the two cases (Model 1 and Model 2) both
propagate at a speed close to the speed of sound, confirming
that they are the propagating slow magnetosonic waves.

6.2. Validation of Linear Theory-based Predictions

We simulated the excitation of standing slow-mode waves in
a hot loop observed with AIA using a 1D nonlinear MHD
model with a flow driver at one footpoint. We compared the
simulations in the two cases using (1) the classical thermal
conductivity and compressive viscosity (Model 1) and (2) no
thermal conduction but 15 times enhanced viscosity as
determined using the seismology technique based on linear
MHD theory (Model 2). We find that Model 2 can well
reproduce several properties of the observations, but Model 1
cannot. First, Model 2 can produce the standing wave pattern
on a timescale consistent with the observed one; i.e., it takes
only one reflection of the initial perturbation, while it needs
about five reflections for Model 1. Second, Model 2 predicts
the in-phase relationship between density and temperature
perturbations in agreement with the observation, whereas
Model 1 shows a large phase shift (~60°) between them.
Third, Model 2 shows that the polytropic index, determined
from the density and temperature scaling, is consistent with
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observations; i.e., its value lies close to 5/3. In contrast, Model
1 shows a distinctly different value (1.390 £ 0.003). Fourth,
the wave period measured from the density perturbation for
Model 2 is closer to the observational value than that for Model
1 (see the explanation given later on). The temporal profiles of
the density and temperature perturbations for Model 2 are
harmonic and linear, which is closer to the observed features,
while they show some nonlinearity for Model 1. The behavior
of the two models is distinguishable by comparing Figures 2(c)
and (d) with Figures 5(b) and (e). The recovery of the observed
wave period and damping time by Model 2 is expected because
the used transport coefficients in this model are derived from
the observational measurements based on the linear theory. The
success of Model 2 thus validates the seismology technique we
developed in Paper 1. However, the result that Model 2 can
recover the quick excitation of observed standing waves is
unexpected, and the role of the transport coefficients in
affecting the standing wave formation was not investigated
before. We will discuss the wave excitation mechanism in the
next section. In addition, as control experiments, we have
performed simulations for the two types of models with an
initial flow pulse of a small amplitude of 0.01 V,; (Models 1A
and 2A; see Figures 11 and 12 in the Appendix) or of a short
duration of 1/2 14, (Models 1B and 2B; see Figures 13 and 14
in the Appendix). These tests indicate that the main results
obtained for Model 1 and Model 2are robust, nearly
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independent of variations of the wave driver in amplitude
and duration (see Table 2).

The result that the wave period in Model 2 is slightly shorter
than that in Model 1 but closer to that of the observations can
be explained in this way. In Model 2, as thermal conduction is
completely suppressed, the wave propagates with the faster
adiabatic sound speed (C,), while in Model 1, the wave
propagates with a phase speed that is equivalent to the
“polytropic sound speed” (C,) due to the energy loss by
thermal conduction. For a polytropic process with p = Kp<,
where K is a constant, it follows from the wave equation that

ap, 172 o 1/2
SRR
Po Y
For C, = 498 km s~ ! and o« = 1.39 measured in Model 1,
we obtain C, = 455 km s_l, which is consistent with the
propagation speed of waves directly measured from the ridges
in Figure 4. We also find that the predicted wave period, Py, =
2L/Cp = 13.2 minutes, agrees with that (P = 13.5 minutes)
measured from the density perturbation in Model 1. For Model 2,
we estimate Py = 2L/C,; = 12.0 minutes, agreeing with the
measured period (P = 11.9 minutes), too.
Comparing Model 1 with Model 2, we notice that their

damping times are comparable. This makes it difficult to
determine which is the dominant damping mechanism (thermal

Y
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Figure 12. Simulations of a control experiment (Model 2A) that has the same parameters as Model 2 but with the initial pulse amplitude V,, = 0.0023 C,. The

annotations are the same as in Figure 11.

conduction or compressive viscosity) without referring to other
properties, such as the phase shift (A¢) between T and n, and
the polytropic index. In theory, we may determine « from
C, = 2L/P using Equation (I1) and then use the relation
between « and A¢ to estimate the effect of thermal conduction
(see Equatlons (12) and (13)). However, since C, differs from
C, by a maximum of a factor of 'yl /2 or ~30% (for 1 <a<7y),
and the accurate measurement of the 3D loop geometry is
typically difficult, this method may not be applicable to
observations. Thus, the better way to constrain the effect of
thermal conduction on the wave damping in observations is to
measure A¢ as in Paper 1. The following equations for A¢ can
be derived using the 1D linear MHD theory when considering
that thermal conduction dominates in the energy equation (see
Van Doorsselaere et al. 2011; Wang et al. 2015),

tan A¢ = 2myd, (12)
(y—=DcosAp=a — 1, (13)

where d is the thermal ratio (see De Moortel & Hood 2003),
given by

d =

7(7 = Deifopy . 1(T3/2J (14)

fyp 2p noP

where po = nomy, po = 2nokgTo, and P = 2m/w is the wave
period.

We validate the above phase-shift relations based on Model 1.
From the measured polytropic index o = 1.39, we obtain
A¢ = 54° using Equation (13), which is consistent with the

13

directly measured phase shift (A¢ = 57°) from the simulations.
For Model 1 with P = 13.5 minutes and 7 = 11.6 minutes, we
estimate d = 0.052 and A¢ ~ 29° using Equations (12) and
(14). We find that the predicted phase shift by the linear theory is
smaller than that from the simulation by about 50%. To account
for this difference, we recheck the derivation of Equations (12)
and (13) and notice that the approximation for the phase
speed V, = w/k ~ C, and the weak damping assumption (i.e.,
P/T <« 1) were used in derivation. In general, given that the
wave frequency (w = w, + iw;) is complex and V, = w,/k, we
can obtain, based on 1D linear wave theory,

27r7d cos ¢/w/1 + x?
tan A¢ = (15)
1727r’yd smz/;/«/l+x

J1+x?

where ¥ = w;/w, and ¢ = tan~!(w; /w,). It is obvious that the
above equations will reduce to Equations (12) and (13) on the
condition of V,, = C; and w; = 0.

We estimate the predicted phase shift using the improved
equations in the two cases. (1) With w; =0 and V, = wlk =
2L/P = 444kms ', we obtain A¢ = tan~ 1(27wd(C JVp)?) =
35°. (2) In the general case, the values of w, and w; can be
theoretically calculated from the dispersion relation for the
fundamental standing wave (with k = /L) using a normal mode

)
(v — 1)cos Ad = (a — 1)[1 _ 2md(G/Vy) smw], (16)
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Figure 13. Simulations of a control experiment (Model 1B) that has the same parameters as Model 1 but with the initial pulse duration #4,, = 2 minutes. The

annotations are the same as in Figure 11.

analysis (e.g., De Moortel & Hood 2003). Here, by taking
w, = 2m/P and w; = 1/7 with V,, = 2L/P, we obtain A¢p = 37°.
We find that after correcting the error due to the assumptions in
Equation (12), the predicted value of A¢ is still much smaller (by
about 35%) than that from the simulation. This suggests that the
underestimation may be caused by the nonlinear effect, which
needs further investigation in the future.

6.3. Excitation Mechanism of the Fundamental Standing Mode

We estimated the excitation time of standing slow-mode
waves from simulations using both the qualitative analysis
based on the spatial and temporal features of the waves and
the quantitative analysis based on the Fourier decomposition.
We found that Model 2, with the anomalously large compressive
viscosity and suppressed thermal conduction, can excite the
fundamental standing wave in a hot loop on a timescale well
matching the observation. Our control experiments show that
this result is affected little by variations of the wave driver in
amplitude and duration (see the Appendix), providing additional
support to the conclusion. It is noticed that numerical simulations
with thermal conduction but no viscosity show the waves with
strong nonlinearity, which are obviously inconsistent with the
observation as studied here (e.g., Mendoza-Bricefio et al. 2004;
Sigalotti et al. 2007; Fang et al. 2015). This suggests the
important role of viscosity in suppressing the nonlinear effect or
smoothing high-frequency components in the waves. We
analyzed the dependence of the damping rate on the wave
frequency for the harmonic waves using two different methods:
one by simulating each harmonic mode based on the initial
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velocity profile along the loop and the other by decomposing
the waves generated by the footpoint-driven flow pulse. The
methods reveal a scaling law of 7 oc P for Model 1, while
7 o< P* for Model 2. Considering that the damping times of
the fundamental-mode component for Model 1 and Model 2
are comparable, this implies that the ratio of their damping times
for the harmonic number k is 7Y°4¢1"! /7Model-2 ok That is, the
k-harmonic component in Model 2 is damped k times as quickly
as that in Model 1. This explains why the fundamental mode
can be set up in a much shorter time in Model 2. It is known
that the linear slow-wave theory predicts the scaling 7 o< P*
under the small dissipation assumption for viscosity (Porter
et al. 1994; Ofman et al. 2000). Our simulations here indicate
that this scaling relation also holds in the regime of large
viscosity (with an enhancement by more than an order of
magnitude compared to the classical value). This property of
viscosity is distinctly different from that of thermal conduction,
whose effect on the wave damping becomes inefficient when the
thermal conduction is very large due to the transition from
adiabatic to isothermal behavior (Porter et al. 1994; De Moortel
& Hood 2003).

The statistical studies of hot loop oscillations based on
observations with SOHO/SUMER (Wang et al. 2003a, 2007)
and Yohkoh/BCS (Mariska 2006) showed that these oscilla-
tions are best interpreted as the fundamental standing slow-
mode waves (Wang 2011). The spectral features of the
SUMER data suggested that these oscillations are triggered
by hot flow pulses from one of the loop’s footpoints, and the
standing modes are often formed within one oscillation period
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(Wang et al. 2005). These properties appear to support the case
of Model 2 (i.e., anomalously enhanced viscosity) as the
dominant wave-damping mechanism. However, an approxi-
mate linear scaling between damping time and wave period was
found from observed oscillations, e.g., T = 0.68p!06+0-18
obtained by fitting 49 cases in Wang et al. (2003a), or a
similar scaling obtained by fitting 35 cases in Ofman & Wang
(2002). Their results appear to favor Model 1, i.e., thermal
conduction as the dominant damping mechanism, which was
first proposed by Ofman & Wang (2002). We suggest the
following scenario to explain this paradox. It is known that for
the dissipation of slow-mode waves by either ion viscous
damping or electron conduction damping, the following
relation can be derived from linear theory (Porter et al. 1994),

T~ C(no/T;"*) P2, (17)

where C is a constant. It implies that the scaling 7 oc P? is valid
only for a single loop or loops with the same temperature and
density. However, this is not the case for a large number of
samples in observation. For example, the SUMER observations
showed that the loop temperatures are typically in the range
6-10 MK and the densities in the range 10°-10'®cm™>. If
assuming hot loops follow the Rosner—Tucker—Vaiana (RTV)
scaling law (Ty ~ 1.4 x 103(pL)!/3; Rosner et al. 1978) and
considering P ~ 2L/C, for the fundamental mode, we can
derive the relation ng/T3/* oc 1/P from the RTV law by
eliminating L. Thus, from Equation (17), we find the scaling
7 « P, which is valid independently of the temperature and
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density of the sampled loops. This may explain the approx-
imate linear scaling obtained from the SUMER observations.
Note that the dispersion of data points to the fitted line is large
(see Figure 15 in Wang et al. 2005), indicating that many loops
are not consistent with the predictions of static loop models.
The above debates suggest that the observed 7—P scaling may
not provide a tight constraint (or is not a sufficient condition) to
determine or exclude whether the anomalously enhanced
viscosity or the classical Spitzer conduction is the dominant
wave dissipation mechanism. This implies the need for new
statistical studies based on the AIA observations to verify
whether the damping mechanism proposed to interpret the
event studied here works only in this special case or in general.

The footpoint excitation of standing slow-mode waves in
inhomogeneous loops (including the upper chromosphere,
transition region, and gravitational stratification) was theoreti-
cally studied by Taroyan et al. (2005, 2007). Their simulations
with the effects of thermal conduction and radiation showed
that the immediate excitation of the standing waves requires a
special condition that the duration of the heat pulse matches the
period of the fundamental mode. However, this excitation
condition is not supported by observations, such as the wave
event studied here and those observed with SUMER (Wang
et al. 2005), which all showed that the heating duration is
shorter than about the half-wave period. Nevertheless, the
results of Model 2 presented in our study need to be validated
based on similar inhomogeneous loop models in 1D or 2D in
the future.
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Table 2
Physical Parameters and Wave Properties for Different Models
Model Type Model Vo taur fexe v Py Tv P, Tn A¢ a
(km s~ 1) (minute) (minute) (km shH (minute) (minute) (minute) (minute)
eV} @) (3) C)) (5) (6) @) ®) ©)) 10) an 12)
Type L Model 1 115 4 35.8 504 14.5 11.2 135 11.6 57° 1.390
K| = f;ﬁlass Model 1A 1.15 4 37.2 401 15.1 10.0 14.1 11.8 51° 1.432
n= nf)l““ Model 1B 115 2 41.2 455 14.9 10.0 144 11.6 54° 1.376
Type 1I: Model 2 115 4 6.6 619 12.1 10.6 11.9 12.2 0° 1.684
K =0, Model 2A 1.15 4 7.4 585 124 9.5 12.2 12.8 0° 1.667
n=15 7]81"‘“ Model 2B 115 2 6.3 569 12.3 10.0 12.0 11.1 0° 1.674

Note. Column 1 is the model type. Column 2 is the model name. Column 3 is the amplitude of the initial flow pulse. Column 4 is the pulse duration. Column 5 is the
measured excitation time for a standing wave. Column 6 is the measured slope value of the first ridge in a time—distance map of perturbed density. Columns 7 and
8 are the wave period and damping time measured from velocity oscillations. Columns 9 and 10 are the same as columns 7 and 8 but for density oscillations. Column
11 is the measured phase shift between density and temperature oscillations. Column 12 is the measured polytropic index.

Wang et al. (2015, 2016) suggested that the suppression of
thermal conduction in the event studied here is likely due to
nonlocal conduction (Karpen & Devore 1987). The classical
Spitzer form of conductivity is known to be valid under the
assumptions that the electron velocity distribution is locally
close to Maxwellian and the mean free path A is much smaller
than the temperature gradient scale length L; (Rosner
et al. 1986). Such conditions may break down in solar flare
loops with higher temperatures because A increases with the
squared temperature (e.g., Jiang et al. 2006; Sharykin
et al. 2015), resulting in the significant overestimation of heat
flux (the so-called saturation effect; Cowie & McKee 1977,
Karpen & Devore 1987; Battaglia et al. 2009). For example, for
hot loops with T = 10 MK, if assuming n = 10°cm > in a
large (L = 100 Mm) loop or n = 10°cm ™ in a small (L =
10 Mm) loop, we estimate that A\/Ly~ 0.1 using \/Ly =
0.1(T /10 MK)2[(L/100 Mm)(/10° cm~3)]~! (Rosner et al.
1986). This estimate suggests the breakdown of the diffusion
approximation in Spitzer conduction theory that requires
ALy < 0.015 (Gray & Kilkenny 1980; Rosner et al. 1986).
Some recent studies showed that turbulent magnetic fluctua-
tions also can significantly reduce the parallel thermal
conductivity in flaring coronal loops (Bian et al. 2016a,
2016b, 2018). In addition, the suppressed thermal conduction
predicts a weaker chromospheric evaporation (Karpen &
Devore 1987) and thus may imply a smaller-than-expected
density in hot oscillating loops. This appears to be supported by
the SUMER observations showing that, except for initial flow
pulses, no persistent background flow was found in hot loops
(Wang et al. 2005). The density deficit caused by the
conduction suppression may be estimated based on the EM-T
correlation for flare loops, where T is the peak temperature and
EM(~n’L?) is the volume emission measure (Feldman et al.
1995; Shibata & Yokoyama 1999, 2002). Assuming a balance
between conduction cooling and reconnection heating and the
pressure balance of flare loops, Shibata & Yokoyama (1999)
derived the scaling law EM x B> T'7/2, where B is the
magnetic field strength. We define the suppressed conductivity
as rg = ko/S, where kg =~ 1070 cgs is the thermal conductivity
of Spitzer and S is the suppression factor. By considering a
loop that is heated to the same temperature in the two cases,
i.e., with or without conduction suppression, we can obtain the
modified scaling law EMg oc S73B~5T'7/2 and the density ratio
ng/n = S3/2. Given S >3 as measured in Paper I, for
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instance, we expect that the conduction suppression will lead to
the flare loop being underdense by at least a factor of 5.
Thermal conduction suppression may provide an alternative
explanation for the finding that AR hot loops tend to be
underdense compared to the hydrostatic predictions (Winebarger
et al. 2003; Reale 2014).

The reason for the anomalous enhancement of compressive
viscosity in the event studied here is unclear, but it is known
that anomalous viscosity can be caused by a process such as
thermal nonequilibrium between electrons and ions in the
impulsively heated loops, which in this event is likely due to
continuous heating by slow reconnection at quasi-separatrics
layers and the null point (e.g., Sun et al. 2013; Qiu & Longcope
2016; Zhu et al. 2018). Turbulence is also a possible process
that can lead to an enhanced viscosity such as Bohm diffusion
(Bohm 1949) and eddy viscosity (Hollweg & Yang 1988).

7. Conclusions

In conclusion, we have found that a standing slow-mode
wave event was triggered by a flare in a closed fan-spine
magnetic topology. The footpoint excitation of the wave event
is simulated based on a 1D nonlinear MHD loop model for two
sets of parameters. In one case with anomalously large
compressive viscosity and suppressed thermal conduction, the
standing wave pattern can be produced quickly on a timescale
that is consistent with the observation, whereas in the other
case, with classical conduction and viscosity, the formation of
the standing wave takes many wave reflections in the numerical
model. In this case, basically, a reflecting propagating wave is
excited. By analyzing the dissipation properties of harmonic
waves, we find that the scaling law between damping time and
wave period follows 7 o< P? in the former case, while 7 < P in
the latter case. This implies a more efficient dissipation of the
higher harmonic components when the viscosity is strongly
enhanced, thus explaining the quick formation of the funda-
mental standing waves. Whether this is a common excitation
mechanism requires further validation by studying a large
sample of SDO/AIA wave events using a similar method as
that employed in Paper L.
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Figure 15. Measurements of the phase shift between the perturbed density and temperatures. (a) Amplitude-normalized density (solid line) and temperature (dashed
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Figure 16. Measurements of the phase speed of propagating slow waves. (a) Peak position of density perturbations along the loop measured for three ridges of Model
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positions are measured from x = L and are plotted with the time of t — 396 s. For ridge-3, the peak positions are plotted with the time  — 780 s. The peak positions of
ridge-1 (diamonds) for Model 2A are measured during ¢ = [156, 328] s. The solid lines are the best fit to the data points, and their slope values (V,f“) are marked on the
plot. (b) For three ridges of Model 1B: ridge-1 (pluses) during ¢t = [99, 403] s, ridge-2 (asterisks) during ¢ = [584, 805] s, and ridge-3 (crosses) during ¢t = [1043,
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Appendix
Simulations of Control Experiments

With control experiments, we examine whether differences
between the behavior of Model 1 and Model 2, particularly in the
excitation time of a standing wave, are affected by variations in the
wave driver. In the first case, we test the dependence of the model
behavior on the amplitude of the initial flow pulse. We design two
models, called Model 1A and Model 2A, which have the same
physical parameters as Model 1 and Model 2, respectively, but a
pulse amphtude smaller by a factor of 100, i.e., taking V, =
1.15kms ", Figures 11 and 12 show the simulation results for
these two models. We measure the wave period, damping time,
polytropic index, and phase shift between density and temperature
perturbations (see also Figure 15(a)). The comparison with those in
Model 1 and Model 2 indicates that the dependence of these wave
properties on the pulse amplitude is weak. Figure 16(a) shows the
measurements of the phase speed for initial propagating waves.
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We find that the propagation speed in Model 1 is reduced by 20%

(V)" =401kms ' in Model 1A) for a small amplitude of the
fl[

pulse, while the one in Model 2 is reduced by only ~5%
585kms™"' in Model 2A). This indicates that the phase speed of
the initial perturbations in Model 2 is not apt to be affected by the
amplitude variability of the driver compared to Model 1. This fact
could be attributed to the suppression of nonlinearity by the
enhanced viscosity in Model 2.

In the second case, we test the dependence of the model
behavior on the duration of the initial pulse. We design Model 1B
and Model 2B the same way as Model 1 and Model 2, respe-
ctively, but with the pulse duration shorter by a factor of 2, i.e.,
taking 74, = 2 minutes. Figures 13 and 14 show the simulation
results for these two models. The comparison with those for Model
1 and Model 2 indicates that the dependence of the wave
properties on the pulse duration is weak. In a summary, we list the
measured wave properties for the different models in Table 2.

Finally, we emphasize our conclusion that the different
behavior of the two types of models (Model 1 and Model 2) is
mainly due to their difference in transport coefficients, and the
anomalously large viscosity is particularly crucial in leading to
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Figure 17. Ratio of the kinetic energy of the fundamental-mode component
(E}) in the Fourier decomposition to the total kinetic energy (Eo1), measured
at the peak times of Ey,. Different symbols represent the data for the different
models, whose best fits are indicated with the different lines: red solid line for
Model 1, red dashed line for Model 1A, red dot-dashed line for Model 1B, blue
solid line for Model 2, blue dashed line for Model 2A, and blue dot-dashed line
for Model 2B.

a quick formation of the fundamental standing wave in flaring
loops. This conclusion is supported by the results of control
numerical experiments. We find that the excitation time of the
fundamental standing mode is nearly independent of the wave
driver’s amplitude and duration, as evidenced by the spatial and
temporal features of the waves in velocity and density (see
panels (a) and (b) in Figures 11-14). We also quantitatively
measure the excitation time of the fundamental mode for the
control numerical experiments using the Fourier decomposition
analysis (see Figure 17). We fit the data of E|/E s to a third-
degree polynomial for Model 1 (A and B) and obtain the
coefficients ag = 0.44, a; = 0.027, a, = —3.5 X 10~*, and
as = 6.0 x 1077 for Model 1A and ay = 0.047, a; = 0.071,
a = —1.9 x 1073, and a3 = 1.6 x 107> for Model 1B. The
numerical results for Model 2 (A and B) are fitted to a function
in the form f(t) =1 — b; In(1 + b, /t?). We obtain b, =
4.2, b, = 4.3, and by = 3.8 for Model 2A and b, = 3.0,
b, = 3.0, and b3 = 3.7 for Model 2B. We define the excitation
time of the standing fundamental mode as the time when
E{/E > 0.99. The measurements confirm our conclusion
(see column 5 in Table 2).
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