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ABSTRACT

Context. The Wilson depression is the difference in geometric height of unit continuum optical depth between the sunspot umbra and
the quiet Sun. Measuring the Wilson depression is important for understanding the geometry of sunspots. Current methods suffer from
systematic effects or need to make assumptions on the geometry of the magnetic field. This leads to large systematic uncertainties of
the derived Wilson depressions.
Aims. We aim to develop a robust method for deriving the Wilson depression that only requires the information about the magnetic
field that is accessible from spectropolarimetry, and that does not rely on assumptions on the geometry of sunspots or on their mag-
netic field.
Methods. Our method is based on minimizing the divergence of the magnetic field vector derived from spectropolarimetric observa-
tions. We have focused on large spatial scales only in order to reduce the number of free parameters.
Results. We tested the performance of our method using synthetic Hinode data derived from two sunspot simulations. We find that the
maximum and the umbral averaged Wilson depression for both spots determined with our method typically lies within 100 km of the
true value obtained from the simulations. In addition, we applied the method to Hinode observations of a sunspot. The derived Wilson
depression (∼600 km) is consistent with results typically obtained from the Wilson effect. We also find that the Wilson depression
obtained from using horizontal force balance gives 110–180 km smaller Wilson depressions than both, what we find and what we
deduce directly from the simulations. This suggests that the magnetic pressure and the magnetic curvature force contribute to the
Wilson depression by a similar amount.
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1. Introduction

The geometric height at which unity continuum optical depth is
reached is depressed within sunspots relative to the quiet Sun.
This so-called Wilson depression (Wilson & Maskelyne 1774)
is caused by a lower opacity within the sunspot due to the lower
temperature and a reduced gas pressure. The magnetic pres-
sure and the curvature force of the strong magnetic field of
sunspots balance this reduced gas pressure with the gas pres-
sure of the surrounding quiet Sun. The connection between the
Wilson depression and the strength and geometry of the mag-
netic field makes the Wilson depression an important quantity
for understanding the structure of sunspots. In particular, it is
not known by how much the curvature force of the magnetic
field contributes to stabilizing the sunspot.

Unfortunately, the Wilson depression remains one of the
more poorly known parameters of sunspots. Several studies have
tried inferring the Wilson depression by making use of the hor-
izontal force balance between the sunspot and the surrounding
quiet Sun. However, since we do not know by how much the
curvature force contributes to the force balance, an accurate esti-
mate of the Wilson depression with this method is not possi-
ble. Depending on the assumed influence of the curvature force,
the derived Wilson depression lies in the range between 400 and
1000 km (Solanki et al. 1993; Martínez Pillet & Vázquez 1993;
Mathew et al. 2004).

The Wilson depression can also be estimated geometrically
when the sunspot approaches the limb (i.e., via the Wilson
effect). However, this method is influenced by radiative trans-
fer or changes of the size of the umbra and penumbra with
height (see, e.g., the discussion in Solanki 2003). Hence, the
Wilson depression cannot be inferred very accurately when
using this method. Gokhale & Zwaan (1972) derived an average
Wilson depression zW of 600 ± 200 km based on the Wilson
effect. In contrast, Prokakis (1974) measured a significantly larger
Wilson depression of 950−1250 km with large spots having a
higher Wilson depression (zW = 1500−2100 km) than small
spots (zW = 700−1000 km). However, later results (zW =
500−1000 km) obtained by Balthasar & Wöhl (1983) are in bet-
ter agreement with those of Gokhale & Zwaan (1972).

Here we present an alternative method for measuring the
Wilson depression that does not need to make any assump-
tions on the geometry of the magnetic field in sunspots or on
the structure of the sunspot. Our method is based on impos-
ing the divergence-free condition on the magnetic field vector
deduced from the inversion of observed Stokes profiles. This
approach has already been used by Puschmann et al. (2010) to
derive the small-scale corrugation of the τ = 1 layer of a small
patch within the penumbra of a sunspot. Here, we have modified
this method to provide the large-scale corrugation of the τ = 1
layer within the entire sunspot. We first performed a test of the
method: we use it to derive the Wilson depression from synthetic
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Fig. 1. Maps of the continuum intensity of the sunspots analyzed in this study. Panels A and B: sunspot simulations by Rempel (2012, 2015),
panel C: NOAA AR 10923 observed by Hinode SOT/SP on 14 November 2006. The blue and green contours indicate the outer and inner penumbral
boundaries (defined as 30% and 90% of the continuum intensity level of the quiet Sun, after smoothing the continuum images with a 2D Gaussian
with σ = 812 km). The red boxes outline the regions that we used for deriving the Wilson depression in the two MHD simulations. We computed
the Wilson depression across the entire FOV for AR 10923.

Table 1. Parameters of the three spots that were analyzed in this study.

Parameter Simulation 1 Simulation 2 AR 10923

Area (Mm2) 938 650 2572
Bmax (gauss) 4247 5194 4341
Bav (gauss) 3143 3624 2911
Tmin (K) 3896 3608 3579
Tav (K) 4607 4325 4116

Notes. The table contains the area of the spots, the maximum (Bmax)
and the average (Bav) magnetic field in the umbra (measured at log τ =

−0.9), and the minimum (Tmin) and average (Tav) temperature in the
umbra (measured at log τ = 0).

Hinode observations generated from two MHD simulations of
sunspots (Rempel 2012, 2015). After that we applied it to one
spot observed with Hinode. We also compared our results with
the Wilson depression derived using the pressure method.

2. Data

2.1. Synthetic Hinode data

We generated synthetic Hinode data starting from two MHD
simulations of sunspots by Rempel (2012, 2015) computed with
the MURaM code (Vögler et al. 2005). Simulation run 1 has
a size of 49.152 × 49.152 × 2.048 Mm3 with a resolution of
12 × 12 × 8 km3 (4096 × 4096 × 256 pixels). Simulation run 2
has a size of 61.44 × 61.44 × 2.976 Mm3 with a resolution of
48 × 48 × 24 km3 (1280 × 1280 × 124 pixels). Figure 1 shows
continuum intensity images and Table 1 lists some parameters
of the spots (the area of the spots, the maximum and the average
magnetic field in the umbra at log τ = −0.9, and the minimum
and average temperature in the umbra at log τ = 0). We defined
the inner and outer boundary of the penumbra as 30% and 90%
of the continuum intensity level of the quiet Sun, respectively,
after smoothing the continuum images with a 2D Gaussian with
σ = 812 km.

We computed line profiles of the pair of Fe I lines at 6301.5 Å
and 6302.5 Å for all Stokes parameters from these simulations
using the SPINOR code (Frutiger et al. 2000); which uses the
STOPRO routines for the forward calculation (Solanki 1987) for
µ = 1. In order to save computation time, we only computed

the line profiles for a narrow strip across the sunspot for sim-
ulation run 1 (indicated by the red lines in the left panel in
Fig. 1). For simulation run 2, we used the full field-of-view
(FOV). We then degraded the data to the spectral resolution of
Hinode SOT/SP and rebined the data to the pixel size of Hinode
SOT/SP (0.16′′). We did not convolve the data with the optical
point-spread function (PSF) since an inversion with the spatially
coupled version of SPINOR (van Noort 2012; van Noort et al.
2013) would remove the influence of the PSF from the data any-
way. We note that the sunspot AR 10923 observed by Hinode
and analyzed here, was inverted with the spatially coupled ver-
sion of SPINOR and we intend to apply this technique mainly
to data inverted in the same manner. Finally, we added nor-
mally distributed noise to all four Stokes parameters with a
signal-to-noise ratio that is proportional to the square root of
the intensity and that reaches an average value of 1000 in the
continuum.

2.2. Hinode observations of AR 10923

We used spectropolarimetric observations of AR 10923 made on
14 November 2006 in the Fe I line pair at 6301.5 Å and 6302.5 Å
from the spectropolarimeter on the Solar Optical Telescope
(SOT/SP, Kosugi et al. 2007; Lites 2007; Ichimoto et al. 2008;
Lites et al. 2013) onboard the Hinode spacecraft. At that time,
this active region was located close to disk center (x = 66.8′′,
y = −114.4′′, µ = 0.99, see panel C in Fig. 1). The SOT/SP
provides the full set of Stokes parameters along both spectral
lines with a pixel sampling of ∼0.16′′. This spot exhibits two fil-
aments stretching far into the umbra, nearly splitting the umbra
in two parts. This spot is significantly larger than the two simu-
lated spots, however, the magnetic field in the umbra is weaker
(see Table 1).

3. Deriving the atmospheric conditions

We derived the atmospheric parameters of both, the two simu-
lated spots and AR 10923, by inverting the maps of the Stokes
parameters with the SPINOR code under the assumption of
local thermodynamic equilibrium (LTE). In case of the Hinode
observations, we used the spatially coupled version of SPINOR
(van Noort 2012; van Noort et al. 2013). The synthetic data were
inverted using the non-coupled version of SPINOR since we did
not take into account the PSF when generating the synthetic data.
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Fig. 2. Inverted magnetic field vector along the analyzed stripe through simulation run 1. Top three rows: magnetic field intensity B, central three
rows: inclination γ, and bottom three rows: azimuth of the magnetic field φ. We show each parameter at three different optical depths, from top to
bottom: log τ = −2.5,−0.9, 0.

For all three spots, we set three nodes in optical depth, placed at
log τ = −2.5,−0.9, 0. Figures 2–4 show the results of the inver-
sion for the magnetic field strength B, the inclination γ, and the
azimuth ϕ for all the spots at these optical depths. Using a spline
interpolation, we then remapped the results of the inversion on
an equidistant grid in log τ ranging from −6 to +1.5 with a sam-
pling of 0.1.

Afterward, we resolved the 180◦ azimuthal ambiguity by
using the non-potential magnetic field computation method
(NPFC, Georgoulis 2005). We could test the performance of the
NPFC code with the help of the synthetic data. In most cases, the
code resolved the ambiguity correctly within the sunspot. How-
ever, the code sometimes failed in regions where the magnetic
field vector is almost exactly parallel to the line-of-sight. This
occured predominantly at optical depths where the inversion is
less accurate. We addressed this issue by applying the NPFC
code only to the data at log τ = −0.9. We then successively
resolved the ambiguity at greater and lower heights by demand-
ing the magnetic field vector to vary smoothly with height. We

selected the solution of the ambiguity, where the magnetic field
vector is the closest to the one in the adjacent layer, where we
have already resolved the ambiguity. This led to an accurate
disambiguation within the sunspot. In the surroundings of the
sunspots, however, the NPFC code failed in many cases to find
the correct solution, even at log τ = −0.9.

4. Measuring the Wilson depression

4.1. Method

We determined the geometric height of the τ = 1 layer of
the sunspot in a similar way as introduced by Puschmann et al.
(2010), who could infer the geometrical height of the τ = 1 sur-
face in an inverted atmosphere of a small patch of the penumbra
of a sunspot observed with Hinode. Their method is based on
the divergence-free condition of the magnetic field vector and
on ensuring force balance. These two conditions are not ful-
filled in an inverted atmosphere since the unknown height of the
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Fig. 3. Inverted magnetic field vector for simulation run 2. Top row: magnetic field intensity B, central row: inclination γ, and bottom row: azimuth
of the magnetic field φ. From left to right: log τ = −2.5,−0.9, 0. The red box highlights the region, where we derived the Wilson depression.

τ = 1 layer causes an offset in the geometric height scale of the
individual pixels. However, both the divergence of the magnetic
field and the deviations from force balance are minimized when
shifting the atmosphere at each pixel by the corresponding height
of the τ = 1 surface. Hence, this approach allows to infer the
Wilson depression. Puschmann et al. (2010) use the following
merit function:

χ2 =
∑
m,n

w1|F|2 + w2(∇ · B)2. (1)

The sum is over all the pixels in the images (indicated by the
indices m and n). The first term consists of the residual force
F = J × B + ρg − ∇Pg. Here, J is the current density, B is the
magnetic field vector, ρ is the density, g is the surface gravity of
the Sun, and Pg is the gas pressure. The influence of flows on the
force balance is neglected. The second term in the merit function
is the divergence of the magnetic field. The relative contributions
of the two terms are balanced by the coefficients w1 and w2.

The magnetic field vector and all other atmospheric parame-
ters in the merit function depend on the geometric height z. This

height scale has two contributions. The first one is the z-scale
zrel of the stratification relative to the τ = 1 layer of each pixel,
which is provided by the inversion. The second one is the height
of the τ = 1 layer at each pixel (i.e., the Wilson depression zW),
which we want to determine:

z(x, y, τ) = zrel(x, y, τ) + zW(x, y). (2)

Changing zW at the individual pixels corresponds to shifting the
inverted atmosphere vertically. The merit function has its min-
imum when the inverted atmospheres for all pixels are aligned
with respect to each other, that is, when zW(x, y) is the corruga-
tion of the τ = 1 surface. The alignment of the individual atmo-
spheres can be evaluated at different heights zrel relative to the
τ = 1 surface. Puschmann et al. (2010) used zrel = 200 km and
set zW = 0 as the height used to compute the merit function for
an arbitrary pixel. They used a genetic algorithm for minimizing
the merit function.

Here, we wanted to extend the method of Puschmann et al.
(2010) to derive the corrugations of the τ = 1 layer of the entire
spot. This is not straightforward since the Wilson depression
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Fig. 4. Same as Fig. 3 for the Hinode observation of AR 10923.

at each pixel is a free parameter in the merit function. So, the
number of free parameters becomes extremely large when apply-
ing this method to the entire spot. We reduced the number of
free parameters by restricting the analysis to the large-scale cor-
rugation of the τ = 1 layer. An efficient way to achieve this
is to write the Wilson depression zW(x, y) as a Fourier series
of the horizontal wavenumbers kx and ky and then drop the
terms above a maximum wavenumber in the Fourier series of
zW, therefore removing the small-scale corrugations. Now, the
number of free parameters does not correspond to the number
of pixels anymore, but it depends on the maximum wavenum-
ber that is considered. This approach allowed us to reduce the
number of free parameters in the merit function significantly
without affecting the determination of the large-scale Wilson
depression.

However, neglecting small-scale corrugations of the τ = 1
layer affects the divergence of the magnetic field, especially on
small spatial scales. We addressed this problem by writing the
merit function in Fourier space using Parseval’s theorem:

χ2 =
∑
m,n

(∇ · B)2 =
1

NxNy

∑
k,l

|F (∇ · B)|2. (3)

Here, the symbol F indicates a 2D discrete Fourier transform (in
the x- and in the y-direction), defined as

âk,l =

Nx−1∑
m=0

Ny−1∑
n=0

e
−2πi

(
mk
Nx

+ nl
Ny

)
· am,n. (4)

The parameters Nx and Ny are the number of pixels along the
x-axis and the y-axis, respectively. The indices k and l indicate
the dimensionless wavenumber indices and are connected to the
physical wavenumber by the relation kx = 2π

Nx∆x · k in case of
the x-direction with ∆x being the spatial resolution. Contrary to
Puschmann et al. (2010), we did not include the force terms in
our merit function. In our case, including the force terms leads
to a less accurate determination of the Wilson depression. This is
caused by neglecting advection (ρ (u · ∇) u) in the force balance
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(spectropolarimetry can only measure the line-of-sight velocity,
not the full velocity vector). In the penumbra of the two simu-
lated spots, the advection term reaches a similar magnitude as the
Lorentz force due to the Evershed and the reverse Evershed flow.
Hence, ignoring advection causes the force term in the merit
function not to be sensitive to the large-scale Wilson depression
anymore.

All terms in the merit function are positive, meaning that the
divergence has to be zero at all spatial scales in order to minimize
the merit function. So, one can restrict the analysis to the large
spatial scales of the divergence only, which are less affected by
neglecting the small-scale corrugations of the τ = 1 layer. Both
for the Wilson depression and for the divergence of the magnetic
field vector, we only considered spatial scales up to maximum
dimensionless wavenumbers kmax and lmax. This decreased the
effective spatial resolution significantly (given by the wavelength
corresponding to the indices kmax and lmax). When using a max-
imum dimensionless wavenumber kmax = lmax = 3, for example,
we retrieved an effective spatial resolution of 14 Mm for the part
of simulation run 2 that is highlighted by the red box in Fig. 1.

We filtered both, the Wilson depression and the magnetic
field vector in Fourier space to include only the information
about large spatial scales. Hence, a map of the large-scale mag-
netic field at a fixed geometric height is affected by the filter-
ing in two ways. Ignoring the small-scale corrugations of the
τ = 1 layer causes an error in the derived magnetic field vector
if the magnetic field varies strongly with height at a given pixel.
Afterward, variations of the magnetic field itself on small spatial
scales were removed. This filtering should remove most of the
errors introduced by neglecting the small-scale corrugations of
the τ = 1 layer.

This assumption can be tested using the simulated sunspots.
We computed maps of all three components of the magnetic field
vector at a fixed geometrical height (200 km above the mean
height of the τ = 1 layer) from simulation run 2 for two dif-
ferent cases. In the first case, we derived the magnetic field on a
grid in geometric height that includes small-scale corrugations of
the τ = 1 surface, in the second case, we neglected corrugations
above a maximum dimensionless wavenumber kmax = lmax = 3.
Afterward, we also removed the signal at spatial scales above
kmax or lmax from the maps of the magnetic field vector. The cor-
relation coefficient between these two sets of maps of the mag-
netic field vector is 0.98 for all three components of the mag-
netic field vector, indicating that the small-scale corrugations of
the τ = 1 surface do not have a strong influence on the large-
scale magnetic field. Using this approach leads to the following
expression for the merit function:

χ2 =
1

NxNy

kmax∑
k

lmax∑
l

|F (∇ · B)|2 (5)

=
1

NxNy

kmax∑
k

lmax∑
l

∣∣∣∣∣∣ikxB̂x + ikyB̂y + F

(
∂Bz

∂z

)∣∣∣∣∣∣2· (6)

Here, B̂x(kx, ky, z) and B̂y(kx, ky, z) are the Fourier transforms
of Bx(x, y, z) and By(x, y, z), respectively. Again, the geometric
height z consists of the relative height above the τ = 1 sur-
face zrel and the Wilson depression zW. We evaluated the merit
function around a fixed reference height zrel and required the
derived Wilson depression to have a mean value of zero. Like
Puschmann et al. (2010), we minimized our merit function using
a genetic algorithm. We ran the genetic algorithm ten times and
used the solution which minimizes the merit function the most.
After running the genetic algorithm, we defined zW = 0 as the

height of the τ = 1 surface averaged over the part of the FOV that
has a distance of at least 7 Mm to the sunspot. This minimum dis-
tance is necessary because the height of the τ = 1 surface can be
depressed in the close surroundings of the sunspot.

Our method relates the magnetic field vector in the quiet Sun
and in the umbra at the same geometric height. This requires
an accurate measurement of the magnetic field vector over a
broad range in height since sunspots have a Wilson depression
of a few 100 km. So, in order to derive reliable estimates of the
Wilson depression, the magnetic field vector retrieved by the
inversion needs to be reliable over a broad range in height around
the reference height zrel. Errors in the inversion occur predomi-
nantly at high optical depths (we did not consider data at heights
zrel < 85 km) and at very low optical depths. We chose zrel to be
as small as possible while ensuring that all inferred heights are
greater than our threshold of 85 km. The inversion also suffers
from systematic errors, such as the assumption of hydrostatic
equilibrium. In the simulation data, this is a good approximation
in granules and in the umbra but not so good in the intergranu-
lar lanes and in the penumbra. Errors occurring on small spatial
scales should have limited influence though, due to our focus on
large spatial scales.

We performed our analysis in Fourier space. This means
that the magnetic field vector and the derived Wilson depres-
sion have periodic boundary conditions when expressing them
in Fourier space. This is a good approximation when the field
of view also contains the surroundings of the sunspot, where the
magnetic field and the Wilson depression are significantly lower
than within the spot.

4.2. Synthetic Hinode data

Figures 5 and 6 show the Wilson depressions derived from syn-
thetic Hinode data for the two simulated sunspots. For compar-
ison, we also show the true values of the Wilson depression for
both spots which were inferred by resampling the MHD cubes
on a grid in optical depth using SPINOR. We set zW = 0 as
the height of the τ = 1 surface averaged over the region of the
FOV that has a distance of at least 7 Mm to the outer boundary
of the penumbra (see dashed black contours in Figs. 5 and 6).
In Table 2, we quantitatively compare the Wilson depression
inferred by our method with the true solution and results from
the pressure method (see Sect. 4.3). We list the maximum
Wilson depression (zW,max) and its average over the umbra (zW,U)
and over the penumbra (zW,PU), both for the full spatial resolution
(referred to as “full res.” in the table) and after degrading it to the
resolution of our method (“filtered” in the table). We also derived
error estimates of the Wilson depression for the umbra (∆zW,U),
the penumbra (zW,PU), and the area outside the sunspot (∆zW,QS).
We derived these errors from maps of the absolute value of the
difference between our solutions and the true Wilson depres-
sion (after degrading it to the spatial resolution of our derived
Wilson depressions). We then defined the errors to be the aver-
age of this difference map over the respective region of the spot.

For spot 1, we computed the Wilson depression only along
a slice across the sunspot to limit the computation time due to
the large number of pixels. Within this slice, the magnetic field
vector is not periodic in the y-direction, in particular the By
component. Since this non-periodic boundary condition would
affect the filtering in Fourier space, we computed the divergence
using the full spatial resolution in the y-direction. However, we
did apply Fourier filtering in the x-direction. We expressed the
Wilson depression in Fourier space, though, in order to reduce
the number of free parameters (kmax = 3, lmax = 1). The main
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Fig. 5. Wilson depression of simulation run 1. Panel A: true Wilson depression, panel B: Wilson depression derived from the inversion. The black
and white contours indicate the outer and the inner penumbral boundary. The dashed black contour shows the region that was used for defining
zW = 0 (distance of at least 7 Mm to the sunspot). Panel C: Wilson depression along a cut across the sunspot (marked by the dashed lines in
panels A and B). Red: Wilson depression derived from synthetic observations, blue: true Wilson depression, black: true Wilson depression filtered
in Fourier space to the same range in wavenumber as the derived solution from the inversion, for direct comparison with the red curve.

differences between our solution and the true Wilson depres-
sion occur on small spatial scales, which we do not consider in
our method. We degraded the true solution to the same spatial
resolution as our derived Wilson depression (black curve in the
bottom panel of Fig. 5) in order to remove the influence of the
differences in spatial resolution. Our derived Wilson depression
is generally in good agreement with the degraded true solution,
but the maximum Wilson depression is ∼100 km larger than the
degraded true solution (see Table 2). The averages of the Wil-
son depression over the umbra and the penumbra are in good
agreement, though. In both cases, the mean absolute difference
between our solution and the true Wilson depression is on the
order of 60 km.

This error estimate is affected both by uncertainties intro-
duced by the inversion of the Stokes parameters and by the sta-
bility of the genetic algorithm. We evaluated the stability of the
minimization by computing the standard deviation of the Wilson
depression inferred by running the genetic algorithm ten times.
The resulting errors (34 km for the maximum Wilson depres-
sion and 17 km for the average over the umbra) are significantly
smaller than the difference between the derived and the true
Wilson depression. This suggests that the error is dominated by
uncertainties in the inversion.

Spot 2 exhibits a very complex Wilson depression in the
umbra with changes of several 100 km on small spatial scales (see
Fig. 6). These small-scale corrugations cannot be resolved by our
method (here we use kmax = lmax = 3). Again, for better compar-
ison, we smoothed the true solution in order to account for this
effect. Afterward, both the maximum Wilson depression and its
averages over the umbra and the penumbra were in good agree-
ment (see Table 2). A remarkable difference between our solu-
tion and the true solution occurs at x ≈ 24 Mm, y ≈ 20 Mm. At

this position, there is a filament stretching to the umbra and the
τ = 1 layer is located a few 100 km higher than in the surrounding
umbra. Our method finds an extremely large Wilson depression
at this location, in contradiction to the true solution. This error in
the derived Wilson depression is probably caused by uncertainties
in the inversion. Along the filament, the magnetic field changes
strongly with height (by up to 2000 gauss over a range of 100 km
at around τ = 1). This height dependency cannot be described
correctly by the inversion. This feature not only affects the
Wilson depression locally but also in the surrounding umbra. This
is because the spatial resolution of our method is very low and
because the Fourier transform is non-local (a perturbation of the
signal at a given point also affects distant points after filtering in
Fourier space). Again, we computed the mean absolute value of
the difference between our derived Wilson depression and the true
solution. The differences are roughly a factor of 1.5 larger than
the ones for spot 1 and much larger than the uncertainty intro-
duced by the genetic algorithm (13 km for the maximum Wilson
depression and 9 km for the average over the umbra), in agree-
ment with the findings from spot 1.

The inferred Wilson depression depends on the parameters of
the merit function. Apart from the Wilson depression, the merit
function (Eq. (6)) depends on the range of spatial scales that is
considered (given by kmax and lmax) and the height above τ =
1 (zrel) where the merit function is evaluated. As stated in the
previous section, the height zrel is a crucial parameter since it
determines, what range in height (and optical depth) is used for
inferring the Wilson depression. We chose the reference height
zrel to be as small as possible while ensuring that all inferred
heights are greater than our threshold of 85 km (350 km for spot
1, 300 km for spot 2). For larger reference heights, the derived
Wilson depression becomes less reliable. We also restrained the
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Fig. 6. Wilson depression of simulation run 2. Panel A: true Wilson depression, panel B: Wilson depression derived from the inversion. The black
and white contours indicate the outer and the inner penumbral boundary. The dashed black contour shows the region that was used for defining
zW = 0 (distance of at least 7 Mm to the sunspot). Bottom row: Wilson depression along cuts across the sunspot (marked by the dashed lines in the
top row). Panel C: a cut along the x-direction, panel D: a cut along the y-direction. Blue: true Wilson depression, black: true Wilson depression
filtered in Fourier space to the same range in wavenumber as the derived solution from the inversion (shown in red).

Table 2. Wilson depression of the three spots that were analyzed in this study.

Spot Method zW,max (km) zW,U (km) ∆zW,U (km) zW,PU (km) ∆zW,PU (km) ∆zW,QS (km)

Simulation 1 True solution (full res.) 719 552 286
True solution (filtered) 606 546 284
Divergence 702 539 58 264 57 22
Pressure (full res.) 598 424 128 163 124 33
Pressure (filtered) 482 418 129 167 118 23

Simulation 2 True solution (full res.) 880 602 253
True solution (filtered) 644 559 252
Divergence 591 478 95 296 81 47
Pressure (full res.) 791 489 115 128 126 34
Pressure (filtered) 548 449 111 130 123 22

AR 10923 Divergence 720 600 195
Pressure (full res.) 742 427 82
Pressure (filtered) 555 414 82

Notes. The first column indicates the spot, the second column the method that was used to infer the Wilson depression. The following columns are
explained in the text in detail.
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solution to low wavenumbers. Larger wavenumbers should be
avoided since in that case the solution for the Wilson depression
is more likely to exhibit an oscillatory behavior, especially in the
quiet Sun.

4.3. Comparison with the pressure method

For comparison, we also derived the Wilson depression by
demanding horizontal force balance between the sunspot and
the surrounding quiet Sun (Martínez Pillet & Vázquez 1993;
Solanki et al. 1993; Mathew et al. 2004). The reduced gas pres-
sure inside the umbra is compensated by the Lorentz force of the
strong magnetic field. After a few assumptions, such as radial
symmetry of the magnetic field vector, no magnetic field in
the azimuthal direction and a negligible Evershed flow (Maltby
1977), this can be expressed as

Pgas(r = a, z) − Pgas(r, z) = B2
z (r, z)/8π + Fc(r, z)/8π. (7)

Here, r = 0 refers to the center of the umbra and r = a to a point
in the quiet Sun. The second term on the right-hand side, Fc is
the curvature integral:

Fc = 2
∫ a

r
Bz(r′, z)

∂Br(r′, z)
∂z

dr′. (8)

Equation (7) can be used to infer the Wilson depression of a
sunspot by comparing the measured total pressure (gas pressure
plus magnetic pressure) at some optical depth with the pressure
stratification of a reference model atmosphere of the quiet Sun
(which extends at least to the depth of the Wilson depression).
The derived Wilson depression depends on the curvature inte-
gral, which cannot directly be inferred from the observations.
Commonly, one assumes Fc = 0 (see e.g., Mathew et al. 2004).

We applied this method to both simulated sunspots. We used
a horizontal average of a quiet-sun region from simulation run
2 as the reference atmosphere and extract the pressure and the
magnetic field from the inversions at τ = 1. The resulting
Wilson depressions are in the range 420−490 km, when aver-
aging over the umbra (see Table 2), in good agreement with
the results from previous studies for Fc = 0, which lay
in the range 400–450 km (Martínez Pillet & Vázquez 1993;
Solanki et al. 1993; Mathew et al. 2004). Figure 7 compares the
Wilson depression inferred from this method for simulation run
2 with our results based on the divergence of the magnetic field
and the true solution.

The pressure method results in a Wilson depression which
is about 110 km smaller than the true value for the simulations.
This suggests that the curvature integral is positive in both spots.
We obtained the curvature integral by assuming that the differ-
ence between the true Wilson depression and the one obtained
from the pressure method is due to the curvature integral
neglected by the pressure method. For the spot in simulation
2, an error in the Wilson depression of 110 km corresponds
to Fc/8π ≈ 2.8 × 105 dyn cm−2 in the umbra. This is about
half of the value of the magnetic pressure in the umbra (4.9 ×
105 dyn cm−2).

The inferred value of Fc/8π is in good agreement with the
curvature integral derived directly from the MHD cube. The
curvature integral depends on height, between z = −700 km
and z = −400 km, Fc/8π varies between 1.5 × 105 dyn cm−2

and 5.9 × 105 dyn cm−2. At greater heights, it becomes negative,
reaching −1.2 × 106 dyn cm−2 at z = −240 km. This change of
sign is caused by the vertical derivative of the radial component
of the magnetic field in Eq. (8). The strength of Br reaches its

maximum at around τ = 1 and decreases toward larger or smaller
heights, causing a change of sign of its vertical derivative.

In the penumbra, the pressure method significantly underes-
timates the Wilson depression (by more than 100 km for the spot
in simulation run 2). This is caused by using only the vertical
component of the magnetic field when estimating the magnetic
pressure. In the penumbra, the magnetic field is predominantly
horizontal, meaning that the magnetic pressure and, hence, also
the Wilson depression is underestimated when using Bz only.

4.4. Real Hinode data: case study of AR 10923

We also tested the performance of our method on the Hinode
observations of AR 10923 (see Fig. 8 and Table 2). Again, we
used a maximum dimensionless wavenumber kmax = lmax = 3,
which corresponds to an effective spatial resolution of ∼19 Mm
in the x-direction and ∼21 Mm in the y-direction. The result-
ing Wilson depression looks similar to the one of the simulated
spots, although the average Wilson depression is by ∼40 km
deeper. It displays two distinct local maxima, where the Wilson
depression exceeds 700 km. These maxima occur in regions with
strong magnetic field (see top row of Fig. 4). These two regions
are separated by a filament, along which the Wilson depression is
reduced by ∼60 km. The Wilson depression smoothly decreases
from the center of the umbra toward the outer penumbral bound-
ary. The height of the τ = 1 surface is more or less constant
outside the sunspot, which is to be expected at the large spatial
scales considered here.

Unfortunately, we could not derive a reliable estimate of the
error of the Wilson depression for this spot. As found from the
simulated spots (Sect. 4.2) the main errors in zW arise from
uncertainties in the inversions. Obtaining the errors in inverted
values is never straightforward, also from the spatially cou-
pled inversion scheme of van Noort (2012) and van Noort et al.
(2013), which was used to invert this spot. We expect that the
uncertainty is similar to or larger than for the synthetic data (i.
e., roughly 95 km or larger).

The Wilson depression derived using the pressure method
(see Fig. 8 and Table 2) is significantly smaller (by about
180 km) than the one based on our method, suggesting that
the curvature integral is positive in this spot, as well. Assum-
ing the zW deduced via the divergence method to be correct,
we retrieved Fc/8π ≈ 4.21 × 105 dyn cm−2. This is higher than
the pressure from the vertical component of the magnetic field
(3.5 × 105 dyn cm−2) in the umbra at τ = 1. The high value of
Fc of AR 10923 is consistent with typical values found in other
spots, while the results for the simulated spots are lower than
what has been reported before. Solanki et al. (1993) estimate the
curvature integral to be within the range 3.5 × 105 dyn cm−2 .
Fc/8π . 1.6 × 106 dyn cm−2 for the sunspot that they studied.
The value we found lies within this range.

5. Discussion

We could successfully reproduce the Wilson depression of two
simulated sunspots by minimizing the divergence of the mag-
netic field. We also applied this method to a sunspot observed
with Hinode (AR 10923) and derived a Wilson depression that is
consistent with the results statistically provided by some stud-
ies of the Wilson effect (∼600 km, Gokhale & Zwaan 1972).
Our results suggest that the pressure due to the vertical com-
ponent of the magnetic field and the curvature integral con-
tribute by a similar amount to the horizontal force balance
within sunspots, as has already been suggested by previous
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Fig. 7. Comparison of the Wilson depression derived from the divergence method and the pressure method for synthetic Hinode data generated
from the simulation run 2. Panel A: Wilson depression derived using the pressure method and panel B: Wilson depression derived using the
divergence of the magnetic field (the same image as shown in panel B in Fig. 6). The black and white contours indicate the outer and the inner
penumbral boundary, respectively. The dashed black contour shows the region that was used for defining zW = 0 (distance of at least 7 Mm to the
sunspot). Bottom panels: Wilson depression along cuts across the sunspot (marked by the dashed lines in the top panels). Panel C: a cut along the
x-direction, panel D: a cut along the y-direction. Blue: true Wilson depression (zW), red: Wilson depression derived using the divergence method
(zW,d), black: Wilson depression inferred from the pressure method (zW,p), green: Wilson depression inferred from the pressure method degraded
to the spatial resolution of the divergence method (zW,p,filt).

investigations (Martínez Pillet & Vázquez 1993; Solanki et al.
1993; Mathew et al. 2004). The Wilson depression of the
sunspot simulations by Rempel (2012, 2015) is smaller by
∼50 km than the one of AR 10923. In the simulated spots, the
curvature integral is significantly lower than the pressure due to
the vertical component of the magnetic field, leading to a lower
Wilson depression. This might be caused by the different geom-
etry of the simulated spots compared to AR 10923 (see Table 1).
The simulated spots exhibit a slightly stronger magnetic field but
they are significantly smaller than the AR 10923 spot.

The main limitation of our method is that it requires a reli-
able inversion of the full magnetic field vector over a broad range
in height. In the umbra, our method requires an estimate of the
magnetic field up to ∼800 km above the τ = 1 surface. The lines
used in this study are not very sensitive at these height and so, the
magnetic field is predominantly extrapolated from lower layers.

Observations of multiple spectral lines with a broad range of
formation heights are needed in order to retrieve a better inver-
sion (as is planned, e.g., with the upcoming Sunrise III mission).
Systematic errors also arise from the assumption of LTE and
hydrostatic equilibrium in the inversion, although these are likely
small compared with the uncertainty resulting from the inver-
sions. Also, modeling the height dependency of atmospheric
parameters with splines is not always a good representation of
the true atmosphere, especially when there are strong gradients
with height. In addition, the 180◦-ambiguity of the Zeemann-
effect needs to be resolved accurately across the entire spot at
all optical depths. Fortunately, some of these inaccuracies of the
inversion occur on small spatial scales, so that their influence on
large spatial scales should be limited. For example, as shown in
Sect. 4.1, neglecting the small-scale corrugations of the τ = 1
layer has only a small influence on the large-scale divergence of
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the magnetic field. A detailed determination of the errors in the
spatially coupled inversion is beyond the scope of this paper. We
therefore use the tests made with the synthetic data as a rough
guide to the total error.

The Wilson depression derived from the synthetic Hinode
data exhibits an error on the order of ∼95 km. In case of real
observations, the error is probably somewhat higher. The syn-
thetic data were generated using the same radiative transfer code
and the same line parameters as were used for the inversion.
Hence, the inversion of the synthetic data is likely to be more
accurate than for real observations. Bearing these arguments in
mind, we assign a preliminary error of 100 km to the Wilson
depression derived from the Hinode observations.

The estimated error of our method is mainly statistical in
nature. Any systematic component is significantly lower than the
one of the Wilson effect or of the pressure method. As explained

in the introduction, the values of the Wilson depression derived
using the Wilson effect vary by more than 1000 km between dif-
ferent studies in a systematic manner. In case of the pressure
method, the inferred Wilson depression depends on the assumed
value of the curvature integral.

Our method is limited to the large-scale corrugations of the
τ = 1 surface. Measuring the Wilson depression with a higher
spatial resolution requires including more Fourier coefficients
in the Fourier series of the Wilson depression, which affects
the minimization of the merit function. In addition, the diver-
gence of the magnetic field is dominated by the largest spatial
scales. When evaluating the divergence of the magnetic field for
AR 10923 on a corrugated grid in geometrical height (300 km
above τ = 1 at each pixel), 76% of the total variance of the
divergence of the magnetic field occur within the range of spa-
tial scales that we considered in Sect. 4.4 (kmax = lmax = 3).
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Hence, the merit function is not very sensitive to smaller spatial
scales, at least when considering entire sunspots.
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