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Magnetic activity of the Sun and other stars causes their brightness to vary.

We investigate how typical the Sun’s variability is compared to other solar-like

stars, i.e. those with near-solar effective temperatures and rotation periods.

By combining four years of photometric observations from the Kepler space

telescope with astrometric data from the Gaia spacecraft, we measure pho-

tometric variabilities of 369 solar-like stars. Most of the solar-like stars with

well-determined rotation periods show higher variability than the Sun and are

therefore considerably more active. These stars appear nearly identical to the

Sun, except for their higher variability. Their existence raises the question of

whether the Sun can also experience epochs of such high variability.

Stars like the Sun have a magnetic field in their interiors, driven by a self-sustaining dynamo

process (1). When the magnetic field becomes unstable it can emerge from the stellar surface,

leading to the appearance of magnetic features, such as bright faculae and dark starspots. As
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stars rotate, the transits of these magnetic features across their visible surface, and the tempo-

ral evolution of these features, lead to stellar brightness variations. Such variations have been

extensively studied for the Sun (2), where they have an amplitude of up to 0.3% of the sun-

light integrated over the entire spectrum, i.e., the total solar irradiance (TSI). Solar variability

affects Earth’s climate on decadal and longer timescales (3), and Earth’s atmospheric chemistry

on daily and monthly timescales (4). Sufficiently precise solar brightness measurements have

only been available since the advent of dedicated spaceborne missions in 1978 (5). Records of

sunspot areas and positions can be used to reconstruct brightness variations back to 1878 (6).

Sunspot counts, the longest record of regular observations of solar magnetic activity, extend

back to the onset of telescopic observations around the year 1610 (7). Solar activity can be

reconstructed over longer periods, up to 9000 years, from cosmogenic isotopes (8).

We take an alternative approach, by comparing the Sun’s activity to other solar-like stars

(9,10). Stellar magnetic activity and photometric variability are strongly correlated (e.g., (11)).

The same applies to the Sun, for which there is a close correlation between proxies for solar

magnetic activity and photometric variability (12,13). There is an ongoing debate whether solar

photometric variability is smaller than the variability of other stars with near-solar effective

temperatures and a similar level of magnetic activity (10, 14, 15). With the advent of planet-

hunting missions, in particular the Kepler space telescope (16), this topic enjoyed a new lease

on life. For example, the Sun has been found to be photometrically quieter than most of the

stars observed by the Kepler space telescope (17). In contrast, the TSI has a similar level of

variability compared to a sample of main-sequence stars with near-solar (and lower) effective

temperatures in the Kepler field (9). Those studies could not constrain their samples to near-

solar rotation periods, due to a lack of available measurements. This may have affected their

results, because the stellar rotation period and effective temperature are related to the action of

the dynamo, and therefore the level of magnetic activity (1).
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To compare solar photometric variability with other stars, we focus on Kepler observations

of main-sequence stars with near-solar fundamental parameters and rotation periods. The stellar

fundamental parameters we consider are the effective temperature Teff, surface gravity log g,

and metallicity [Fe/H] (18, 19). We adopt a parameter catalog (19) that is based on Kepler

data release 25 (DR25). Rotation period measurements are available for thousands of stars

observed during the Kepler mission (20,21). We adopt a catalog of 34,030 stars with determined

rotational periods, and 99,000 stars for which no rotation periods were detected [ (21), their

tables 1 and 2]. We refer to these as the ”periodic” and the ”non-periodic” samples. From both

samples we select stars with effective temperatures in the range 5500–6000 K (the value for the

Sun (subscript �) is Teff,� = 5780K) and surface gravities log g > 4.2 (Sun: log g� = 4.44)

to focus on solar-like main-sequence stars. The surface gravity cut removes evolved stars,

which are inactive, so may have diluted the variability of solar-like stars found in previous

analyses (21). For the periodic sample, we select rotation periods in the range 20–30 days (Sun:

Prot,� = 24.47 days sidereal rotation period).

We further restrict the samples using astrometric data from the Gaia spacecraft (22). Using

the sample stars’ apparent magnitudes, distance measurements (23), and interstellar extinctions

from Gaia data release 2 (Gaia DR2 (24)), we construct a Hertzsprung-Russell diagram (HRD)

by computing the absolute Gaia G-band magnitudes MG (Fig. 1). The absolute magnitudes of

our samples are restricted by selecting stars from the HRD with near-solar ages between 4–

5 Gyrs (Sun: 4.57 Gyr) and metallicities in the range -0.8 dex to 0.3 dex. This is realized by

fitting isochrones (i.e. evolutionary tracks of constant age (13)) to the HRD, and then selecting

periodic and non-periodic stars between a lower isochrone of 4 Gyr and metallicity of [Fe/H] =

−0.8, and an upper isochrone of 5 Gyr and metallicity of [Fe/H] = 0.3 (Fig. 1A-B). Stellar

variability depends only weakly on metallicity (13), so a stricter metallicity constraint does not

affect our results; we therefore use this broad range to improve the statistics. The Sun is slightly
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more luminous than the majority of selected periodic and non-periodic stars (Fig. 1), because

79% of these stars have metallicities lower than the solar value.

We consider stars in our periodic sample to be solar-like, i.e. they have near-solar fundamen-

tal parameters and rotation periods. The non-periodic stars are considered only pseudo-solar,

because their rotation periods are not known. We then discard stars fainter than 15th magni-

tude (in the Kepler band) due to their high noise level, which could mask the stellar variability.

After applying all these selection criteria, our final samples contain 369 solar-like stars with

determined rotation periods, and 2529 pseudo-solar stars without a detected period.

To quantify the magnetic activity of the Sun and the selected stars, we compute their pho-

tometric variability using the variability range Rvar. This quantity is defined as the difference

between the 95th and 5th percentile of the sorted flux values (normalized by its median) in a

light curve (i.e. the temporal record of the stellar flux) (25). Our Rvar values are based on the

Kepler Presearch Data Conditioning (PDC) and maximum a priori (MAP) detrended data (26).

We selected the PDC-MAP data after considering how the different Kepler data products may

affect our results (13).

We found that Rvar in the periodic sample shows a weak dependence on effective tempera-

ture, rotational period, and metallicity (Fig. S8), even though these were constrained to narrow

ranges by our selection criteria. We therefore corrected the Rvar measurements of the peri-

odic stars for these dependencies, and normalized them to the values of the solar fundamental

parameters using a multivariate analysis (13). For 4 of the 369 periodic stars, this process re-

turned negative Rvar values, indicating an over-correction. Those 4 stars were discarded. For

the non-periodic sample, Rvar does not correlate with the fundamental parameters (Fig. S9), so

no correction was applied.

Fig. 2 shows three example stellar light curves and solar TSI data (13) taken at the same

epoch as the Kepler observations. TSI data have been demonstrated to be suitable for the
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direct comparison with variability observed in the Kepler passband (9, 13). While the star

KIC 10449768 exhibits variability that is similar to the maximum observed solar variability

(13), the other three stars in Figure 2 have much higher variability.

Figure 3 shows the distribution of Rvar for the Sun, the periodic stars, and a composite

sample of the periodic and non-periodic samples combined. To compare the Sun with the stars

observed by Kepler, we simulated how it would have appeared in the Kepler data by adding

noise to the TSI time series (Fig. S7). The variability range was then computed for 10,000

randomly selected 4-year segments from ∼140 years of reconstructed TSI data (13).

The activity distribution of the composite sample (Fig. 3) does not separate into distributions

of periodic and non-periodic stars, but appears to represent a single physical population of stars.

Fitting an exponential function y = a0 10
a1Rvar to the variability distribution of the (corrected)

composite sample with Rvar > 0.2% yields a0 = 0.14 ± 0.02 and a1 = −2.27 ± 0.17. The

subsample of periodic stars mostly populates the high variability portion of the full distribution

in Figure 3, whereas the low variability portion mostly contains stars from the non-periodic

sample. The solarRvar distribution is consistent with the majority of low-variability stars, in line

with previous studies (9). Determining the solar rotation period from photometric observations

alone is challenging (27–29). Consequently, the Sun would probably belong to the non-periodic

sample if it were observed by Kepler, and we find that the level of solar variability is typical

for stars with undetected periods (Fig. 3). The Sun would appear as a rather normal star of

the non-periodic sample if it had been observed with Kepler. However, our composite sample

contains stars that might have quite different rotation periods, even though they have near-solar

fundamental parameters.

In contrast, the variability of stars in the periodic sample has a different distribution. While

there are some periodic stars with variabilities within the observed range covered by the Sun, the

variability amplitude for the majority of periodic stars lies well above the solar maximum value
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of the last 140 years. Consequently, most of the solar-like stars that have measured near-solar

rotation periods appear to be more active than the Sun. The variability of the periodic stars at

the solar effective temperature, rotation period, and metallicity isRvar = 0.36% (Fig. S8), which

is about 5 times higher than the median solar variability Rvar,� = 0.07%, and 1.8 times higher

than the maximum solar value Rvar,� . 0.20%. All these stars have near-solar fundamental

parameters and rotational periods, so this implies that their values do not uniquely determine

the level of any star’s magnetic activity. This result is consistent with the detection of flares

with energies several orders of magnitude higher than solar flares (i.e., superflares) on other

solar-type stars (30, 31).

We suggest two interpretations of our result. First, there could be unidentified differences

between the periodic stars and non-periodic stars (like the Sun). For example, it has been

proposed that the solar dynamo is in transition to a lower activity regime (32,33) due to a change

in the differential rotation inside the Sun. According to this interpretation, the periodic stars are

in the high-activity regime, while the stars without known periods are either also in transition, or

are in the low-activity regime. The second possible interpretation is that the composite sample

in Fig. 3 represents the distribution of possible activity values the Sun (and other stars with near

solar fundamental parameters and rotational periods) can exhibit. In this case, the measured

solar distribution is different only because the Sun did not exhibit its full range of activity over

the last 140 years. Solar cosmogenic isotope data indicate that in the last 9000 years the Sun has

not been substantially more active than in the last 140 years (8). There are several ways for this

constraint to be reconciled with such an interpretation. For example, the Sun could alternate

between epochs of low and high activity on timescales longer than 9000 years. Our analysis

does not allow us to distinguish between these two interpretations.
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Figure 1: Hertzsprung-Russell diagrams of our samples. The periodic (A) and non-periodic
(B) samples (21) (McQ14) are shown in dark green, and the stars that meet our selection criteria
are overplotted in blue. The solid black line is a 4 Gyr isochrone with a metallicity [Fe/H] =
−0.8, and the dashed black line is a 5 Gyr isochrone with a metallicity [Fe/H] = 0.3. The Sun
is indicated by a black star.
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Figure 2: Light curves of the Sun (A) and three stars from the periodic sample (B-D).
(A) Solar TSI data taken at the same epoch as the Kepler observations. The TSI data were
detrended by cutting the 4-year time series into 90-day segments, dividing by the median flux
and subtracting unity. (B-D) Three examples of stars with different variabilities. The variability
rangesRvar are indicated by the differences between the horizontal red lines before (dashed) and
after (solid) correction for the variability dependence on the fundamental parameters. The solid
orange lines in (A) mark the maximum solar variability range (Fig. 3 and (13)). The panels have
different y-scales.

8



Figure 3: Solar and stellar variability distributions on a logarithmic scale. The distributions
of the variability range Rvar are plotted for the composite sample (black), the periodic sample
(blue), and the Sun over the last 140 years (green). Error bars indicate the statistical uncertain-
ties
√
N for the number of stars in each bin, N , for the composite and the periodic samples.

The yellow line shows an exponential model a0 10a1Rvar fitted to the variability distribution of
the (corrected) composite sample (Rvar > 0.2%, solid line) and its extrapolation to low variabil-
ities (Rvar < 0.2%, dashed line). The solar distribution was normalized to the maximum of the
composite sample. The first and last bins of the solar distribution were reduced in width to stop
at the minimum and maximum values of solar variability over the last 140 years, respectively.
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Materials and Methods

Isochrones

Isochrones are evolutionary tracks of constant age along the HRD. We used PARSEC mod-

els (34–44) to fit the isochrones to the HRD in Fig. 1 (http://stev.oapd.inaf.it/

cgi-bin/cmd). The position of the isochrone in the HRD depends on metallicity, i.e. the

stellar brightness increases with metallicity. To restrict the samples to solar-like stars we se-

lected stars that are confined between a lower isochrone of 4 Gyr and metallicity of [Fe/H] =

−0.8 dex, and an upper isochrone of 5 Gyr and metallicity of [Fe/H] = 0.3 dex. The chosen

metallicity range is consistent with the catalog metallicities (19).

Kepler data processing

Kepler data are released in ”quarters” spanning ∼90 days. For each quarter the data were pro-

cessed through a series of pipelines which can produce systematic effects which could create

artificial signals of the amplitude considered here. Kepler records data for each star in typically

20-30 pixel ”postage stamp” regions for which photometry is stored at 30-minute cadence. In

producing light curves, a subset of these pixels, typically 4-6 in number, are summed to cre-

ate Simple Aperture Photometry (SAP) time series light curves. These regions are similar in

size to the stellar point spread function (PSF), so any small changes in the telescope point-

ing or temperature which affect the PSF shape or position will affect the amount of light that

falls in the aperture. Typically these signals are dominated by the apparent movement of stars

through differential velocity aberration (DVA) (45) which produces a smooth, consistent varia-

tion throughout an observing quarter.

These long-term trends can be mitigated. The effects of shared systematics across the de-

tector can be removed by regression fitting of shared signals on nearby targets. This method
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is the basis for the Kepler Pre-Search Data Conditioning (PDC) pipeline. The pipeline, while

removing DVA-induced long-term trends, also can remove astrophysical long-term trends that

are similar in length to the observing quarter (26, 46).

We primarily used the PDC pipeline as produced by the Kepler team (26). We tested ver-

sions of the software from 8.0 to 9.2 in the analysis. The largest change between versions is

that versions 9.0 and later use a PDC multi-scale Maximum a priori approach (PDC-msMAP),

which applies a wavelet transform to separate the data into three channels which are indepen-

dently treated for systematics (47). By separating the shared systematics by frequency, this

pipeline reduces the risk of underfitting and performs better at separating astrophysical from

instrumental signals. We find systematically larger Rvar values at the ∼ 10 − 20% level when

using version 8.3 of the pipeline than when using version 9.1. Fig. S1 shows a comparison be-

tween the computed Rvar values for the two pipeline versions, and Fig. S2 shows the variability

distribution using version 9.1 of the pipeline.

We compare the two pipelines and verify that the signals are not instrumental in nature

by returning to the pixel-level data. As long-term systematics are driven by the movement of

the star relative to the aperture, astrophysical signals should not be strongly dependent on the

size of the photometric aperture while instrumental signals should be. For a test subsample

of 13 randomly selected stars, each about twice as active as the Sun, we built a series of new

photometric apertures and measured the brightness of the star over time for each aperture. While

the long-term trends in the data vary with aperture, for each case we saw by eye a photometric

signal which is not a function of aperture, and is therefore shared on all pixels across the image

of the star on the detector. In all of these cases, the signals are consistent in amplitude with

that recovered from the PDC pipeline, so must be astrophysical and associated with the star in

question rather than instrumental.

In comparing the light curves with different apertures, we searched for signals which are
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largely invariant to aperture size, unlike the effects of differential velocity aberration which

tend to move a star into or out of its targeted aperture. We used this series of light curves to

estimate the true astrophysical variability and compared it to the PDC-MAP and PDC-msMAP

light curves. We find the PDC-msMAP light curves at times overcorrect stellar variability.

However, the PDC-MAP light curves are often undercorrected and contain additional long-term

trends over a month of observations. Examples of these are shown in Fig. S3. These more

often also contain variability induced by thermal variations as the spacecraft returns to thermal

equilibrium after a data downlink. Therefore, in many cases the true level of astrophysical vari-

ability appears to be lower than presented in the PDC-MAP light curve but higher than in the

PDC-msMAP light curves.

Background stars

To exclude possible contamination of the variability distribution by undetected background

stars, which could be several times fainter than the main target but exhibit high intrinsic vari-

ability, we searched the Gaia DR2 catalog (24) for sources within a 4 arcsec radius around

the location of each target in our sample. This radius corresponds to the scale of the pixels

in the Kepler focal plane. Depending on the star, this search returns up to five different Gaia

sources (including the target itself). We have selected stars brighter than 15th magnitude (in

the Kepler band), while Gaia is limited to 21th magnitude, so we expect the Gaia catalog to be

complete down to magnitudes much fainter than the main target. The median brightness of stars

in our periodic sample is 14.5 mag, while the median brightness of nearby background stars is

18.6 mag.

To determine whether the high variability regime in the Rvar distribution is more affected

by background stars, we compared the number of stars with more than one Gaia source for

variabilities above and below Rvar = 0.2%: we found that 10.3% of the stars with Rvar > 0.2%

3



and 11.4% of the stars with Rvar < 0.2% have more than one background source. Because the

above numbers are similar, we can exclude that the high variability tail results from unresolved,

highly-variable backgrounds stars because this would have affected both samples.

Typical Kepler apertures used by the pipeline in the production of light curves for stars in

our sample use data from 4-6 pixels, depending on the brightness of the star (48). These aper-

tures change from observing quarter to quarter based on the orientation of the telescope and

properties of the instrument channel. Our analysis allows us to directly exclude contamination

from background stars in the inner part of the aperture for nearly 90% of the foreground stars.

Contamination of the stellar variability coming from the outer part of the aperture would be

substantially larger in some quarters than others, leading to rapid, sudden changes in the ob-

served variability on quarterly timescales and with yearly periodicity. We do not detect this

effect in our Rvar data, which provides us with confidence that the observed variability is due to

the sample stars.

For one target in the test subsample, KIC 9210546, there is another target of approximately

equal brightness in the photometric aperture (KIC 9210535), which could be the cause of the

rotation signal. We modeled the PSF of both stars on the detector using the PSF photometry

fitting tools in the eleanor software package (49), which enables us to separate the contribu-

tions of the two stars. We find that the 0.47% variability is associated with the target star rather

than the nearby companion.

Uncertainties in the effective temperatures

Most of the effective temperature values from photometry have uncertainties of about 150–

200 K (19), which are too small to impact our analysis. The periodic stars make only 12.7% of

our sample and the number of highly variable stars (i.e. Rvar > 0.4%) is about 5%. Hence, it

is possible that the color-based algorithm (19) failed for highly variable stars and erroneously
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attributed them to the 5500–6000 K temperature bin, while in fact being much cooler and thus

generally more variable.

To exclude this scenario we considered temperatures determined from low-resolution spec-

tra, taken from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST)-

Kepler database (50). This contains LAMOST temperatures for 123 periodic stars from our

sample and 836 non-periodic stars. The comparison between both sets of temperatures is shown

in Fig. S4 for the periodic and non-periodic stars. The LAMOST spectroscopic temperatures

appear to be systematically lower (by roughly 200 K) than those from photometry (19) for both

the periodic and non-periodic samples. A similar offset has been found between the photometric

temperatures (19) and those in the original Kepler Input catalog (KIC) (51). The photometric

temperatures (18, 19) were recalibrated to the infrared flux method (IRFM, (52)) temperature

scale using a revised color-temperature-metallicity relationship (53). The IRFM scale has been

calibrated against solar twins and the Sun with an accuracy of a few tens of Kelvin [ (53), their

table 7]. Consequently, the photometric temperature scale (19) should be used for selecting

stars with near-solar effective temperatures.

There is no systematic offset between the periodic and non-periodic stars (Fig. S4). The

mean temperature offset between LAMOST and photometric (19) temperatures is 168 K for

the periodic and 189 K for the non-periodic stars. Among the periodic stars, the offset does

not show a specific dependence on the variability. For example, the mean offset for the 74

periodic stars with Rvar < 0.4% is 161 K, while the mean offset for the 49 periodic stars with

Rvar > 0.4% is 177 K. We conclude that the LAMOST data indicate there is no systematic tem-

perature shift between the periodic and non-periodic stars.

Solar Rvar estimation

Solar photometric variability has been shown to correlate well with other proxies of solar
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magnetic activity (12). We quantify stellar photometric variability by the variability range

Rvar (25, 54). The Kepler light curves were rebinned from 30-minute to 3-hour cadences, and

cleaned of outliers by discarding all data points deviating by more than six times the median

absolute deviation. For a given star, the variability range was calculated for each quarter in-

dividually. To account for instrumental trends in certain quarters, we adopt the median of all

quarters (numbered Q0–Q17) as a measure of variability over the total observing time span of

4 years.

The photometric variability of the Sun was computed in a similar way. Fig. S5A shows

consecutive 90-day averages of the solar surface sunspot area (55), which is a direct measure of

magnetic activity. Fig. S5B shows the variability range Rvar, 90d computed from contemporane-

ous 90-day segments of the full ∼140 years time series of the reconstructed TSI data from the

Spectral And Total Irradiance REconstruction (SATIRE-T2) model (6), and 20 years of the ob-

served TSI data taken by the Variability of solar IRradiance and Gravity Oscillations (VIRGO)

experiment (56). The variability range strongly correlates with the total sunspot coverage: both

quantities are in phase and vary with the 11-year solar cycle. The reconstructed TSI data end

in November 2008, while the measured TSI data are taken until March 2016. Fig. S5B shows

the variability range Rvar, 4yr, which is calculated exactly as the Kepler Rvar values: each 4-year

segment is divided into sub-segments of 90 days, and the median of all individualRvar, 90d values

is taken as the Rvar, 4yr value.

TSI variability is not exactly equivalent to the solar brightness variability as it would be

observed in the Kepler passband. The Sun is observed from near its equatorial plane (the an-

gle between the solar equator and the ecliptic is ∼ 7.25◦) while stars are observed at random

inclinations (i.e. the angle between the line-of-sight direction of the observer and the stellar

rotation axis). We employed the SATIRE-based model (57) to determine whether these two

factors affect our analysis. We found that solar Rvar values in the Kepler passband are approx-
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imately 10% larger than those obtained from TSI. Inclination-averaged solar Rvar values are

15%-20% smaller than those obtained from observations made from the solar equatorial plane.

By simultaneously neglecting both, we overestimate solar variability by less than 10%. Because

the effect is small and because TSI represents an upper limit on the true solar variability in the

Kepler passband, we used the original VIRGO TSI data and the TSI reconstruction, avoiding

any correction for passband and inclination.

To compare solar variability to that of the stars in our samples, we simulate how the Sun

would appear if it was observed as a star of a given magnitude. The photometric precision

achieved by the Kepler telescope strongly depends on the apparent magnitude of the observed

stars. Fig. S6 shows the dependence of the (logarithm of the) variability range logRvar on

apparent magnitude in the Kepler band (Kp) for the periodic and non-periodic samples. We

fitted a linear model to the data, finding

log10Rvar = −4.507(±0.012) + 0.215(±0.001) ·Kp (S1)

for the minimum values of log10Rvar for stars fainter than 14th magnitude. This indicates the

photometric precision of Kepler, defining an empirical lower limit for the detectability of pho-

tometric brightness changes at a given magnitude.

To treat the Sun as a Kepler star, we ran a Monte-Carlo simulation selecting noise time series

corresponding to random magnitudes between 10–15 mag. The random magnitudes used in the

simulation are distributed in the same way as the sample magnitudes themselves, which contain

many more faint stars (see Fig. S6). Consequently, many more runs are conducted with noise

levels corresponding to fainter magnitudes. We then added a time series of Gaussian-distributed

photon noise with standard deviation σ to the TSI data. σ was chosen to be appropriate to the

magnitude picked by the Monte-Carlo simulation. The noise level σ is linked to the computed

Rvar values in Eq. S1 as follows. The metricRvar is computed by cutting the upper and lower 5%
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of the sorted intensities and taking the difference between the maximum and minimum value of

the middle 90% of the data. Assuming Gaussian-distributed noise with zero mean and standard

deviation σ, 90% of all data points are contained within ±1.645σ around the mean value, so

Rvar = 3.29σ.

The noise floor given by Eq. S1 is consistent with noise estimates for solar-like stars (17).

Those authors used the standard Kepler noise metric, the combined differential photometric

precision (CDPP) given in parts per million (ppm) instead of Rvar [ (17), their figure 4]. Given

a star with 14th magnitude, those authors binned the data to 6.5-hour cadences and estimated a

noise log[CDPP (ppm)] ≈ 1.7. Transferring this noise value to Rvar yields Rvar(3h,Kp =

14mag) = 101.7 ·
√

6.5h/3h · 3.29 ≈ 243 ppm. Using Eq. S1 we find Rvar(3h,Kp =

14mag) = 318 ppm. For a star with 15th magnitude, (17) found Rvar(3h,Kp = 15mag) =

386 ppm, and Eq. S1 yields Rvar(3h,Kp = 15mag) = 523 ppm.

We conducted 10,000 Monte-Carlo runs to compute the variability rangeRvar, 4yr of the noisy

Sun. Fig. S7A showsRvar, 4yr measurements for 10,000 randomly chosen 4-year segments of the

noise-free TSI data against contemporaneous observations of sunspot areas. These are the same

measurements which are shown in Fig. S5B. Fig. S7 indicates the close connection between the

magnetic activity and the brightness variability of a star. There is also a hysteresis pattern, sim-

ilar to those found in previous analyses (12), by comparing the photometric variability metric

Sph (58) to different proxies of solar magnetic activity. The data can be fitted with a power law

function Rvar, 4yr = 0.0024(±0.0007) + 0.00045(±0.00003) ·A0.74(±0.01)
s , where As denotes the

spot area. The distribution of the residuals, shown in Fig. S7A, is Gaussian. This shows that the

scatter in Rvar, 4yr does not strongly depend on different levels of magnetic activity (as given by

the spot area).

Fig. S7B shows the same dependence for the noisy Sun. The Rvar, 4yr values are offset by

the magnitude-dependent noise σ. The noise increases with increasing magnitude, with greater
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affect on smaller values of Rvar, 4yr. The (normalized) distribution of these noisy Rvar, 4yr mea-

surements of the Sun is shown in Fig. 3 and Fig. S2.

Dependence of Rvar on the fundamental parameters

Fig. S8 shows the variability range as a function of Teff, Prot, [Fe/H] for the periodic sample. We

find that Rvar increases with decreasing effective temperature and rotation period (Fig. S8A-B),

with a tendency to increase further towards lower temperatures and shorter rotation periods. Rvar

increases with metallicity (Fig. S8C). The increase ofRvar with decreasing effective temperature

and rotation period is consistent with the known relation between magnetic activity and the

Rossby number, i.e., the ratio between the rotation period and the convective turnover time. The

Rossby number decreases for faster rotation rates and smaller values of effective temperatures,

and consequently the magnetic activity increases (59). The observed trend with increasing

metallicity is harder to explain. It might be connected with the effect of metallicity on the

brightness of stellar magnetic features (15), or might depend on the action of the stellar dynamo

(60). We fitted the data with a multivariate linear regression

Rvar(%) = Rvar,0 + a1 (Teff − Teff,�) + a2 (Prot − Prot,�) + a3 ([Fe/H]− [Fe/H]�), (S2)

where the coefficients are given by Rvar,0 = 5.7981 ± 0.3422, a1 = −0.0008 ± 0.0001, a2 =

−0.0383± 0.0029, and a3 = 0.3471± 0.0331 and the solar values are Teff,� = 5780K, Prot,� =

24.47 d, and [Fe/H]� = 0. Although the dependencies on the fundamental parameters are

rather weak, they might distort the variability distribution. Thus, the multivariate linear model

is subtracted from the measured variabilities, and the variability range is referred to as the

”corrected” Rvar in Fig. 3.

In contrast to the periodic sample, the variability range of stars with unknown rotation period

does not show a dependence on effective temperature or metallicity (Fig. S9). This might be
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attributed to, e.g., the absence of active regions on their surfaces, a geometrical effect (e.g. solar

Rvar values decrease when the observer moves out of the solar equatorial plane (61)), or a lower

signal-to-noise ratio masking the dependencies seen for the periodic sample. A multivariate

analysis was not carried out in this case, due to the lack of knowledge on the rotation period,

whose substantial influence cannot be removed.

Fig. S10 shows the impact of this correction on the variability distributions of the corrected

and uncorrected Rvar values. As mentioned above, the dependencies of Rvar on the fundamental

parameters are weak for the periodic stars, and minor for the non-periodic stars. Hence, the

impact of the correction on the composite sample is rather small. Adding noise to the TSI data

shifts the distribution of Rvar to higher values.
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Figure S1: Data comparison among different pipelines. Comparison between Rvar values
calculated using the PDC-MAP and PDC-msMAP pipelines. The black line indicates a 1:1
relationship.
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Figure S2: Stellar variability distribution obtained using a different pipeline. Same as
Fig. 3 but using the PDC-msMAP pipeline.
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Figure S3: The effect of different data reduction pipelines. Sample light curves for three
high variability stars, with KIC ID numbers listed in each panel. The photometry is taken
from the PDC-msMAP data (purple curves), PDC-MAP data (dark green curves), and after
our aperture selection and long-term systematics removal by searching for variability shared
across different aperture choices (light green curves). In each case, the overall magnitude of the
variability estimated in our pipeline is larger than from the PDC-msMAP pipeline but less than
the PDC-MAP pipeline. In many cases, PDC-msMAP appears to remove true variability, while
PDC-MAP tends to undercorrect instrumental long-term trends in the data.
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Figure S4: Effective temperature differences between photometric and spectroscopic cata-
logs. Comparison between photometric effective temperatures (19) and spectroscopic effective
temperatures (50). Yellow and purple dots show the non-periodic and periodic stars, respec-
tively, and the yellow and purple lines are the corresponding binned values. The black line
indicates a 1:1 relationship.
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Figure S5: 140 years of solar activity data. (A) Spot area coverage of the solar surface.
(B) Variability range Rvar, 90d calculated over the 90-day intervals of the observed (blue) and
reconstructed (black) total solar irradiance (TSI) time series. The solid green line shows the
variability range Rvar, 4yr calculated as median of all Rvar, 90d values over the 4-year interval of
the noise-free TSI time series (see Fig. S7A).
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Figure S6: Precision of the Kepler data. Dependence of the variability range log10Rvar on ap-
parent magnitudeKp (in the Kepler band) of the periodic (purple) and the non-periodic (yellow)
samples. The dashed black line marks our derived empirical noise floor.
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Figure S7: Photometric vs. magnetic activity. (A) Variability rangeRvar, 4yr plotted against the
solar spot area coverage of 10,000 randomly chosen 4-year segments of the noise-free TSI time
series. The red curve shows a power law model y = a0 + a1 x

a2 fitted to the data. The inset
shows the histogram of the residuals (black), which are fitted with a Gaussian model (red). (B)
Same quantities as in panel (A) after adding magnitude-dependent noise to the 4-year segments
of TSI data. The data are color-coded by the magnitudes used in the Monte-Carlo simulation.
According to the magnitude distribution in Fig. S6, many more faint stars were considered. The
distribution of these measurements of Rvar, 4yr is shown as the ”Noisy Sun” in Fig. 3.

17



Figure S8: Variability dependence on stellar fundamental parameters for the periodic sam-
ple. Dependence of the variability range Rvar on (A) effective temperature Teff, (B) rotation
period Prot, and (C) metallicity [Fe/H] for the periodic sample. The data are fitted with a
multivariate linear regression model Rvar(%) = Rvar,0 + a1 (Teff − Teff,�) + a2 (Prot − Prot,�) +
a3 ([Fe/H] − [Fe/H]�). The solid black line in each panel shows the model after subtracting
the dependence of the other two parameters. E.g., the function f23 in panel (A) is defined as
f23 = a2 (Prot − Prot,�) + a3 ([Fe/H] − [Fe/H]�), where the two function indices denote the
model coefficients. The functions f13 and f12 are defined equivalently. The orange star indicates
the Sun using its median variability Rvar,� = 0.07%.
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Figure S9: Variability dependence on stellar fundamental parameters for the non-periodic
sample. Dependence of the variability range Rvar on (A) effective temperature Teff and (B)
metallicity [Fe/H] for the non-periodic sample.
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Figure S10: Corrected vs. uncorrected variability. Same as Figure 3, but showing the distri-
bution of Rvar for the corrected (solid) and uncorrected (dashed) samples, and the noisy (solid
green) and noise-free (dashed green) Sun.
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