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Abstract. The kink-mode waves in solar magnetic flux tubes
have been proposed as the carriers of significant amounts of
energy into the upper atmosphere. Their observational signature,
i.e. their influence on polarized spectral lines, is investigated
theoretically using a simple MHD model and radiative transfer
calculations. The results of a large model grid are presented.
The wave is found to periodically shift, broaden, strengthen
and change the asymmetry of circularly and linearly polarized
profiles (Stokes V and Q, respectively). For most, but not all
line parameters it exhibits its largest influence close to the limb.
The time fluctuations of all quantities are in phase for Stokes
Q and V , except for their amplitudes, which are in antiphase.
The signal of the wave in time-averaged profiles depends on
the wave frequency. Stokes Q and V exhibit opposite senses of
the blue-red asymmetry and wavelength shift. This behaviour
is found to be a result of the dependence on frequency of the
phase relation between velocity and flux tube inclination. As
the wave frequency approaches the cutoff frequency the phase
relation changes and the time-averaged line asymmetry and shift
decrease rapidly. High frequency kink waves are found to be an
extremely efficient source of Stokes Q and V asymmetry, while
maintaining a small line shift.
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1. Introduction

Waves in solar magnetic flux tubes (FTs) are of interest for a va-
riety of reasons. For example, it is well established that they play
an important role in channeling the energy from the convection
zone to the chromosphere (e.g. Herbold et al., 1984, Choud-
huri et al., 1993a, b) and may transport a significant fraction
of the energy needed to heat the corona (e.g. Hollweg, 1991,
Choudhuri et al., 1993b). A detailed knowledge of FT wave
modes is therefore important for an understanding of heating
mechanisms.
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FT waves are predicted by theory to exist in different modes,
with longitudinal (sausage) and transversal (kink and torsional)
oscillations being the most important in thin flux tubes. In con-
trast to the well developed theory (e.g. Defouw, 1976; Roberts &
Webb, 1978; Spruit, 1982; Thomas, 1985; Roberts, 1986, 1990;
Ryutova, 1990; Ulmschneider et al., 1991; Ferriz Mas et al.,
1989; Zhugzhda, 1996, see Roberts & Ulmschneider, 1996, for
a review), FT waves are not always easy to observe. Excepted
are sunspots, the largest flux tubes, which have been observed
to harbour running penumbral waves (Zirin & Stein, 1972; Gio-
vanelli, 1972), magneto-atmospheric modes (Lites, 1992) and
probably Alfvénic surface modes (Ulrich, 1996). The difficulty
of spatially resolving small FTs forming plages and the net-
work (the FT radii of about 100− 300 km lie below the spatial
resolution limit of most observations) has hindered the direct
detection of their wave modes. Nevertheless, various observers
have reported oscillatory motions in small FTs, mainly longi-
tudinal tube modes at a period of 5 minutes (e.g. Giovanelli et
al., 1978; Deubner, 1991; Fleck & Deubner, 1991; cf. Roberts,
1983), although recently evidence for shorter period waves was
also found (Volkmer et al., 1995). Note that polarization mea-
surements may yield information on magnetic structures smaller
than the spatial resolution limit.

There are only few studies that attempt to bridge the gap
between theory and observations, i.e. which use theory to pre-
dict the detailed signature of various wave modes. Such pre-
dictions are required to find new techniques for observing the
waves and improving estimates of the energy flux transported
be them. Simulations of line profiles disturbed by longitudi-
nal waves have been presented by Rammacher & Ulmschneider
(1989) and Rammacher (1991) for Mg ii k and Ca ii K and by
Solanki & Roberts (1992) for Stokes I and V profiles of pho-
tospheric lines. For other FT wave modes only Steiner et al.
(1995, 1996) have presented and discussed line profiles formed
in the presence of kinked flux slabs. Their 2-D MHD simula-
tions incorporate considerable physical realism. In the present
paper we consider the polarimetric signature of kink waves in
thin FTs on the basis of a simpler and less realistic model than
Steiner et al. (1995, 1996). On the other hand, our approach al-
lows us to study a whole grid of wave and line parameters. This
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paper may thus be considered to be an extension of the work of
Solanki & Roberts (1992) on the longitudinal tube mode to the
kink mode, as well as complementary to the approach taken by
Steiner et al. (1995, 1996).

In the context of chromospheric and coronal heating kink
waves are of greater interest than longitudinal tube waves: The
kink mode has a much lower cut-off frequency, so that prop-
agating kink waves are more likely to be excited by granular
buffeting than longitudinal tube waves (Spruit, 1981). The im-
portance of rapid foot points motion of FTs as efficient excitors
of kink modes above their cut-off frequency has been pointed
out by Choudhuri et al. (1993a). The tilts and shifts produced
in isolated FTs by such buffeting are demonstrated dramati-
cally by the 2-D simulations of Steiner et al. (1994). Another
interesting aspect of kink waves is that they do not suffer from
radiative damping, nor do they shock in the chromospheric lay-
ers. They may thus be interesting for coronal heating (Spruit,
1981; Hollweg, 1991). Kink modes may, nevertheless, also be
important for chromospheric heating through their non-linear
coupling with longitudinal modes (Ulmschneider et al., 1991).
These shock and dissipate very efficiently in the chromospheric
layers.

2. The model

2.1. Kink waves

We first consider a vertical thin FT in equilibrium and possessing
a circular cross section. (A FT is thin when the pressure scale
height is larger than the radius of the circular FT cross section.)
The FT is assumed to have an untwisted magnetic field B. For
a vertical thin FT horizontal force balance reduces to pressure
equilibrium,

pe = pi +
B2

8π
. (1)

In Eq. (1) pe and pi are the external and internal gas pressure,
respectively. If all displacements are small then the propagation
of a kink mode oscillation of the above FT is described by
(Spruit, 1981)
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Here ζ(z, t) is the horizontal displacement at the height z and
time t, %i the density inside the FT, %e the density of the
field-free external plasma, g the gravitational acceleration and
v2
A = B2/4π%i the Alfvén speed inside the FT. The first term

on the right-hand-side describes the effects of gravitation and
stratification by means of buoyancy; the second term includes
the restoring forces of the magnetic field. To account for the
back-reaction of the external plasma onto the FT, the orthogo-
nal force acts on %e + %i (the sum of the external and internal
density) instead of on %i alone, where %e represents the increase
of inertia for a potential flow around a circular cylinder.

Spruit solved Eq. (2) for isothermal atmospheres, for which
the pressure scale height H and the Alfvén velocity vA are

independent of height z and the internal and external atmo-
spheres are governed by the same pressure scale height H so
that pi/pe = %i/%e. Under this assumption the coefficients of
Eq. (2) are height independent and the solution reads (Spruit,
1981)
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z
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)
, (3)

where < signifies the real part of a complex function. The cor-
responding dispersion relation is found to be
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In Eq. (4) k is the wavenumber, ωc the cut-off frequency and
β = 8πpi/B2 the plasma beta. For propagating waves – the
waves of greatest interest for the heating of the upper atmosphere
– the wavenumber k must be real. This condition is only fulfilled
for ω ≥ ωc.

2.2. The atmosphere in the presence of a kink wave

A kink wave excitation changes the direction of the magnetic
field vector, the horizontal velocity inside the FT and the position
of the FT, each as a function of height and time. We assume, for
simplicity, that the oscillations do not affect the surroundings.
Hence no velocities are induced outside the FT in our model.
In order to isolate the signature of kink modes we also neglect
other external motions, in particular granular flows. We empha-
size, however, that Eq. (2) takes into account the back-reaction
of the external material onto the FT. Note also that the polarized
Stokes parameters, whose reaction to kink waves we are mainly
interested in, are unaffected by velocities outside the FT, the
exception being the blue-red asymmetry of the Stokes param-
eters (Solanki 1989). Equation (2) describes only isolated kink
waves, i.e. it neglects the coupling between these and longitu-
dinal waves. This assumption should be of little consequence
for our results since we consider only the photosphere, whereas
according to Ulmschneider et al., (1991) the coupling between
the wave modes becomes significant only in the chromosphere.

We employ the solution for isothermal atmospheres (Eq. 3).
With this approximation we avoid problems arising from par-
tial reflections in higher layers. Effects due to departures from
isothermality are expected to be minor over the height range
of formation of the spectral lines. This approximation requires
the wavelength to be small compared to the temperature scale
height. A lower limit to the wavelength is provided by the tube
radius due to the thin-tube approximation.

The displacement of the tube due to the wave is given by
Eq. (3),

ζ(z, t) = ζ0 cosϕ exp
(z + z0

4H

)
, (5)

where ϕ = ωt − k(z + z0), z0 = 270 km and ζ0 is the FT dis-
placement’s amplitude at z = −270 km, i.e. at z + z0 = 0, the
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Fig. 1a–d. Vertical cut through a flux tube (FT) along a plane containing its axis and the direction of the displacement due to the kink wave. The
dotted line represents the boundary of the unperturbed FT with R = 100 km at the lower end of the calculation domain, the solid line that of the
FT distorted by a kink wave with ω = 0.04 Hz (λ ≈ 1000 km) and v0 = 0.9 km s−1, where ω is the wave frequency, λ the wavelength and v0 the
velocity amplitude at the lower end of the computational domain. The 4 frames correspond to phases at which the displacement vanishes or is
largest at the estimated height (z ≈ 100 km) of formation of Fe i 5250 Å. The height z = 0 corresponds to continuum optical depth unity in the
quiet sun at 5000 Å (τ5000 = 1)

lower end of the calculation domain. Taking the derivative with
respect to time gives us the (horizontal) velocity,

v(z, t) = −v0 sinϕ exp
(z + z0

4H

)
(6)

(v0 = ωζ0 denotes the velocity amplitude at z = −270 km),
while the derivative with respect to z is a measure of the incli-
nation of the FT axis relative to the vertical direction. The angle
γ0 between the magnetic field on the axis of the perturbed tube
and the vertical is then given by

tan γ0(z, t) =
ζ0

4H

((
ω2

ω2
c

− 1

) 1
2

sinϕ + cosϕ

)
× exp

(z + z0

4H

)
. (7)

Here the wavenumber has been replaced using Eq. (4). In addi-
tion, γ also depends on the radial coordinate r, since the field
is increasingly inclined at larger r (due to the expansion of the
FT with height). Note that the cross section is not affected by

a linear kink wave. The additional inclination of the magnetic
field away from the FT axis is

tan ∆γ(r, z) =
r

R(z)
∂

∂z
(R(z)), (8)

where R(z) is the FT radius at z. The radius is calculated by
means of flux conservation. Accordingly

tan γ(r, z, t) = tan γ0(z, t) + tan ∆γ(r, z) (9)

is the inclination of the magnetic field to the vertical at a distance
r from the tube’s central axis.

Fig. 1 shows a vertical cross section through the deformed
FT at 4 phases for a given wave (ω = 0.04 Hz, v0 = 0.9 km s−1).
Fig. 2 exhibits ζ, γ, v and ∂v/∂z along the (deformed) axis of
the FT at the same 4 phases. At the considered frequency the
phase difference between v and γ is roughly 160◦, while ζ and
∂v/∂z are approximately 90◦ out of phase. This agrees qualita-
tively with the more elaborate calculations of Ulmschneider et
al. (1991). The phase difference between local maximum veloc-
ity and local maximum inclination depends on wave frequency.
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Fig. 2a–d. The horizontal displacement ζ, the horizontal velocity v, the inclination γ and the vertical gradient of the horizontal velocity ∂v/∂z
at the FT axis vs. height z for the same wave as in Fig. 1. Each parameter is normalized by a factor that is indicated in the plots in brackets. The
signs have been chosen such that positive magnitudes always indicate the direction away from the observer. Note that inside the flux tube the
visible spectral lines we consider here are formed roughly within a range of about 150 km around a height of z ≈ 100 km

Fig. 3. The phase difference between local maximum velocity vmax and
local maximum inclination γmax of the FT axis vs. wave frequency. The
vertical dashed line indicates the cut-off frequency, ωc

Fig. 3 illustrates the strong change in the phase relation close to
the cut-off frequency. For high wave frequencies (ω � ωc) the
sine term dominates in Eq. (7), giving rise to a phase difference
of approximately 180◦ for an upward propagating wave. Near
the cut-off frequency the cosine dominates in Eq. (7), so that
velocity and inclination are nearly 90◦ out of phase even for
ω > ωc.

In order to obtain realistic line profiles we follow the same
procedure as Solanki & Roberts (1992), i.e. we use empiri-
cally obtained atmospheres to describe the unperturbed FT, on
which we superimpose the wave calculated in an isothermal at-
mosphere. The undoubted relevance of non-isothermal effects
for line formation is thus taken into account, whereas such ef-
fects are assumed to play no role for the wave propagation.
For the internal atmosphere we have used the plage FT model
of Solanki & Brigljević (1992) with B = 1500 G imposed at
log τ (5000 Å) = 0, in accordance with measurements of Rüedi
et al. (1992). The external atmosphere is described by the em-
pirical quiet-sun model of Maltby et al. (1986). The isothermal
atmosphere for which the kink wave is calculated corresponds
to the parameters of the plage FT model at a height of roughly
z = 50 km. The pressure scale height is then H = 128 km, the
plasma beta β = 0.44 and the cut-off frequency ωc close to
but smaller than 0.013 Hz (corresponding to a wave period of
roughly 8 min).

2.3. Radiative transfer

We first intersect the FT with a grid of inclined mutually parallel
rays (or lines-of-sight) lying in a plane containing the velocity
vector and the vertical symmetry axis of the FT (compare with
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Table 1. Atomic data of Fe i of the calculated spectral lines

λ [ Å] Transition geff χe [eV] log gf

5083.34 a 5F3 — z 5F◦3 1.25 0.96 −2.958
5250.21 a 5D0 — z 7D◦1 3.00 0.12 −4.933
15648.5 e 7D1 — 3d64s5p 7D◦1 3.00 5.43 −0.70

Bünte et al., 1993). Only waves oscillating in the plane spanned
by the FT axis and the line-of-sight are considered. Such waves
are not easily visible at disc centre. Therefore, we simulate ob-
servations at different values of the heliocentric angle θ, the
angle between the line-of-sight and the solar surface normal.
We restrict ourselves to the rays in this central plane, since each
wave also requires a full phase coverage, i.e. line profiles must
be calculated at different phases in the wave, so that the com-
putational load is significant. Test calculations suggest that this
restriction should not affect our conclusions. The number of rays
varied between 25 (for θ = 80◦) and over 100 (for θ = 30◦). It
was dictated by the requirement that enough rays intersect the
FT within the height range of line formation. Test calculations
with more rays produced no significant change in the line pro-
files. Along each ray the data relevant to the radiative transfer
are calculated as described by Bünte et al. (1993). Care is taken
to keep the difference between the optical depth of neighbour-
ing grid points constant. This increases the geometrical density
of grid points at critical locations such as the FT boundaries.
It is also ensured that there are sufficient grid points (typically
at least 10) over the sometimes quite small height range over
which a ray passes through the FT interior. For the present calcu-
lations we consider an array of FTs, a situation typical of active
region plage. For simplicity we assume the whole array of FTs
to oscillate in phase. Note that in this geometry a ray may enter
a magnetic region more than once.

Stokes profiles are calculated in LTE with the code described
by Solanki et al. (1992), which employs the Stokes Profile Syn-
thesis Routine package (SPSR, Rees et al., 1989, Murphy &
Rees, 1990, cf. Solanki, 1987 for details on other parts of the
codes).

We concentrate here on Stokes V , the difference between
right and left circular polarization, and StokesQ parameters, the
difference between linear polarization parallel and perpendicu-
lar to the limb in the polarization coordinates used here. In the
selected geometry Stokes U signals are only due to magneto-
optical effects and are not discussed further. Finally, Stokes I
only exhibits a minute influence of the waves and is also not
considered. In order to detect even subtle influences of kink
waves on the Stokes profile we compare the perturbed profiles
of each spectral line with profiles calculated in the unperturbed
FT, which we call the reference line profiles.

Table 1 lists the three calculated spectral lines. Here λ is the
solar wavelength of the transition, geff its effective Landé fac-
tor (note, however, that Fe i 5250 Å and Fe i 15648 Å are Zee-
mann triplets), and χe is the excitation potential of its lower
level. The log gf values (oscillator strengths) are taken from

Thévenin (1989) and Solanki et al. (1992). Fe i 5250 Å is well
known and often observed in magnetic features, Fe i 5083 Å is
a stronger, more saturated spectral line, whose Stokes Q and V
profiles should react more strongly to velocity gradients. It has
been modeled by Bünte et al. (1993) in an only partially suc-
cessful attempt to reproduce the centre-to-limb variation of its
Stokes V asymmetry. Finally, Fe i 15648 Å is extremely Zee-
man sensitive and is the most popular infrared line for magnetic
measurements. It is formed considerably deeper in the atmo-
sphere than the other lines. Each of the selected lines is expected
to react differently to velocity gradients.

3. Results

We present results of a parameter study of kink waves and spec-
tral lines formed in their presence. The influence of the following
quantities on the Stokes profiles and their parameters is inves-
tigated:

1. The parameters determining the wave: These are the circu-
lar frequency ω lying in the interval between ω = 0.013 Hz
and 0.150 Hz, and the velocity at the bottom of the compu-
tational domain: 0.10 km s−1 ≤ v0 ≤ 1.30 km s−1.

2. The angle between the line-of-sight and the vertical: 30◦ ≤
θ ≤ 80◦.

3. The spectral line: Fe i 5083 Å, Fe i 5250 Å and Fe i 15648 Å.

We first focus on the time dependence of the Stokes Profiles
(Sect. 3.1) and then define and discuss the line profile parameters
at 12 time steps (named phases 0 to 11 in the following) within
a wave period (Sect. 3.2). Later, in Sect. 3.3, the time averaged
profiles and parameters are discussed for all three spectral lines.

3.1. Time evolution of Stokes profiles

Fig. 4 provides an overview of the time evolution of Stokes V
(left hand panels) and Stokes Q (right hand panels) of all three
spectral lines over one wave period. The response to the dis-
torting wave exhibited by each spectral line is different. For
example, Fe i 5083 Å shows little shift, but extreme variations
in its σ-component amplitudes and in particular in its blue-
red asymmetry. In contrast, the amplitude and asymmetry of
Fe i 15648 Å varies only slightly. Instead, a considerable oscil-
latory line shift is present. Finally, Fe i 5250 Å exhibits an inter-
mediate behaviour. Note that the flat cores of Fe i 5083 Å and
Fe i 5250 Å are not due to excessive Zeeman splitting, but are
the result of a combination of saturation, finite FT width and hor-
izontally homogeneous external and internal atmosphere. (See
Solanki et al. 1996 for details.) Fig. 4 also shows that some
features of Stokes V and Q profiles oscillate in phase, others
in anti-phase. For example, their wavelength shifts and blue-red
asymmetries evolve in phase, but their amplitudes in anti-phase,
i.e. the V profile is strongest when the Q profile is weakest and
vice versa. In the following we study the quantitative response
of the above and other line parameters to kink waves.
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Fig. 4. Stackplots of the response of Stokes V
(left-hand panels) and Stokes Q (right-hand panels)
profiles of all three spectral lines to the same wave
as in Fig. 1 are shown for 12 time steps covering one
full wave period. All profiles are normalized to the
continuum intensity Ic. The calculations correspond
to a heliocentric angle θ = 60◦. The profiles are off-
set relative to each other for clarity. The time steps are
marked at the right of each frame (time increases from
0 to 11)

3.2. Time evolution of line parameters

The evolution of a set of line parameters (defined below) with
time over a full wave period is illustrated in Fig. 5a-j for the
Fe i 5250 Å line. We first discuss the results for this line. As an
example we have chosen an upward propagating wave with v0 =
0.9 km s−1 and ω = 0.04 Hz, i.e. the same wave as in Figs. 1,
2 and 4. This frequency is sufficiently high that (according to
Fig. 3) velocity and FT inclination are nearly in antiphase.

Definitions of the line profile parameters: The line shift ∆λσ =
1
2 (λr +λb), where λr,b is the wavelength of the red, respectively
blue σ-component peak (determined by placing a quadratic
function through the 3 points closest to the peak) is plotted vs.
time step or phase in Fig. 5a and b. We found this parameter to be
superior to λV , the zero-crossing wavelength of Stokes V , and

λπ , the wavelength of the π-component maximum of Stokes Q,
as can easily be confirmed by considering the profiles of, e.g.,
Fe i 5083 Å in Fig. 4.

The most robust parameter describing the line broadening
which we found is the difference between the centre-of-gravity
wavelengths of blue and red σ-components:

∆λcg =
1
2

(∫
red ∆λ | s(λ) | dλ∫

red | s(λ) | dλ −
∫

blue ∆λ | s(λ) | dλ∫
blue | s(λ) | dλ

)
. (10)

The function s(λ) stands for Stokes Q or V and ∆λ for the
unsigned wavelength relative to line-centre. After isolating the
effects of the wave by removing the width of the reference line

according to
√

∆λ2
cg −∆λ2

cg,ref , the result is plotted in Fig. 5c

and d. Since the magnetic field strength is not affected by the
wave, we expect ∆λcg to be mainly influenced by velocity gra-
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Fig. 5a–j. The evolution of the line pro-
file parameters of Fe i 5250 Å over a sin-
gle, full wave period is shown. The wave
has frequency ω = 0.04 Hz, wavelength
λ ≈ 1000 km and v0 = 0.9 km s−1, i.e. it
is identical to the wave underlying Figs. 1, 2
and 4. Results are plotted for θ = 30◦ (solid),
θ = 50◦ (dotted) and θ = 70◦ (dashed). a
to j present the response of various Stokes
line parameters (left-hand panels Stokes V
and right-hand panels Stokes Q). a and b
show wavelength shifts, c and d line widths,
e and f σ-component amplitudes, g and h
blue-red relative amplitude asymmetry and
i and j relative area asymmetry. The defi-
nitions of each of the plotted parameters is
given in the text. Time steps are indicated
on the horizontal axes. Step 12 represents
the same phase as step 0

dients. Negative ∆λcg (we take the square root of the positive
number and change the sign), which is occasionally seen in our
calculations (see Stokes Q for θ = 30◦), does not indicate that
the line has been narrowed by the wave but rather signals a
breakdown of the assumption of Gaussian profiles made above
when removing the width of the reference profile. For example,
the strength and width of the π-component, which is changed by
the wave, has a significant effect on the ∆λcg of the Q profile.

The unsigned σ-component amplitudes are denoted by ab
and ar, (where b and r indicate the blue and red σ-components,
respectively). Fig. 5e and f show the variation of the total ampli-

tude normalized to the reference amplitude (ar+ab)/(ar+ab)ref .
The relative amplitude asymmetry δa, defined as

δa =
ab − ar
ab + ar

, (11)

is plotted in Fig. 5g and h, while the time dependence of the
relative area asymmetry,

δA =
Ab −Ar

Ab + Ar
, (12)

is exhibited in Fig. 5i and j. Here, Ab and Ar are the unsigned
areas of the blue and red σ-components, respectively.
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Discussion of the line parameters: With the exception of ∆λcg
all the line parameters plotted in Fig. 5 oscillate with the fre-
quency of the wave. ∆λσ , δa and δA also react approximately
linearly to the sinusoidal wave, whereas the σ-amplitudes re-
spond nonlinearly (the nonlinearity is more pronounced in
Stokes V ). In addition, most parameters possess maxima and
minima around phases 1–2 and 7–8. Then the velocity around
the estimated formation height of the σ-peaks of Fe i 5250 Å (≈
100 km above the quiet-sun τ = 1 level, as estimated from con-
tribution function calculations) is largest and directed towards,
respectively away from the observer (Fig. 2). Note, that the mag-
netic field is inclined towards the observer (at time step 8) and
away from the observer (at step 2). This is reflected in the am-
plitudes of Stokes Q and V . Whereas all other line parameters
of Stokes V oscillate in phase with those of Q, the amplitude
of V is in antiphase with the amplitude of Q.

We now discuss the temporal behaviour of the line param-
eters in greater detail, in particular their dependence on wave
frequency, heliocentric angle and spectral line. The dependence
on velocity v0 is discussed in Sect. 3.3.

Asymmetries and their production: In Fig. 5 the asymmetry
parameters δa and δA of both Stokes Q and V reveal a nearly
sinusoidal temporal behaviour. They all oscillate in phase and
their oscillation amplitudes are roughly the same. In particular,
the kink mode on its own does not enhance δa relative to δA. The
asymmetries increase rapidly with increasing wave amplitude
and even more rapidly with increasing θ and can approach 100%.
The formation of such large asymmetries needs to be discussed
in greater detail. Asymmetric Stokes profiles are efficiently pro-
duced by co-spatial gradients of line-of-sight velocity and mag-
netic field vector (Illing et al., 1975; Makita, 1986; Grossmann-
Doerth et al., 1988; Sánchez Almeida & Lites, 1992; Solanki,
1993). In the present geometry we must differentiate between
the abrupt field strength and velocity gradients at the FT bound-
ary (which is crossed at least twice by each ray for sufficiently
large θ values) and more gentle gradients in the field strength,
inclination and velocity within the FT along each ray. For a
kink wave the asymmetry produced at both the intersections of
a slanted ray with the FT boundary has the same sign, as can
easily be verified using the relation (e.g. Solanki, 1993)

sign(δA) = sign

(
−∂v

∂τ

∂ | B |
∂τ

)
. (13)

When viewed near the limb (large θ), therefore, gradients due
to the kink waves at the flux tube boundaries are more efficient
in producing δA in the present case than internal gradients or
external granular flows (compare with Bünte et al., 1993). This
explains the extremely large δA values produced by the wave
(Fig. 5). The gradients at the FT boundaries also produce an am-
plitude asymmetry δa, which is generally of similar magnitude
and sign as δA (e.g. Solanki, 1989).

Let us now discuss the influence of internal gradients on the
production of asymmetries. Internal gradients are expected to
have a stronger influence at higher wave frequencies, because

then, due to the shorter wavelength, the internal gradients are
larger. Since the largest internal gradients of the velocity show
a phase lag relative to maximum velocity we can test for the
influence of internal gradients by checking whether the extrema
in δa and/or δA occur at phases other than 2 and 8, at which
the gradients across the FT boundary are largest. Fig. 5 shows
that for small θ such a shift is present. It increases with wave
frequency (not plotted) and is more pronounced in the amplitude
asymmetry. Thus the influence of internal gradients relative to
the jumps at the boundaries is largest at small θ, possibly due to
the comparatively long path of a given ray within the FT. (But
note that both the velocity gradients and and the asymmetries
get smaller for increasingly small θ).

The influence of the wave frequency: There are two effects
caused by the wave frequency. Firstly, the frequency determines
the phase lag between velocity v and magnetic field inclination
γ (see Fig. 3). This phase lag controls the phase of maximum
ab+ar with respect to the phase of extreme ∆λσ , δa and δA. For
high frequencies, i.e ω � ωc, the maximum of ab + ar occurs
at roughly the same time as the extrema of ∆λσ , δa and δA (cf.
Fig. 5), whereas for frequencies close to the cut-off (not plot-
ted) there is a significant temporal shift between the extrema of
ab + ar and those of ∆λσ , δa and δA. At the lowest frequency
we have considered, ω = 0.013 Hz, we estimate this phase shift
to be roughly a quarter of the wave period.

Secondly, as the wave frequency increases (and the wave-
length accordingly decreases), the amplitudes of the oscillations
exhibited by all line parameters decrease (for fixed wave veloc-
ity v0). This is caused by the increasing ratio of the width of
the line contribution (or response) function to the wavelength.
In addition, with increasing wave frequency some parameters
oscillate around an increasingly large, time independent offset.
This is most obvious for the line shifts and the asymmetries.

Centre-to-limb variation: Whereas ∆λσ (line shift) shows lit-
tle dependence on θ the other line parameters are significantly
affected by it. For all parameters except the normalized ampli-
tudes (Fig. 5e and f) StokesQ andV show the same dependence
on θ. The (ar +ab)/(ar +ab)ref oscillation amplitude ofQ, how-
ever, is largest at small θ, while that of V is largest at large θ.
We sketch out an explanation of this behaviour for an optically
thin line (the results for an optically thick line are not expected
to be too different). It is well known that Stokes V ∼ cos γ and
Stokes Q ∼ sin2 γ, where γ is the angle between the line-of-
sight and the magnetic vector. Now, γ oscillates as the FT sways
back and forth over a wave period. The relative derivatives of
StokesQ and V according to γ are a measure of the change pro-
duced in the relative amplitudes of these profiles by changing
γ: ∂ ln V/∂γ ∼ tan γ and ∂ lnQ/∂γ ∼ cot γ. Hence we expect
∂ ln(ar + ab)/∂γ ∼ tan γ for Stokes V and∼ cot γ for Q. This
difference in sensitivity to changes in γ between Stokes Q and
V amplitudes agrees well with Fig. 5e and f.
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FT inclination: The Stokes V andQ amplitudes are temporally
in antiphase, as is clearly visible in Fig. 5e and f. This antiphase
is expected due to their respective cos γ and sin2 γ dependence.
In other words Q is largest near the phase at which the FT
is inclined away from the observer, while V is largest when
it is inclined towards the observer. The ratio of the amplitude
of Stokes Q to that of Stokes V , (ab(Q) + ar(Q))/(ab(V ) +
ar(V )), is plotted in Fig. 6. Note that the plotted curves have
been divided by, i.e. normalized to, the Stokes Q to V ratio of
the reference profile at the respective θ. The ratio follows the
wave very clearly and obviously reflects the periodic swaying
motion of the FT. The 3 lines exhibit a similar behaviour. Note,
however, the (small) phase difference in inclination between the
infrared and visible lines arising from the higher formation of the
latter. At large θ this ratio exhibits extremely large fluctuations
over a wave period. This has to do with the fact that the FT can
become nearly perpendicular to the line-of-sight around phases
0–2, so that Stokes V (i.e. the denominator) becomes nearly
zero at these phases.

Dependence on spectral line: There are considerable differ-
ences between the line profile parameters of the 3 spec-
tral lines. For example, the line shift and line width
of Fe i 5083 Å oscillates with a significantly smaller ampli-
tude than the corresponding quantities of Fe i 5250 Å. The
5250 Å line itself shows smaller amplitudes of the ∆λσ and
∆λcg oscillations than the wave at this line’s expected height
of formation. This is in agreement with the expectation that
the stronger line, Fe i 5083 Å, is formed over a larger range of
height. For example, once the width of the contribution or veloc-
ity response function becomes of the order of the wavelength
(the formation height range of ∆z ≈ 150–200 km has to be
compared with λ/4 ≈ 250 km for ω = 0.04 Hz) the line shift
increasingly fails to reflect the true amplitude of the wave. For
the two visible lines, the amplitude (but not necessarily the time
evolution) of the wave is more accurately reflected in ∆λcg than
in ∆λσ , in particular for larger wave frequency.

The amplitudes of the asymmetry oscillations are
greater than in Fe i 5250 Å, due to the larger saturation in
Fe i 5083 Å (Grossmann-Doerth et al., 1989; Solanki, 1989). In
addition, Fe i 5083 Å reacts more sensitively to changes in wave
frequency.

The response of Fe i 15648 Å differs substantially from that
of the other two lines. The amplitude of the line shift corre-
sponds closely to the wave amplitude around the level of line
formation. The asymmetry produced by the wave is, in contrast,
exceedingly small. This behaviour can be understood in terms
of the relative weakness of the line and its large Zeeman splitting
(Grossmann-Doerth et al., 1989).

3.3. Temporally averaged profiles

Consider now Stokes Q and V profiles averaged over a full
wave period. On the one hand this corresponds to time aver-
aged measurements, on the other hand to a snapshot of many

FTs caught at random phases, such as produced by observa-
tions with moderate spatial resolution. In Fig. 7 we plot Stokes
V and Q profiles of Fe i 5250 Å averaged over a wave period.
In the upper panels (Fig. 7a and b) we illustrate the influence
of wave frequency, in the lower panels (Figs. 7c and d) the in-
fluence of the wave amplitude. Figs. 7a and b show asymmetric
profiles at high frequencies and a transition to more symmetric
profiles at frequencies close to the cut-off. (We emphasize, how-
ever, that waves with frequencies near the cut-off do not satisfy
the approximation of an isothermal atmosphere and, therefore,
should be used with caution.) Note that in Figs. 7a and b the
frequencies are not equidistant. The velocity obviously affects
the amplitude, asymmetry, broadening and shift of the lines
(Figs. 7c and d). Note in particular the opposite sense of the
asymmetry of Stokes V (red wing stronger than blue wing) and
Q (blue stronger than red). This contrasts strikingly with the
time-resolved profiles plotted in Fig. 4. Those Stokes V and Q
profiles show the same sense of asymmetry at practically ev-
ery phase (cf. Fig. 5). The temporally averaged V profiles also
appear to be shifted towards the red, whereas the Q profiles
are blue shifted, again in contrast to the time resolved profiles.
The cause of this difference between the time resolved and time
averaged profiles is discussed later in this section.

The same profile parameters as in Fig. 5, but now of tem-
porally averaged profiles of different lines, are plotted vs. v0

in Fig. 8a to j. This figure confirms that averaged over a wave
period ∆λσ , δa and δA of Stokes V are opposite in sign to
the respective Q parameters. Note, however, that in general the
net wavelength shift due to the wave is relatively small. On the
other hand, the net Stokes Q and V asymmetry produced by
even a modest amplitude wave is extremely large, unless the
wave frequency lies very close to the cut-off.

In order to understand the opposite senses of δA, δa and
∆λσ of Stokes V relative to Q we must bear in mind that these
parameters change sign over a wave period, with δA and δa be-
ing positive when the lines are blue shifted and negative for red
shifted lines (Fig. 5). If we simply averaged these line parame-
ters over a wave period then their values would be exceedingly
small. If the line profiles are averaged the sign and magnitude of
the net asymmetry and shift of the temporally averaged profiles
is then determined mainly by the absolute amplitude ar + ab of
Stokes Q and V at different phases. The greater the amplitude
of the Stokes profile at a certain phase the more it contributes
to the average. The anti-phase of ar +ab of Stokes Q and V (cf.
Fig. 5) is responsible for the opposite sense of the line shift and
asymmetry of Stokes V relative to that of Stokes Q. The basic
reason for this behaviour is the 160◦ phase difference between
wave velocity and FT inclination (Fig. 3) for this wave. This
means that maximum inclination away from the observer (max-
imum Q) is cotemporal with maximum velocity away from the
observer (maximum positive asymmetry) while minimum in-
clination (maximum V ) is cotemporal with maximum velocity
towards the observer (maximum negative asymmetry).

Next, let us compare the three spectral lines. As ex-
pected from the behaviour of the time resolved line parameters
Fe i 5083 Å reacts most strongly to the kink mode, with the ex-
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Fig. 6. The ratio of Stokes Q to V am-
plitude (ab(Q) + ar(Q))/(ab(V ) + ar(V ))
is plotted vs. time step for the lines
Fe i 5083 Å (Fig. 6a), Fe i 5250 Å (Fig. 6b)
and Fe i 15648 Å (Fig. 6c) for θ = 30◦

(solid), 50◦ (dotted) and 70◦ (dashed). The
wave parameters are v0 = 0.9 km s−1 and
ω = 0.04 Hz, i.e the same as in Figs. 1, 2,
4 and 5. The amplitude ratio has been divided
by the corresponding ratio of the reference
profiles at the same θ

Fig. 7a–d. Temporally averaged Stokes
V/Ic (a) and Q/Ic (b) profiles are plotted
for waves with v0 = 0.9 km s−1 and different
wave frequencies indicated in a in Hz. The
radiative transfer was carried out for a helio-
centric angle of θ = 60◦. The solid curves
denote the reference profile, i.e. the Stokes
profile calculated in the absence of a wave. c
and d show the same for fixed ω = 0.04 Hz
and different values of v0 indicated in c in
km s−1

ception of the net line shift, which is smallest for this line (it also
showed the smallest time-resolved shift). Note, in particular, that
the Stokes V asymmetry of Fe i 5083 Å is more negative than
that of Fe i 5250 Å at every θ. This is particularly interesting
since the observations away from disk centre suggest that such
is actually the case on the sun (Pantellini et al., 1988; Bünte et
al., 1993), whereas the simulations of Bünte et al. (1993) show
that using a purely granular model it is difficult to obtain the
correct relative asymmetries.

Finally, note the almost linear dependence of the time-
averaged line broadening on the wave velocity. ∆λcg is ex-
pected to scale as 2v0 sin θ. The calculated ∆λcg usually lies
somewhat above this estimate, partly we expect due to the dif-
ference between the line formation height and the lower end of
the calculation domain, to which v0 refers.

In Fig. 9 we plot the centre-to-limb variation of the line pa-
rameters of Fe i 5250 Å for waves with a fixed velocity ampli-
tude v0 but different frequencies. The centre-to-limb variation
of Stokes V is relatively easy to predict: ∆λσ , ∆λcg , δa and
δA all increase monotonically towards the limb, exactly as ex-

pected for a kink wave running on a vertical FT. The behaviour
of Stokes Q is at first sight more enigmatic. Only ∆λcg steadily
increases towards the limb, whereas ∆λσ decreases and δa and
δA initially increase with increasing θ, before decreasing again.

In order to understand this behaviour recall that the time-
averaged parameters plotted in Fig. 9 are large when (among
other things) there is a large difference in the strength or σ-
amplitude of the Stokes V , respectively Q profiles at different
phases in the wave (Fig. 5e and f). This difference in strength
is produced by the oscillation of γ. We must thus consider how
StokesQ and V react to changes in γ, which has been discussed
in Sect. 3.2. The sensitivity of the Stokes V relative amplitude
to γ is largest near the limb, while the Stokes Q relative am-
plitude become increasingly independent of γ near the limb.
The decrease (at large θ) in the Stokes Q asymmetry is conse-
quently due to this insensitivity (Fig. 5). The initial increase of
δa(Q) and δA(Q) with θ reflects the increase of the line-of-sight
velocity gradients.

The dependence on wave frequency produces no major sur-
prises. As expected, the smallest frequency dependence is ex-
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Fig. 8a–j. Parameters of temporally
averaged Stokes V (left panels)
and Q (right panels) profiles vs. v0

for Fe i 5083 Å (solid), Fe i 5250 Å (dotted)
and Fe i 15648 Å (dashed). The parameters
and their order in the figure are the same as
in Fig. 5. The plotted line parameters are af-
fected by a wave with frequencyω = 0.04Hz
(λ ≈ 1000 km) “observed” at θ = 30◦

(thin lines) and θ = 70◦ (thick lines). Due
to the large width of the reference profiles
of Fe i 15648 Å (caused by Zeeman split-
ting), changes in ∆λcg due to the wave could
not be well determined. The corresponding
curves are not plotted in Fig. 8c and d

hibited by ∆λcg (which does not depend on the phase difference
between velocity and inclination), whereas the asymmetries re-
act most strongly to ω (particularly Stokes Q asymmetry). Also
as expected, changes in ω values near ωc have the largest influ-
ence on the line parameters. In addition, these low ω values pro-
duce the smallest line shift and asymmetries, due to the nearly
90◦ phase shift between velocity and FT inclination at these
frequencies.

4. Conclusions

In the present study we have calculated linear, propagating kink-
mode waves in thin flux tubes (FTs) and investigated the influ-

ence of the waves on the Stokes profiles and line parameters
of three photospheric spectral lines. Most line parameters are
strongly affected by kink waves. The profiles are considerably
broadened and often exhibit large asymmetries, oscillations in
amplitude and distorted σ-components.

We now summarize the most important features of the time-
resolved line parameters, proceed with time-averaged profiles
and conclude with a comparison to related research.

It is found that the line shift and the blue-red asymmetry of
the σ-component amplitudes and areas of temporally resolved
profiles quite clearly follow the wave (Fig. 5). These parame-
ters oscillate in phase and have about the same magnitude for
both Stokes Q and V . The Stokes Q and V amplitudes, how-
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Fig. 9a–j. The same parameters of tem-
porally averaged Stokes V and Q pro-
files of Fe i 5250 Å as in Figs. 5 and 8,
but now plotted vs. θ. The parameters are
calculated in the presence of waves with
v0 = 0.9 km s−1 and four different fre-
quencies, ω = 0.013Hz (solid curves),
ω = 0.02Hz (dotted), ω = 0.04Hz (dashed)
and ω = 0.15Hz (dot-dashed). Note that the
Stokes V parameters for θ = 80◦ are not re-
liable since so close to the limb the wave
causes the longitudinal component of the
field and thus Stokes V to change sign peri-
odically. Consequently, they have not been
plotted

ever, oscillate in anti-phase. The response of the amplitudes is
non-linear. For increasing wave frequency we observe increas-
ing time-independent offsets around which all line parameters
oscillate with increasingly smaller oscillation amplitudes. All
the oscillation amplitudes are enhanced with increasing θ, ex-
cept that of the Stokes Q amplitude, which exhibits the opposite
centre-to-limb behaviour. A standard measure of the inclination
of a FT, the ratio of the σ-components of Stokes Q to V , gives
a particularly clear signature of the wave.

Kink waves also affect time-averaged line profiles (which
also correspond to snapshots of many FTs oscillating at random
phases). Surprisingly, an upward propagating wave produces a
positive asymmetry in Stokes Q but a negative Stokes V asym-

metry. TheQ and V line shifts also possess opposite signs. This
seemingly contradictory behaviour is not seen in temporally
resolved parameters, for which the two polarizations always re-
spond in phase. The opposite asymmetries and shifts of StokesQ
andV are due to the antiphase of the oscillations of the StokesQ
and V amplitudes. The time-averaged asymmetries in Stokes V
are generally larger than in Q.

The response of most line parameters of time averaged pro-
files is insignificant for waves with frequencies very close to
the cut-off frequency – the line width, however, reacts equally
strongly to waves of all frequencies. The reason for this de-
pendence on frequency is the dependence of the phase relation
between wave velocity and FT inclination on wave frequency.
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Velocity and inclination are 180◦ out of phase for ω � ωc,
while for wave frequencies near the cut-off frequency the phase
shift approaches 90◦ and remains there for standing waves. We
conclude that standing waves or propagating kink modes with
frequencies very near the cut-off hardly affect spatially unre-
solved measurements of asymmetries.

Consider now how the kink-mode signature differs from that
of the tube mode investigated by Solanki & Roberts (1992).
Most obviously the influence of the transverse kink mode in-
creases towards the limb, while that of the longitudinal tube
mode decreases. Another interesting difference is caused by the
fact that the tube mode is compressible, whereas the kink mode
is not. Due to the temperature variability accompanying com-
pressibility the strength of a temperature-sensitive spectral line
fluctuates over a wave period, while it remains essentially un-
changed for kink-mode waves (excluding second-order effects).
This causes the tube waves to have a much larger effect on the
Stokes I profiles of temperature sensitive lines than kink waves.

Both wave modes produce an asymmetry in V and Q pro-
files. The sign of the blue-red asymmetry changes over a wave
period. A net area and amplitude asymmetry can result even af-
ter averaging over a full wave period for both wave modes. In the
case of the tube wave this is due to the fact that the velocity and
temperature (or pressure) oscillate in phase for a propagating
wave, while in the case of the kink wave it is the phase relation
between the FT inclination and the velocity which is important.
Note that in contrast to the tube wave the relevant phase shift of
propagating kink waves changes dramatically with frequency
near the cutoff.

Although both wave modes produce net blue-red asymmet-
ric profiles, there are considerable differences between their sig-
natures.

Firstly, the center-to-limb variation is expected to be very
different. Secondly, the kink wave is more effective in producing
asymmetric Stokes V and probablyQ profiles. Thirdly, the ratio
of amplitude to area asymmetry is much larger for the tube wave.
Finally, whereas the two waves produce temporally averaged V
with the same asymmetries for waves propagating in the same
direction, say upwards, the sign of the Stokes Q asymmetry (for
inclined lines of sight) is expected to differ. For the kink wave
Q has the opposite asymmetry to V , while for the longitudinal
wave we expect – from our understanding of the mechanisms
producing the asymmetry – the Q profile to be asymmetric in
the same sense as V . Note, however, that the kink-mode waves
are not the only way of producing opposite asymmetry in V and
Q (cf. Martı́nez Pillet et al. 1996).

One shortcoming of the present investigation is that we
do not consider the combined effect of the wave and the sur-
rounding granulation, or of different wave modes simultane-
ously present in the FT. Near the solar limb the granulation
surrounding the FTs produces a Stokes V asymmetry of the
same sign as an upward propagating kink wave, but the latter is
more effective, particularly when we consider snapshots. Hence
both mechanisms produce negative Stokes V asymmetry near
the limb and thus enhance each other. They also produce ap-
proximately the same amplitude as area asymmetry, whereas

the observations show a significant negative area asymmetry
but little amplitude asymmetry near the limb. Granulation and
kink waves alone do not appear capable of removing this dis-
crepancy.

How do the results of our simple model compare with the
line profiles resulting from the sophisticated simulations of
Steiner et al. (1994, 1995, 1996), whose simulations include the
effects of non-stationary, supersonic convection, longitudinal
shock waves and non-linear kink waves? Steiner et al. (1995)
have also calculated Stokes profiles along lines of sight with
θ = 60◦. The main effect of the kink wave that they find is that
it periodically produces large Stokes Q and V profiles (namely
at the phases of maximum inclination of the FT, in agreement
with our results). In addition, very close to the limb we also find
Stokes V profiles with both σ-lobes having the same sign (cf.
Steiner et al., 1995, Fig. 8, profile d). In our model such profiles
are created when the FT is nearly perpendicular to the line-of-
sight. Our calculations obviously miss, however, the rest of the
dynamic phenomena distorting the line profiles in the Steiner et
al. simulations.

The observations of Martı́nez Pillet et al. (1996) show the
Q and V amplitude asymmetries to have the same sign for av-
erages over many individual measured line profiles. This obvi-
ously cannot be accounted for by kink waves alone, since these
produce opposite signs of δa. A mixture of kink waves and
granulation, cannot, however, be ruled out, particularly since
the temporally averaged Q asymmetry produced by the kink
wave is significantly smaller than theV asymmetry (e.g. Fig. 8).
Comparison of the relevant model calculation, which will be the
subject of a future paper, with observations may be able to set
limits on the energy flux transported into the upper atmosphere
by kink-mode waves.
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Solanki S.K., 1989, A&A 224, 225
Solanki S.K., 1993, Space Sci. Rev. 63, 1
Solanki S.K., 1996, in Solar and Heliospheric Plasma Physics, C.E.

Alissandrakis, G. Simnett, L. Vlahos (Eds.), Lecture Notes in
Physics, Springer-Verlag, Heidelberg, in press

Solanki S.K., Brigljević V., 1992, A&A 262, L29
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