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Abstract. The influence of torsional waves propagating along
a thin, vertical, photospheric flux tube on Zeeman-split polar-
ized line profiles (Stokes profiles) is investigated using a sim-
ple MHD model. In the presence of such a wavespatially re-
solvedStokes profiles are found to oscillate strongly in wave-
length, amplitude and blue-red asymmetry. Qualitatively, tor-
sional waves induce similar changes into the line profiles as
kink waves (Ploner & Solanki 1997). The magnitude of the line
parameter variation depends strongly on the observed location
with respect to the flux-tube axis.

Thespatially averagedStokesV andQ profiles are found
to follow the torsional wave with double the wave frequency,
some parameters of StokesU fluctuate directly at the wave fre-
quency, however. The other main feature of the spatially aver-
aged profiles is their comparatively small reaction to the wave.
The reason for the latter is that most polarized light is produced
near the centre of the flux tube where, however, the torsional
wave produces only weak perturbations.

Temporallyandspatially averagedStokes profiles are found
to be only negligibly shifted, but strongly broadened. The sign
of the small remaining asymmetry is opposite in StokesQ to
that in V andU . The amplitude of the wave and the location
of the flux tube on the solar disk have a strong influence on the
magnitude of the perturbation of the Stokes profiles.

Key words: Magnetohydrodynamics (MHD) – radiative trans-
fer – waves – Sun: faculae, plages – Sun: magnetic fields – Sun:
photosphere

1. Introduction

The details of the chromospheric and coronal heating processes
have been the subject of long and intense study. Among oth-
ers, a variety of processes have been proposed in which MHD
waves in small magnetic flux tubes channel the energy flux from
below into the chromosphere and still higher layers (see the re-
views by Narain & Ulmschneider 1990, 1996). One aspect of
the investigation into these processes deals with the generation
of flux-tube waves by turbulent motions in the outer convec-
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tion zone. For example, Ulmschneider & Musielak (1998) in-
vestigated the generation of longitudinal tube waves, Huang et
al. (1995) the generation of kink waves, while Anton (1989)
studied the interaction between vortical flows and flux tubes,
a process which gives rise to torsional waves. Another aspect
has to do with the transport of kinetic energy through the pho-
tosphere by MHD-waves (e.g. Webb & Roberts 1980, Ziegler
& Ulmschneider 1997a,b). The final aspect is the dissipation
of the wave energy, e.g. by shock waves in the chromospheric
layers in the case of longitudinal tube waves (e.g. Herbold et
al. 1985, Fawzy et al. 1998) or through such mechanisms as
mode coupling (e.g. Z̈ahringer & Ulmschneider 1987), phase
mixing (e.g. Nakariakov et al. 1997) and resonant absorption
(e.g. Poedts et al. 1994) in the case of Alfvénic wave modes.

Observational evidence for the contribution of flux-tube
waves to chromospheric or coronal heating is difficult to ob-
tain and correspondingly poor (however, see Venkatakrishnan
1993). One possibility is to try to observe the propagating waves
in the photosphere by means of polarization measurements. The
problem with this approach is that little is known about the ex-
pected signature of such waves, in particular of the torsional
Alfv én waves. The aim of the current paper is to provide some
of the missing information. We use a simple model of torsional
waves propagating along flux tubes to predict their signature in
the polarized radiation of Zeeman-split lines.

Our model relies on the assumption that the flux tubes
are small in diameter. This is thought to be satisfied for most
flux tubes forming the solar magnetic network and active re-
gion plages. Consequently, the large variety of flux-tube modes
(Roberts & Ulmschneider 1996) reduces to three (Spruit 1982),
a compressible longitudinal (“sausage” mode) and two incom-
pressible transverse modes (kink and torsional waves). The po-
larization signature of sausage modes has been investigated at
solar disc centre by Solanki & Roberts (1992), that of kink
waves by Ploner & Solanki (1997) at various positions on the
disc. This paper is consequently dedicated to torsional waves.
Other investigations that use theory in order to predict the influ-
ence of wave-like dynamic phenomena in flux tubes on spectral
lines have been carried out by, e.g., Rammacher & Ulmschneider
(1989), Rammacher (1991) and Steiner et al. (1995, 1996), but
none of them considers torsional waves. In addition, techniques
of polarimetric measurements are rapidly improving (e.g. Povel



S.R.O. Ploner & S.K. Solanki: Influence of torsional waves in solar magnetic flux tubes on spectral lines 987

Fig. 1. Illustration of the model flux tube and a plane containing rays
parallel to the line-of-sight. The shaded surface represents the bound-
ary between the outer, field-free and inner, magnetized plasma. As an
illustration a plane intersecting the flux tube at the locationx = lx is
shown. The plane contains mutually parallel rays pointing towards the
observer located at heliocentric angleθ.

1995, Gandorfer & Povel 1997), in particular for the observation
of dynamic phenomena (Solanki 1996, Ulrich 1996, Martı́nez
Pillet et al. 1997, cf. Frutiger & Solanki 1998) giving a certain
timeliness to investigations like the present one.

2. The model

This section introduces the model which underlies the present
calculations. Basically, the method agrees with that used for
the investigation of kink waves by Ploner & Solanki (1997,
henceforth called Paper I) and details can be found there. Here
we concentrate on aspects unique to torsional waves. We begin
with an overview of the 3-D geometrical situation (Sect. 2.1),
proceed with the description of torsional waves (Sect. 2.2) and
end with basic symmetry considerations of torsional waves in
a flux tube (Sect. 2.3), which turn out to be important for the
interpretation of the synthesized line profiles.

2.1. Overview

Fig. 1 provides an overview of the model flux tube and fixes
Cartesian coordinates(x, y, z), of whichz describes the height
in the atmosphere. A part of the axially symmetric flux-tube
boundary which separates the inner magnetized from the outer
field-free atmosphere is represented by the shaded surface
aroundz. In a first step, thestatic equilibrium flux tube is de-
termined by horizontal pressure balance (using the zeroth-order
thin flux-tube approximation, e.g. Ferriz Mas et al. 1989)

pex = p +
B2

z

8π
, (1)

wherepex andp are respectively the outer and inner zeroth-
order, i.e. unperturbed, gas pressure, andBz is the zeroth-order
vertical magnetic field. Both the pressure and the magnetic field
decrease with increasing height and magnetic flux conservation
causes the flux tube to expand with height.

For both the internal and external atmosphere we employ
empirical models in order to obtain realistic polarized line pro-
files. The internal atmosphere used here is the plage flux-tube
model of Solanki & Brigljevíc (1992), while the external atmo-
sphere is the empirical quiet-sun model of Maltby et al. (1986).
Note, however, that the perturbation is calculated for an isother-
mal atmosphere (see Sect. 2.2). Following Rüedi et al. (1992) the
magnetic field strength is chosen to be 1500 G atz = 0 (z = 0
marks the layer at which optical depthτ = 1 atλ = 5000 Å in
the quiet sun). The flux-tube radius atz = −261 km (the lower
boundary of the calculation domain) isR0 ∼ 85 km, resulting in
a radius of 100 km atz = 0. The upper boundary of the domain
lies atz = 700 km.

In a second step, the perturbations to the magnetic and ve-
locity vectors due to the torsional wave are added to the zeroth-
order quantities of the inner atmosphere (see Sect. 2.2). The flux
tube is then intersected byy–z planes equally spaced in thex–
direction. In Fig. 1 a plane located atx = lx is shown, where
lx is the distance to the flux-tube axis along thex direction.
Each plane contains a number of mutually parallel rays (lines-
of-sight) pointing towards the observer. Each ray is inclined by
the heliocentric angleθ to the vertical. The atmosphere along
each ray is determined on a grid with constantτ–spacing (see
Bünte et al. 1993).

Finally, the equations of polarized radiative transfer are nu-
merically integrated along each ray using the Stokes formalism.
This calculation provides us with the line profiles in StokesI
(total intensity), StokesV (net circular polarization) as well as
StokesQ andU (net linear polarizations). In a first part of the
subsequent analysis we investigate the Stokes profiles which
stem from a fixed plane, i.e. for a givenlx = const. Then sig-
nals resulting from spatially and later also temporally averaged
line profiles are considered.

For details of the calculation of atmospheric quantities along
the rays or the subsequent integration of the radiative transfer
equation we refer the interested reader to Bünte et al. (1993)
and Paper I. The major change relative to Paper I consists of
the inclusion of the 3-D flux-tube structure, which is dictated
by the nature of torsional waves whose line-of-sight velocity
component is largest at largex (Sect. 2.3).

2.2. Torsional waves

Torsional waves in axially symmetric flux tubes are best de-
scribed in cylindrical coordinatesr (radial distance from flux-
tube axis),ϕ (azimuthal angle) andz (height, see Fig. 1.). We
consider linear, azimuthally symmetric (i.e. with no explicitϕ–
dependence) waves in the thin flux-tube approximation (e.g.
Ferriz Mas et al. 1989). Zhugzhda (1996) found a way to close
the linearized system of equations including radial expansion
terms up to second order (Ferriz Mas et al. 1989). Those equa-
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tions are particularly simple for a non-rotating and untwisted
flux tube. In this case the azimuthal components of the momen-
tum and induction equations separate out from the remaining
magneto-hydrodynamic equations and read

4π% ∂t(vϕ1) = Bϕ1 ∂z(Bz) − Bz ∂z(Bϕ1), (2)

∂t(Bϕ1) = Bz ∂z(vϕ1), (3)

respectively. Here,% andBz are the zeroth order components of
the density and vertical magnetic field, respectively, andvϕ1 and
Bϕ1 are first order disturbances to the azimuthal components of
the velocity and magnetic field, respectively. Finally,∂a stands
for ∂/∂a with a being an arbitrary coordinate. For an isothermal
atmosphere (i.e.% ∼ exp(−z/H) andBz ∼ exp(−z/2H),
with H the pressure scale height) Eqs. (2) and (3) possess the
following solution:

vϕ = rvϕ1 = rṽ exp(i(ωt − kzz)), (4)

Bϕ = rBϕ1 = rB̃ϕ exp
(
i(ωt − kzz) − z

2H

)
, (5)

ṽ/vA = −Bϕ1/Bz, (6)

ω = kzvA, (7)

wheret is the time (or phase) andvA = Bz/
√

4π% the (con-
stant) Alfvén speed. Eq. (7) is the dispersion relation between
the frequencyω and wavenumberkz of a pure Alfv́en wave. The
torsional wave described by Eqs. (4) and (5) is determined by
specifying the wave frequencyω and angular velocitỹv (which
determines the constant̃Bϕ throughBϕ1 in Eq. 6). Note that
the phase shift (Eq. 6) between velocity and azimuthal field is
constant and agrees with the expectations for upward propagat-
ing Alfv én waves. It also agrees with the case of high frequency
kink waves (Paper I), which is responsible for some of the sim-
ilarities in observational signature.

As in Paper I we disturb the equilibrium flux tube, whose
stratification is described by a realistic model atmosphere, with
an isothermal torsional wave. The employed Alfvèn speed is
vA = 12.6 km s−1 and the scale height isH = 128 km. These
parameter values correspond to those of the equilibrium flux
tube at the lower boundary of the estimated height range of
line formation (z ∼ 50 km). We again justify this approxima-
tion by noting that the deviation from an isothermal atmosphere
within the height range of line formation generally is rather
small. Strictly speaking, the use of isothermal torsional waves
limits the wavelength to be smaller than the temperature scale
height. For oscillations with larger wavelengths the temperature
stratification, e.g. in the upper atmosphere, becomes important.
Partial reflection caused by a temperature increase or effects
due to merging flux tubes may influence the wave properties in
the height range of line formation. But note, that we are only
interested in the principal changes of the atmosphere due to tor-
sional waves and neglect to model comprehensively the wave
propagation. We therefore do not take the restriction to short
wavelength too serious and go beyond this limit. Larger wave-
lengths are of interest because they provide a constant phase
with height and allow us to separate the effects introduced by
the wave frequency.

Fig. 2a and b.Illustration of how azimuthal disturbances of a torsional
wave are projected onto a horizontal plane. The circles represent hor-
izontal cuts through the flux tube seen in Fig. 1 and the vertical lines
parallel toy symbolize two intersections of these cuts with planes at
locations±lx. This figure illustrates that the component of the hori-
zontal velocity,vy framea and the projection in they-direction of the
azimuthal component of the magnetic field,Bϕy frameb are propor-
tional tolx and do not depend upony.

Additional limitations are introduced by the thin flux-tube
approximation. The radial expansion of the equations underly-
ing this approximation forces us to consider wavelengths that
are large compared to the flux-tube radius. Note that this radius
increases exponentially with height, so that this requirement is
increasingly poorly fulfilled in the upper atmosphere. However,
as mentioned above the less realistically modeled upper part of
the flux tube does not significantly influence the spectral lines,
which obtain their main contribution at smaller height.

2.3. Symmetry properties

In Sect. 3 we first investigate the effect of torsional waves on
polarized profiles generated in a single plane (see Fig. 1). Tor-
sional waves causer-dependent changes within the flux tube
which give rise toy- andx-dependences from the vantage points
of an observer located in they–z plane. It is therefore necessary
to discuss the changes induced by the wave and the symmetries
the changes may possess along individual rays. Because the flux
tube harbouring the torsional wave is assumed to be vertical, the
wave-induced changes,vϕ andBϕ, lie in a horizontal plane. So
in a first step, in order to simplify explanations, we consider
only a single horizontal plane and work out in it the horizontal
velocity and magnetic components parallel and perpendicular
to a hypothetical horizontal line-of-sight. Only after that do we
take into account that the rays are inclined to the horizontal.

The circles in Fig. 2 represent horizontal cuts through the
flux tube (compare with Fig. 1). For illustrative purposes they are
intersected by two planes symbolized by the two vertical lines
located at±lx. Of the wave’s velocityvϕ only its component in
they-direction,vy, is relevant (because onlyvy sin θ, the line-
of-sight velocity, enters the transfer equation). Fig. 2a shows
thatvy changes sign between the planes at±lx (at a fixed time
t):

vy(t, lx) = −vy(t, −lx). (8)
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In other words, an observer sees a line-of-sight velocity in one
half of the flux tube (lx < 0) that is directed oppositely to that
in the other half (lx > 0). This result is independent ofθ (except
θ = 0). Half a wave period latervϕ reverses its direction again
giving rise to a change in sign ofvy,

vy(t, lx) = −vy

(
t +

T

2
, lx

)
, (9)

whereT = 2π/ω is the wave period. In addition,vy is indepen-
dent ofy for a fixedlx, as follows from

vy = vϕ cos α = vϕ1r cos α = vϕ1lx, (10)

i.e. along a horizontal ray the line-of-sight velocity remains
constant within the flux tube. In Eq. (10) we have made use of
the fact thatα is the angle betweenvϕ andvy as well as between
r andlx. The magnitude ofvy is consequently proportional to
lx and the line profiles formed in the outermost parts of the flux
tube are expected to exhibit the largest reaction to the wave.

The situation for the magnetic field is far more complex
than for the velocity, since in addition to the wave-inducedBϕ

component time independentBz andBr components are also
present, all of which affect the polarization state. Consider first
the azimuthal component,Bϕ, of the magnetic field generated
by the torsional wave (Fig. 2b). Note that according to Eq. (6)
Bϕy is directed oppositely tovy. Eqs. (8) to (10) found forvy

are also valid forBϕy. Bϕx (which influences StokesQ andU )
has the same sign onlx < 0 and lx > 0 whereas it changes
sign alongy. The dominant component in the photosphere is
Bz. It is almost an order of magnitude larger than the other
components. In order to estimate the relative significance of
Br andBϕ we first note that at the height of line formation
(z ∼ 50 km) and at the flux-tube boundary the expansion of the
magnetic field with height results inBr/Bz ∼ 0.2. The field
inclination due to the waveBϕ/Bz is a factor of 2 smaller there
(assuming a velocity amplitude ofṽR0 ∼1 km s−1) because of
the comparatively high Alfv́en speed (Eq. 6). Hence the wave
superimposes relatively small changesBϕ onto the static field
(Bz and Br). Note that the radial fieldBr has the opposite
symmetry properties relative tox andy (Brx behaves likeBϕy

andBry like Bϕx) and it modifies the symmetry noted above
becauseBrx > Bϕx.

In the Stokes formalism the orientation of the magnetic field
enters the radiative transfer through the anglesγ (the inclination
between field vector and line-of-sight) andχ (azimuth, mea-
sured in a plane perpendicular to the line-of-sight). Examples
of γ(y) andχ(y) are displayed in Fig. 3 for a flux tube with
(dotted lines) and without (solid lines) a twist such as that intro-
duced by a torsional wave (Bϕ/Bz = 0.1). In order to illustrate
the main effects clearly, all quantities have been assumed to be
height independent when making these figures (but not in the
rest of the paper). In the plotted case the flux tube is seen at
θ = 70◦. Fig. 3a shows that in the static caseγ is smaller thanθ
for y < 0 (i.e. for locations of the flux tube nearer the observer),
whereasγ > θ for y > 0 (located in the flux tube away from
the observer). This reflects the combined effects ofBz andBry.
Note thatγ is the same on both halves of the flux tube (thick

Fig. 3a and b.Dependence ofγ andχ on y and lx, whereγ is the
angle between the magnetic field vector and the line-of-sight, andχ
is the magnetic azimuth relative to the line-of-sight. Displayed is the
situation along 2 horizontal cuts through a flux tube observed at an
angle ofθ = 70◦to the vertical. The thick and thin lines correspond to
−lx andlx, respectively. The solid curves display the time-independent
magnetic field with componentsBz andBr (the thick and thin curves
are identical in framea) The dotted curves result when the twist due to
a torsional wave,Bϕ, is included. Frame a shows that the broad range
of γ alongy is caused byBr whereas the wave only affectsγ weakly
(indicated by the difference between the thick and thin dotted lines). It
follows from frame b that the sign ofχ is coupled to the sign oflx.

and thin curves corresponds tolx > 0 andlx < 0 in Fig. 3). The
sign ofχ, however, corresponds to the sign oflx which is due to
Brx. The changes caused by the wave can be judged from the
difference between the solid and dotted lines.

3. Results

In this section we investigate the signature of torsional waves in
polarized line profiles. We consider both time resolved and time
averaged line profiles. To begin with (in Sect. 3.1) we discuss
basic features of the line profiles generated in single, vertical
planes cutting through the flux tube, such as the plane shown in
Fig. 1. Because of the difference in behaviour we discuss Stokes
V andQ (Sect. 3.2) separately from StokesU (Sect. 3.3). The
StokesI profile is not discussed since the torsional wave mode
only has a minute influence on it.

In Sects. 3.1 to 3.3 we consider the effect on the spectral
line Fei 5250Å at the heliocentric angleθ = 60◦ of a single
type of wave havingω = 0.04 Hz (which corresponds to a
period of T ∼ 2.6 Min and a wavelength of approximately
2000 km) and amplitudẽv = 1 km atR0. Such a low frequency
and long wavelength was chosen in order to ensure that the
wave phase remains constant over the range of formation of
Fei 5250Å. This spectral line has a Landé-factorg = 3 and
was already employed in the study of kink waves in Paper I.
Finally, the dependence of the signature of torsional waves on
the characteristics of the wave (ω andṽ), the location on the solar
disc (θ) and the chosen spectral line is discussed in Sect. 3.4.
In that section we also consider the Fei 5083Å line, which is
stronger than Fei 5250Å and which showed a larger influence
of kink waves in Paper I.
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Fig. 4a–c.Stack-plot of StokesV a, StokesQ b and StokesU c profiles of Fei 5250.2Å displayed at 4 phases spanning a wave period
(ω = 0.04Hz, T ≈ 2.6 min, λ ≈ 2000 km andṽ = 1 km s−1). The thick solid lines represent the Stokes profiles formed along rays lying in the
plane atlx = 100 km whereas the thin dashed lines refer tolx = −100 km. The numbers in brackets at the top of each frame are the maximum
amplitudes reached by the signal in that frame. They corresponds to the amount by which the profiles at one phase are offset to the next in the
figure. Phase 0.25 corresponds to the situations plotted in Figs. 2 and 3.

3.1. Polarized line profiles

Fig. 4 shows a stack plot of StokesV , Q andU generated in a
flux tube supporting a torsional wave. The displayed profiles are
formed in two planes lying at a distance oflx = ±100 km from
the flux-tube axis (solid and dashed profiles in Fig. 4, respec-
tively). From bottom to top the profiles correspond to 4 equally
spaced phases or times covering a wave periodT . We use the
stellar convention in which phase runs from 0 to 1. Focus now
on StokesV generated in the plane atlx = +100 (solid profiles
in Fig. 4a). At phase 0.25 the profiles are seen to be blue-shifted
and to have a larger blue than red lobe (leading to positive asym-
metry, as defined in Appendix A). At phase 0.5 the profiles are
more symmetric and almost unshifted. At phase 0.75 the profile
has an asymmetry and shift opposite to phase 0.25 but with a
larger total amplitude (see the end of Sect. 3.2.1). Finally, the
situation at phase 1.0 is basically the same as that at 0.5 in the
sense that both are near the unperturbed state. This description
of the StokesV evolution is also valid for StokesQ (solid lines
in Fig. 4 b) with the exception that the StokesQ amplitude is
small when StokesV is large and vice versa, i.e. StokesQ is
somewhat stronger at phase 0.25 than at phase 0.75. In sum-
mary, the change in asymmetry, line shift and broadening is in
phase between StokesV andQ whereas that of the total ampli-
tude is in antiphase. (StokesU is discussed later in Sect. 3.3).
Note also that the line profiles exhibit an oscillatory behaviour
with the same period as the wave.

The time evolution of StokesV andQ resembles the se-
quence generated by a kink wave, although the influence of the
latter is larger (compare with Fig. 4 of Paper I). The similarity

between the profiles generated by torsional and kink waves is
not astonishing: along a single plane the line-of-sight compo-
nents of the velocity and magnetic field perturbations due to
the torsional wave are similar to the distortions produced by a
kink wave. This can be seen approximately from Fig. 2. A kink
wave (which shakes the flux tube in they–direction) generates
By andvy which are constant inx andy. The corresponding
distortionsBϕy andvy due to a torsional wave are also constant
alongy, although not alongx. The magnitude of bothvy and
Bϕy is proportional tolx and therefore depends strongly on the
location of the plane. Consequently, the influence of torsional
waves on StokesV andQ increases with increasinglx. This
dependence is to be discussed in the next section.

One other important difference between kink and torsional
waves is that whereas kink waves cause the whole flux tube to
oscillate in phase, torsional waves cause the left and right halves
of the flux tube as seen from the observer (i.e. the partslx > 0
andlx < 0 of the flux tube, see Fig. 1) to oscillate in antiphase
(see Eq. 8). The result of this is seen in Fig. 4 by comparing the
dashed profiles (corresponding tolx < 0) with the solid ones
(lx > 0). The dashed StokesV andQ profiles at phase 0.25
are nearly identical to their solid counterparts at phase 0.75 (see
Eq. 9). The profiles differ slightly due to the magneto-optical
effects (see Sect. 3.2.2).

3.2. Time evolution of StokesV andQ

In this section we discuss the evolution of StokesV andQ on
the basis of selected line-profile parameters. The choice of the
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Fig. 5a–d.Amplitudeaσ and amplitude asymmetryδa of StokesV a
andc andQ b andd vs. lx. The solid curve refers to phaset = 0.25
and the dotted tot = 0.75. The dashed curve displays the fractional
area coverage of the magnetized plasma and is the same in all 4 frames
(see text for details). The bullets mark the locationslx of the planes
containing the lines-of-sight. The underlying wave is the same as in
Fig. 4. Note the increase ofδa with increasing|lx|, coupled with a rapid
decrease of the amplitude. Also note that in the presence of the wave
the amplitudesaσ at lx > 0 are not the same as forlx < 0.

line-profile parameters is the same as in Paper I. The definitions
of ∆λσ (line shift),∆λcg (line broadening),aσ (sum of theσ-
component amplitudes) andδa andδA (relative amplitude and
area asymmetry, respectively) are given in Appendix A.

3.2.1. Spatially resolved line profile parameters

Fig. 5 displaysaσ andδa of StokesV andQ formed within a
single plane versus the location of that plane,lx, at the phases
0.25 and 0.75. Both Stokes parameters show no asymmetry at
the central planelx = 0. But with increasing distance|lx| from
the central plane the asymmetry reaches nearly 100% and re-
flects strongly distorted profiles. It is the presence of cospatial
gradients of the magnetic field and line-of-sight velocity at the
flux-tube boundary which is responsible for the production of
the Stokes asymmetry (e.g. Grossmann-Doerth et al. 1989, see
Paper I). Gradients of these quantities along the rays inside the
flux tube are far smaller (certainly for the chosen wave fre-
quency and heliocentric angle). The large asymmetry generated
in planes with highlx is due primarily to the increasing line-of-
sight velocity component withlx. This quantity vanishes in the
planelx = 0 where no asymmetry is generated.

The opposite dependence onlx is found foraσ which de-
creases with increasing|lx|. This reflects the fact that the larger
the|lx| the smaller the area of intersection of the flux tube with
the vertical plane containing the lines-of-sight. In order to es-
timate the fraction of magnetized plasma we determined the
intersection area of the flux tube with the vertical plane within
the height range of line formation (betweenz = 50 km and
z = 250 km). The ratio of this area to the corresponding total

area in the computational domain is plotted versuslx in Fig. 5
(dashed line) and agrees well with the decrease ofaσ.

Two relations are important to note. Firstly, at a given phase
the V (and alsoQ) amplitudes atlx > 0 differ from those at
lx < 0. This effect can already be seen in Fig. 4 by comparing
the solid and dashed profiles, in particular at phases 0.25 and
0.75. Secondly, at a phase at which StokesV is stronger for
lx > 0 than forlx < 0, the opposite is the case for StokesQ:
it is weaker forlx > 0 than for lx < 0. The above described
behaviour is due to the fact that a positiveBϕy increasesγ
and consequently StokesQ whereas a negativeBϕy similarly
enlarges theV amplitude. We shall return to this point when
discussing spatially averaged profiles. Note that line shift, and
to some extent also line width, exhibits a similar dependence on
lx as the asymmetry (not plotted).

3.2.2. Spatially averaged line profile parameters

Small flux tubes are generally not resolved by current tele-
scopes. The wave signature in spatially averaged profiles is
therefore also of interest. Consequently, we determine the pa-
rameters (Appendix A) of the spatially averaged Stokes profiles
and study their time evolution over a wave period. Spatially av-
eraged profiles are formed by averaging together the profiles
from all planes (each of which is located at a differentlx). In
general we have employed 9 planes. Tests based on the use of
more planes indicate that this number is adequate.

The time evolution of the line profile parameters as seen
at three positions on the disc (θ = 30◦, 60◦ and 80◦, repre-
sented by solid, dotted and dashed profiles, respectively) is plot-
ted in Fig. 6. It shows, among other things, that all parameters
evolve basically with double the wave frequency in both Stokes
V and Q. This behaviour differs from the spatially resolved
case (Fig. 4) and must therefore be a consequence of the spatial
averaging. The following two points are of importance when
considering this averaging.

Firstly, as evident from Fig. 5 only planes with|lx| ≤
100 km give a significant contribution to the spatially averaged
profiles (for the particular model flux tube chosen). This is the
reason why, e.g.,δa andδA of the spatially averaged profiles
are not as large as for the kink wave studied in Paper I.

Secondly, as is evident from Figs. 4 and 5, profiles from
opposite halves of the flux tube (lx < 0 and lx > 0) display
opposite shifts and asymmetries at a given phase. When adding
the profiles from the two halves together the shift and asym-
metries are further reduced. They do not disappear due to the
difference inV andQ amplitudes between the two halves (see
Fig. 4 and the discussion at the end of Sect. 3.2.1). These dif-
ferences in amplitude are largest at the phases 0.25 and 0.75.
At those phases the line shift and asymmetry in each half also
have the largest magnitude (due to the correlation betweenvϕ

andBϕ inherent to Alfv́en waves, see Eq. 6). Both these facts
conspire to produce a peak at phases 0.25 and 0.75 in shifts and
asymmetries ofV andQ.

That these two peaks have the same sign (i.e. that both are
generally maxima or minima) within a wave period reflects
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Fig. 6a–j. Parameters of spatially aver-
aged StokesV andQ profiles vs. phase.
The plotted line profile parameters, in-
dicated above each frame, are defined in
Appendix A. The underlying wave is the
same as in Fig. 5, but is now “observed”
at three different disc positions corre-
sponding toθ = 30◦ (solid), θ = 60◦

(dotted) andθ = 80◦ (dashed). Note
that all parameters oscillate with double
the wave frequency.

the azimuthal symmetry of the wave. Note that to first order
V ∼ cos γ and Q ∼ (sin γ)2 cos 2χ and consequently both
amplitudes do not depend on the sign ofχ. After half a wave
period the left and right halves of the flux tube are basically
interchanged. For the magnetic field and velocity contributions
of the torsional wave this fact has been shown with Eqs. 8 and
9 (where for instanceBϕx has been neglected). The radialx–
component of the background field,Brx, changes sign from one
half of the flux tube to the other. This leads to a corresponding
change of sign inχ which to first order, however, does not affect
StokesV andQ. Then, after spatial averaging (and neglecting
magneto-optical effects, see below) the phasest andt + T/2

are identical so that the resulting shift and asymmetry have the
same sign at the peak values. Note the different origin of the
doubled frequency in the line broadening. It is only affected by
velocity magnitude whereas the sign of the velocity plays no
role.

The evolution of the parameters differs between StokesV
andQ. The parameters∆λσ, δa andδA of StokesV have the
opposite sign to those ofQ. Note first that at a given phase in
one half of the flux tube the field is inclined towards the observer
(i.e. smallγ and large StokesV ), while in the other half it is
inclined away (i.e. largerγ and large StokesQ). Consequently,
at a given phase the dominantV andQ signals emanate from
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opposite halves of the flux tube (see Fig. 4). For a torsional wave
the distortion of the magnetic field is in antiphase with that of the
velocity which gives rise to opposite shifts at each phase in the
different sides of the flux tubes. Because the dominating profiles
of V andQ stem from opposite halves the antiphase between
the field and velocity distortion gives rise to the opposite sign
of the resulting shift of the spatially averaged profiles.

The area asymmetryδA is sensitive to the gradients along
the line of sight of the magnetic field and velocity. The sign of
the asymmetry is given by (Solanki & Pahlke 1988)

sign(δA) = sign
(

−∂|Blos|
∂τ

∂vlos

∂τ

)
(11)

Large gradients occur at locations where the line-of-sight enters
or leaves the magnetized plasma. Using Fig. 2 it is seen that the
gradients at both piercing points along a line-of-sight induce the
same sign ofδA but opposite signs in opposite halves of the flux
tube, in accordance with Fig. 6.

Eye catching is the difference between the magnitudes at
the two extremes of the StokesQ parameters at phase 0.25 and
0.75, which is particularly pronounced inδa andδA (Figs. 6h
and j). StokesV parameters, in contrast, exhibit two almost
equally strong peaks. As mentioned above, in the absence of
magnetooptical effects the extrema at phases 0.25 and 0.75 are
expected to be identical. This difference between the phases
indeed vanishes if the radiative transfer is carried out without
magneto-optical effects, as test calculations confirm. However,
the largestQ profiles at phases 0.25 and 0.75 are generated in
opposite halves of the flux tubes, i.e. at locations with oppositeχ
(see Fig. 4). Although the absorption coefficient of StokesQ is
not affected by this, the magneto-optical effects give a term that
is sensitive to the sign ofχ (%Q ∼ sin 2χ), so that the two phases
of the wave affect StokesQ differently. For StokesV , however,
both phases remain identical (except for possible small effects
that may appear due to the coupling between the various Stokes
parameters in a realistic numerical solution, such as ours, of the
Unno-Rachkovsky equations). For a more detailed discussion
in the Milne-Eddington approximation see Appendix B.

According to Figs. 6e and f the normalizedaσ is below unity
on the average, indicating that the profile amplitudes are de-
creased by the wave. Different processes play a role in deter-
mining aσ,V and aσ,Q. The change of the inclination of the
magnetic field vector due to the wave is one of them. However,
a large part of the decrease inV andQ amplitudes is simply
a compensation for the increased line width (Figs. 6c and d).
The σ–component areaAb + Ar (not shown) also oscillates,
but with a considerably smaller relative amplitude, in support
of this interpretation.

The line shift and the asymmetries of StokesV show the op-
posite dependence onθ than the corresponding parameters of
StokesQ. Note that without net fluctuations inaσ there would
be no net fluctuations in the line shift and asymmetry (after aver-
aging over the left and right halves of the flux tube) because all
phases contribute equally to the spatial average. The larger the
net fluctuations inaσ the larger the difference of the contribu-
tion of various phases. The dependence onγ of the fluctuations

Fig. 7. aStokesU profiles arising from planes located atlx =0, 50, 100
and 150 km (solid, dashed, dash-dotted and dash-triple dotted lines, re-
spectively). The plotted profiles corresponds to phase 0.25 of the same
wave as underlies Fig. 4.b The StokesU profile spatially averaged
over the whole flux tube. Solid curve: including magneto-optical ef-
fects, dashed curve: with magneto-optical effects switched off.

of aσ is related to the relative sensitivity of StokesQ andV :
δV/V ∼ tan γ andδQ/Q ∼ cot γ (cf. Paper I). Consequently,
changes inaσ within a wave period are large forV near the
solar limb but near disc centre for StokesQ.

3.3. Time evolution of StokesU

The evolution of StokesU profiles formed along rays lying in
a fixed plane (Fig. 4 c) does not differ substantially from that of
of StokesQ. In particular, theU -profile evolves in phase with
Q. In contrast to StokesQ, however, the sign ofU corresponds
to the sign oflx, i.e theU profiles coming from the right and
left halves of the flux tube have opposite sign (see Appendix B
for an explanation). The change of sign causes significant dif-
ferences between the two Stokes parameters. Whereas spatially
averagedQ profiles have a similar form to the spatially resolved
profiles, this is not the case for StokesU . Spatially averagedU
profiles can be far more complex than their spatially resolved
constituents.

In order to help understand the spatial average we display in
Fig. 7a StokesU profiles at phase 0.25 originating atlx ≥ 0. The
solid line in Fig. 7a denotes the signal atlx = 0. It is symmetric
due to the vanishing line-of-sight velocity and positive since it
is produced purely by magneto-optical effects. The profiles at
lx ∼ 50 km (dashed line) and 100 km (dash-dotted line) have
larger amplitude than atlx = 0 whereas profiles atlx > 100 km
(dash-triple-dotted line) decrease in magnitude. The increase in
aσ from lx = 0 to 100 km is due toBrx ∼ lx, i.e. due to the in-
creasingχ with lx (cf. Sect. 2.3, note thatχ never exceeds 45◦).
The decrease at larger|lx| reflects, as forQ andV , the decreas-
ing intersection area of the flux tube with the plane containing
the lines-of-sight (cf. Sect. 3.2.2).

The average of theU profiles formed over the whole flux
tube is displayed in Fig. 7b (solid curve). For comparison the
spatially averaged profile calculated without magneto-optical
effects is also plotted (dashed curve). Noteworthy are the small
amplitudes of these profiles (compared to the amplitudes of
some of the profiles in Fig. 7a), as well as their complex and
asymmetric shapes. In particular, the profile calculated without
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magneto-optical effects is almost antisymmetric and appears
more like a combination of two shifted StokesV profiles. Both
the reduced amplitude and complex shape are due to the addi-
tion of StokesU profiles having opposite sign originating from
the two halves of the flux tube. Their cancellation leads to the
small amplitude. Also, profiles resulting from planes with op-
positelx are wavelength shifted in opposite directions and have
different amplitudes. Therefore, they do not cancel each other
exactly but build up complex profile shapes. When magneto-
optical effects are neglected, StokesU is proportional tosin 2χ
(Eq. B9, see Appendix B) and the spatially averagedU profile
is nearly antisymmetric according to wavelength. Note that this
signal is completely caused by the wave, since in the absence of
a wave theU profile of a vertical flux tube is entirely generated
by magneto-optical effects. If these were switched offU would
disappear in an untwisted, static flux tube. The inclusion of the
magneto-optical effects introduces terms proportional tocos 2χ,
which produce aU signal having the same sign in both halves of
the flux tube. These terms are responsible for the predominantly
positiveU profile in Fig. 7b (solid curve).

Due to the complex shape (which makes it difficult to define
profile parameters that may be directly compared with those
of StokesV andQ) and the small amplitude of the spatially
averagedU profiles we do not discuss them further, although
StokesU reveals the clearest signal of the torsional waves of
all spatially averaged Stokes parameters. Hence we encourage
low-noise observations of StokesU near the limb. Note that
in Fig. 7 we have concentrated on the phase 0.25 which, along
with phase 0.75, produces the most asymmetricU profiles. Note
also that spatially averaged StokesU profiles fluctuate at the
wave frequency in the sense that at all phases different profiles
are generated. However, theU amplitude and width oscillate at
twice the wave frequency, like the corresponding parameters of
StokesQ andV .

3.4. Temporally averaged parameters

In this section we discuss the signature of torsional waves of tem-
porally (and spatially) averaged StokesV andQ (Sect. 3.4.1)
andU (Sect. 3.4.2) profiles. Note that averaging over time over
a single flux tube corresponds approximately to spatially av-
eraging over many flux tubes caught at random phases of the
wave.

3.4.1. StokesV andQ

Fig. 8 displays the dependence onṽ of the same line profile pa-
rameters as plotted in Fig. 6. The parameters are also shown for
two heliocentric anglesθ and two spectral lines. In the following
each of these dependences is briefly discussed. Note that all in
all the influence of the torsional wave agrees qualitatively with
the findings for the kink wave (Fig. 8 of Paper I). The depen-
dence of the signature on the wave frequency and amplitude, the
heliocentric angle and spectral line does not differ qualitatively
from that of a kink wave.

This includes the fact that the sign of the wavelength shift
and asymmetry of StokesV profiles is opposite to that of Stokes
Q profiles. This effect is already seen in the spatially averaged
but temporally resolved profiles, as discussed in Sect. 3.2.2.
Since these parameters maintain their sign over most of the
wave period (Fig. 6) the temporally averaged profiles inherit
this property. Compared to the peak values in Fig. 6 the influ-
ence of the same wave on the time averaged parameters is small,
partly due to the averaging and partly because at phases where
the shift, asymmetry and broadening are large (phase 0.25 and
0.75 in Fig. 6) theV andQ amplitude is reduced.

Dependence on wave amplitude and frequency:As expected,
the wave amplitude,̃v, plays a dominant role. The influence of
the wave on all line parameters increases asṽ increases due to the
increased velocity gradient. The role of the wave frequencyω is
less important (and therefore not displayed). The larger the fre-
quency the larger the ratio between the height–range over which
the line is formed to the wavelength of the wave. This increases
the line-of-sight gradients somewhat, producing a slightly larger
asymmetry, but decreases parameter fluctuations over the wave
period.

Dependence on limb-distance:The heliocentric angleθ deter-
mines firstly the line-of-sight velocityvlos = vy sin θ (Sect. 2.3)
and secondly the sensitivity of the Stokes profiles with respect
to changes in magnetic inclinationγ (Sect. 3.2.2 and Paper I).
StokesV , whose parameters are displayed in the left panels of
Fig. 8, shows the expected increase in shift, width and asym-
metry fromθ = 30◦ to θ = 70◦, because both the line-of-sight
velocity and the sensitivity toγ–changes increases towards the
limb. TheV amplitude also decreases more strongly atθ = 70◦,
partly as a compensation for the increased line width: The de-
crease inσ–component area is much smaller. The behaviour of
the StokesQ line parameters reflects, on the one hand, the loss
of sensitivity with respect toγ–changes toward the limb, and on
the other hand the increasedvlos. Hence, the line width, which
is mainly sensitive tovlos, increases towards the limb (and the
amplitude decreases). The line shift, however, decreases in mag-
nitude towards the limb, while the asymmetry remains relatively
unchanged.

Dependence on the spectral line.In Paper I we found that the
line Fei 5083Å reacts more sensitively to the kink wave than
Fei 5250.2Å. This is particularly true forδa andδA. We find
that this is also the case for the torsional waves, as can be seen
from Fig. 8. The main reason is again that Fei 5083Å is more
saturated, which gives it a larger asymmetry (cf. Solanki 1989,
Paper I).

3.4.2. StokesU

Fig. 9 a shows the temporally and spatially averaged Fei 5250Å
U profiles forṽ = 1 km s−1(solid line),ṽ = 2 km s−1(dashed
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Fig. 8a–j. Temporally and spatially av-
eraged line-profile parameters of Stokes
V and Q vs. wave amplitudẽv. The
parameters are displayed for two he-
liocentric angles (θ = 30◦ solid,
and θ = 70◦ dashed) and two spec-
tral lines (Fei 5083Å, thin lines and
Fei 5250.2Å, thick lines).

line) andṽ = 2.5 km s−1(dash-dotted line). As expected from
Sect. 3.3 theU amplitude is far smaller than that ofQ or V , but
nevertheless slightly larger than theU generated without the
wave. Note the increasing asymmetry with increasingṽ. These
temporally averagedU profiles are more symmetric than the
profiles at phase 0.25 and 0.75 shown in Fig. 7. Two effects are
responsible for this: 1) at most other phases theU profiles are
more symmetric 2) in the course of a wave period the asymmetry
of U changes sign, so that averaging over these profiles leads to
far smaller net asymmetry. The opposite sign of the asymmetry
to that of StokesQ reflects the different dependence of these
profiles onχ in the presence of averaging.

Fig. 9b shows line profile atθ = 30◦ (solid line),60◦ (dashed
line) and80◦ (dash-dotted line) for Fei 5250.2Å. At largeθ a
residual effect of the wave is visible in the asymmetry of the
profiles, whereas magneto-optical effects dominate the profiles
at smallθ.

4. Summary and conclusions

4.1. Summary of the results

In this study we investigate in detail the influence of torsional
Alfv én waves in solar magnetic flux tubes on Stokes profiles.



996 S.R.O. Ploner & S.K. Solanki: Influence of torsional waves in solar magnetic flux tubes on spectral lines

Fig. 9a and b.Temporally and spatially averaged line profiles of Stokes
U for different ṽ andθ. The profiles displayed in frame a correspond
to wave amplitudes̃v = 1 km s−1(solid line), ṽ = 2 km s−1(dashed
line) andṽ = 2.5 km s−1(dash-dotted line), those in frameb to θ =
30◦ (solid),θ = 60◦ (dashed) andθ = 80◦ (dash-dotted).

We have used basically the same methods as for our earlier
investigations of longitudinal (Solanki & Roberts 1992) and
kink waves (Ploner & Solanki 1997 called Paper I), i.e. we
simply overlaid linear torsional waves calculated for isothermal,
thin flux tubes onto realistic model atmospheres of the flux tube
and its surroundings. At each time step over a wave period we
then calculated line profiles along sets of inclined rays passing
through the flux tube. In contrast to the kink wave it is extremely
important to also include rays that do not pass through the flux-
tube axis when considering torsional waves.

The shift, width and asymmetry of the Stokes profiles fluc-
tuate according to the line-of-sight velocity. Their amplitude
changes following the direction of the magnetic field vector. For
profiles formed along the rays lying in a single vertical plane
offset bylx from the flux-tube axis (see Fig. 1) the variations are
similar to those produced by kink waves (Paper I). The magni-
tude of the profile variations, however, depends strongly onlx
since the line-of-sight velocityvlos is proportional tolx in our
model. The line shift, broadening and asymmetry parameters
vanish forlx = 0 (i.e in a plane passing through the flux-tube
axis) and increase rapidly with increasing|lx|. The magnitude
aσ of the profiles has the opposite dependence onlx since the
flux tube fills increasingly smaller parts of the atmosphere there:
the intersection of the flux tube with the plane containing the
lines-of-sight decreases with|lx|.

The spatially averaged(but temporally resolved) profiles
of V andQ follow the wave with double the wave frequency
because, due to the azimuthal symmetry of the wave perturba-
tions, the left and right halves of the flux tube (as seen from an
inclined observer) are exactly half a period out of phase. Half
a wave period later the wave perturbations in the two halves
are interchanged and lead to the same average line parameters
(except for perturbations caused by magnetooptical effects).

Although profiles generated in outer (i.e. large|lx|) planes
are heavily distorted the spatially averaged profiles show only
a moderate influence of the wave since they obtain their major
contribution near the central plane. The wavelength shift and
asymmetry of the spatially averaged StokesV andQ have op-
posite signs. This has the same cause as that underlying the
opposite signs of the same line parameters of the temporally

averagedV andQ profiles in the presence of a kink wave (Pa-
per I).

The behaviour of StokesU differs from the other Stokes
profiles because inU theσ–components can be positive or neg-
ative according to the sign oflx (and are therefore small near
lx = 0). The spatially averagedU -profiles are found to be weak
in amplitude, rather complex in shape and asymmetric.

Unsurprisingly,spatiallyandtemporally averagedprofiles
are even less affected by the wave (except for line broadening).
We find that all effects of the wave seen in the line-profile pa-
rameters are enhanced by the wave’s amplitudeṽ, whereas the
wave frequency plays only a minor role. The perturbations in
StokesV andQ due to the wave have opposite centre-to-limb
variations. The asymmetries and line shift are largest at the limb
for StokesV , but closer to disc centre for StokesQ.

4.2. Comparison between kink and torsional wave

Let us first consider temporally resolved but spatially averaged
StokesV andQ profiles. One major difference between the two
wave modes is that the oscillations in StokesV andQ reflect
the frequency of the kink wave but double the wave frequency
of torsional waves. In addition, line shift and asymmetry pa-
rameters influenced by torsional waves have a unique sign at
all phases (positive for StokesQ and negative forV ). In con-
trast, the parameters affected by kink waves oscillate around
zero. Also, for similar wave velocities, torsional waves shift the
line profiles by less than half as much as kink waves do. The
oscillation amplitudes and absolute values of the asymmetries
are also significantly reduced (by up to a factor of 6). The tem-
poral average does not alter the above points significantly. The
dependence of theV andQ parameters on the wave amplitude
and frequency and on the position on solar disc is basically the
same for both waves.

That torsional waves affect polarized line profiles less
strongly than kink waves has the following three reasons, which
all root in the different nature of the waves.

1. The phase velocity of torsional waves isvA = B/
√

4π% and
is larger than that of the kink wavevk ∼ B/

√
4π(% + %ex)

because the latter is influenced by the density%ex of the
external atmosphere which, for typical flux-tube parameters,
is significantly larger than the density inside the tube%.
The wave-induced field inclination is consequently larger
for kink than for torsional waves if an equal wave-velocity
amplitude is assumed. (Compare with Eq. 6.)

2. The velocity induced by a kink wave is oriented in a sin-
gle direction and has constant magnitude within a flux-tube
cross-section. In contrast, the velocity induced by a torsional
wave is azimuthal and its amplitude is proportional to the
distance to the centre (to first order). Assume that the ve-
locity amplitudev of the kink wave agrees with the velocity
amplitude of the torsional wave at the flux-tube boundary
R0, v = vϕ1R0, wherevϕ1 is the angular velocity. In that
case the average velocity within a cross section of the flux
tube is 2/3 of that of a kink wave. Note that the maximum
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apparent velocity (assumed forθ = 90◦) is vy = vϕ1lx
(Eq. 10) and that consequently only4/(3π) ∼ 0.42 of a
constant and isotropic velocityv can actually be seen by the
radiative transfer equation. For the velocity field assumed
above the energy flux (the product of kinetic energy and
phase velocity) is roughly the same for kink and torsional
waves (this assumes that the external density is four times
the inernal density or that the phase velocity of kink waves
is half of the Alfvén speed).

3. The degree of polarization strongly depends on the path the
light takes through the flux tube. The amount of magnetic
material along a ray is largest if it intersects the flux-tube
axis, but rapidly decreases as the shortest distance between
the ray and the axis increases. Consequently, most of the
polarized light stems from close to the flux-tube axis. The
torsional velocity, however, is small there, so that the kink
wave only has a small influence on the Stokes parameters
formed there.

The largest consequence of the difference for the observa-
tional detection of these waves is that for a given wave energy
flux it is far easier to detect a kink wave than a torsional wave
by its signature in the Stokes parameters. Hence, the constraints
set by observations on the wave flux (which will be the subject
of another paper) is expected to be less tight for torsional waves
than for kink or longitudinal waves.
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Appendix A: line profile parameters

Theline shiftis defined as∆λσ = 1
2 (λr +λb), whereλr,b is the

wavelength of the red, respectively blueσ-component peak. The
line broadeningis the difference between the centre-of-gravity
wavelengths of the blue and redσ-components:

∆λcg =
1
2

(∫
red ∆λ | s(λ) | dλ∫

red | s(λ) | dλ
−

∫
blue ∆λ | s(λ) | dλ∫

blue | s(λ) | dλ

)
.

The functions(λ) stands forV , Q, or U and∆λ for the un-
signed wavelength relative to line-centre. We isolate the effects
of the wave by removing the width of the reference profile (i.e.,
the corresponding Stokes profile calculated in the absence of

the wave) according to
√

∆λ2
cg − ∆λ2

cg,ref . The unsignedσ-

component amplitudesare aσ = ab + ar (whereab and ar

indicate the blue and redσ-components, respectively). In order
to stress the variations the total amplitude is normalized to the
amplitudeaσ,ref of the reference profile:aσ/aσ,ref . Therelative
amplitudeandarea asymmetryare defined as

δa =
ab − ar

ab + ar
, δA =

Ab − Ar

Ab + Ar
,

respectively. Here,Ab andAr are the unsigned areas of the blue
and redσ-components, respectively.

Appendix B: analytical considerations based
on a Milne-Eddington atmosphere

In this Appendix we use analytical solutions of the polarized
radiative transfer equations, including the magneto-optical ef-
fects, describing a Zeeman-split line in a Milne-Eddington at-
mosphere to explicate the dependence of theV ,Q andU profiles
onγ andχ. The solutions (due originally to Rachkovsky, 1967)
are taken from, e.g., Arena & Landi degl’Innocenti (1982) and
read

Q/Ic ∼ ηQ (ηI + 1)2 + %Qs + (B1)

(%UηV − %V ηU ) (ηI + 1),
U/Ic ∼ ηU (ηI + 1)2 + %Us + (B2)

(%V ηQ − %QηV ) (ηI + 1),
V/Ic ∼ ηV (ηI + 1)2 + %V s, (B3)

s = ηQ%Q + ηU%U + ηV %V .

Heres = ηQ%Q + ηU%U + ηV %V , while theηp (with p = I, V ,
Q, or U ) are defined as

ηI =
(

1
2
η0 sin2 γ − 1

4
(η+1 − η−1)(1 + cos2 γ)

)
, (B4)

ηQ =
(

1
2
η0 − 1

4
(η+1 − η−1)

)
sin2 γ cos 2χ, (B5)

ηU =
(

1
2
η0 − 1

4
(η+1 − η−1)

)
sin2 γ sin 2χ, (B6)

ηV =
(

1
2
(η+1 − η−1)

)
cos γ. (B7)

The definitions of the%p are obtained if in Eqs. (B5)–(B7)η is
replaced by%. Eachηi (with i = 0,±1) is basically a Voigt
function and%i a Faraday function (e.g. Landi degl’Innocenti
1976), but their precise functional form does not play a role
for the present purpose. If we introduceηa = 1

2η0 − 1
4 (η+1 −

η−1) andηb = 1
2 (η+1 − η−1), as well as the similarly defined

quantities%a and%b, then Eqs. (B1)–(B3) read

Q/Ic ∼ sin2(γ) cos(2χ)
(
(ηI + 1)2ηa + s%a

)
+ (B8)

sin2(γ) cos(γ) sin(2χ) (%aηb − %bηa) (ηI + 1),
U/Ic ∼ sin2(γ) sin(2χ)

(
(ηI + 1)2ηa + s%a

)
+ (B9)

sin2(γ) cos(γ) cos(2χ) (%aηb − %bηa) (ηI + 1),
V/Ic ∼ cos(γ)

(
(ηI + 1)2ηb + s%b

)
, (B10)

s = ηa%a sin4 γ + ηb%b cos2 γ.

Note that sinceηi and%i are independent ofγ andχ, so areηa,
ηb, %a and%b. ηI ands in (B8)–(B10) still depend onγ, but all
χ dependences are explicitly written in thesin 2χ andcos 2χ
terms. In Eqs. (B8) to (B10) the terms proportional to(ηI +1)2

generally give the bulk of the signal and the terms proportional
to (ηI + 1) are due exclusively to the magneto-optical effects.
Except very close to the limbγ does not cause a change in sign
of any terms. The azimuthχ, in contrast, has opposite signs in
the left and right halves of the flux tube (as seen from the vantage
point of the observer). Eq. (B8) then predicts that the StokesQ
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amplitude has the same sign for both+lx and−lx: Q/Ic is dom-
inated bycos(2χ) while the magneto-optical effects introduce
a weaker dependence onsin(2χ). StokesU , however, has the
reversed dependence onχ according to Eq. (B8) the bulk of the
signal is proportional tosin(2χ) and only the magneto-optical
effects give a term proportional tocos(2χ). Finally, StokesV
remains independent ofχ in this approximation.
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