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Preface

It has been said that solar physics is astronomy with a zoom lens. Modern observa-
tions of the Sun yield overwhelming complex details and dynamics of its variable
corona, chromosphere, photosphere, and heliosphere, with ever-increasing spatial
and temporal resolution. Observations and theory have led to the entirely new field
of helioseismology. The Sun is generally assumed to represent a typical case of cool,
magnetically active stars. However, it remains to be proven that the Sun qualifies
fully as a “standard” star. Solarestellar comparisons are mutually beneficial to
both fields as well for a number of fields in physics.

The aim of The Sun as a Guide to Stellar Physics is to review and illustrate how
“proxima solaris,” where structures and time variabilities can be studied in detail
from a full solar disk, have led to breakthroughs and progress in stellar science,
as well as new discoveries and insight in associated areas of physics. This involves
observations, theories, modeling, numerical simulations, instrumentation, and data
processing. The 17 individual chapters represent various solar physics subfields.
A brief overview of why interest in studying the Sun started and how is followed
by more detailed descriptions and discussions of observational challenges and pos-
sibilities, a theoretical understanding, and modeling capacities behind the current
level of insight and knowledge.

This book is prepared and written by solar and stellar physicists for a broader
audience of interested astronomers, astrophysicists, and physicists.

The editors are most grateful to the 19 authors for their enthusiasm and willing-
ness to contribute to the various specialized chapters. The insight and expertise of
the chapter authors have been vital for the presentations of interpretations and under-
standing of frequently intricate interrelated solar phenomena. A multiauthor book
will inevitably also risk repetitions in description and interpretation of particular
phenomena in chapters covering related issues. Because authors often have their
personal style and the book is aiming for a broad audience of readers, repeated de-
scriptions and explanations of a discovery or idea as examined under different lights
may be valuable to the reader.

The editors deeply thank R.M. Bonnet, J. Harvey, M. Knoelker, J. Leibacher, and
S. Tremaine for their encouragements and B. Fleck for his help in this endeavor.

Oddbjørn Engvold
Jean-Claude Vial

Andrew Skumanich
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1. INTRODUCTION
The solar atmosphere is usually defined as the outer, directly observable part of the
Sun (in contrast to the deeper solar layers, which can be probed only indirectly with
the help of helioseismology (see Chapter 4). In other words, the solar atmosphere
gives birth to photons that leave the Sun in the form of sunlight. The solar atmo-
sphere has a sharp lower edge in which the continuum radiation in the green part
of the spectrum is emitted. Sometimes it is more precisely defined as the location
at which optical depth unity is reached at 500 nm (s500 ¼ 1). If photon escape is
used as the definition, however, a deeper level should be used, such that almost
no photons emitted below it make it into space. An optical depth of 10 is such a
value. The two are separated by roughly 100 km on average, a tiny distance
compared with the solar radius of roughly 7 � 105 km (which for the earth-based
observer corresponds to the visible angular radius of about 1000 arcsec). By chance,
the solar surface roughly coincides with the depth at which hydrogen ionization
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starts to set in (as the temperature rapidly rises with depth). The upper edge of the
solar atmosphere is much more ambiguous to define. It extends out to a distance of
several million kilometers, where it smoothly transitions into the solar wind, which
is itself sometimes considered to be part of the solar atmosphere.

The solar atmosphere is traditionally divided into four layers, although consid-
ering these to be layers is now known to be only a very rough approximation. The
deepest and coolest of these layers (with a temperature between approximately
6000e7000K at s500 ¼ 1 and 4000e5000K at the top) is the solar photosphere,
which emits most of its radiation as visible wavelengths. The photosphere is close
to being in hydrostatical equilibrium with a pressure scale height of around
100 km. Consequently, solar matter quickly becomes opaque and the total vertical
extension of the photosphere is just about 500 km (i.e., less than 0.1% of solar
radius).

Above the photosphere lies the chromosphere, a layer with an average thickness
of about 1500 km, where the temperature gradually rises to 10,000K in a spatially
averaged sense. The chromosphere can be observed in the far UV, at millimeter
wavelengths, and in the cores of the strong spectral lines at wavelengths in between.
Because the temperature in the chromosphere is within a factor of 2 to that in the
photosphere, the scale height of chromospheric gas is roughly the same as that of
photospheric gas.

In a simple one-dimensional (1D) representation, the temperature above the
chromosphere first jumps to more than 1 million K just within a 100-km-thick layer
called the transition region and then flattens to form the solar corona. The transition
region and corona can be observed in UV and at radio wavelengths of around 1 cm
and longer X-rays.

We note that such a 1D representation of the solar atmosphere is a strong simpli-
fication: the solar atmosphere is strongly structured by various processes, with con-
vection, magnetism, oscillations, and waves being the major structuring agents.
Furthermore, the solar atmosphere is highly dynamic, so that at any given point in
space, the properties of the atmosphere can change strongly with time.

2. OBSERVATIONS OF THE SOLAR ATMOSPHERE
In contrast to stellar physics, solar physics has been largely driven by the ability to
resolve the features on the solar disk. In particular, high-resolution solar observa-
tions have made it possible to study the emergence and disappearance of solar mag-
netic fields directly as well as their sophisticated interaction with solar plasma.
Consequently, such observations serve as a test bench for simulations of solar and
stellar atmospheres.

High-resolution solar observations showed that in addition to a strong stratifica-
tion with depth, the solar atmosphere has a rich and complex horizontal structure.
The photospheric convective flows lead to the formation of granules, which are
cellular features with a mean size of about 1000 km and a lifetime of about
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10e20 min. Granules cover nearly the entire solar surface (with the exception of
spots), so that at every moment there are several millions of granules on the Sun.
Further inhomogeneities on the solar surface are caused by the magnetic field. Large
concentrations of the magnetic field form dark sunspots, which consist of two parts:
central umbral regions, which are the darkest parts of the sunspots with a predom-
inantly vertical magnetic field, and surrounding penumbral regions, which are much
lighter areas with an inclined magnetic field. The ensembles of smaller magnetic el-
ements form bright network and faculae, which are most easily seen near the solar
limb.

Over the last decade significant advances have been made with both ground-
based (e.g., the detection of convective downflows in a sunspot penumbra with
the Swedish 1-m Solar Telescope (Scharmer et al., 2011; Joshi et al., 2011a,b)
and space-based (e.g., inversion of data from the Solar Optical Telescope aboard
the Hinode satellite, which showed that solar internetwork consists of very inclined
hG fields (Orozco Suárez et al., 2007)) solar observations. Another interesting strat-
egy that allows observations with a large telescope in near-space conditions is to use
balloon-borne solar observatories. Two flights of the SUNRISE (Solanki et al., 2010;
Solanki et al., 2017), which is a balloon-borne solar Gregory telescope with a 1-m
aperture, observing the Sun at a resolution of 50e100 km, resulted in a number of
important discoveries. In particular, SUNRISE observations finally made it possible
to resolve small-scale magnetic flux concentration in the quiet Sun (Lagg et al.,
2010) and to study the migration and dispersal of such concentrations in intergran-
ular lanes (Jafarzadeh et al., 2017).

Fig. 3.1 presents an overview of the solar atmosphere. Plotted are images
showing the same field-of-view that cover an active region, sampling different tem-
perature regimes corresponding to the photosphere, chromosphere, and corona. One
interesting detail is that although a strong magnetic field (associated with the active
region) is present over a large area (upper middle panel), only a small part of this
field leads to the formation of sunspots (upper left panel). At the same time, the
structure of the faculae/plage (in which the plage is the chromospheric counterpart
of faculae) is similar to that of the magnetic field (compare the upper right panel with
the upper middle panel). The lower left panel shows the transition region whereas
the lower central and right panels sample the corona at different temperatures.
One can clearly see the bright loops of gas in the corona connecting opposite mag-
netic polarities. These loops are thought to outline magnetic field lines.

3. THE SOLAR SPECTRUM
In this chapter we will focus on the disc-integrated solar spectrum. It is particularly
important when considering the Sun as a star, because then no horizontal spatial in-
formation can be gleaned and only the flux as a function of wavelength or/and time is
available. Interestingly, the distribution of energy in the solar spectrum is close to the
spectral sensitivity of the human eye. Consequently, if not for the earth’s
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atmosphere, the Sun would appear white to the human observer. However, because
short-wavelength photons are better scattered in the atmosphere, the Sun appears to
be yellow whereas the sky is blue (however, the true color of the Sun can still be
glimpsed by looking at the white snow and clouds, which mix backscattered and
transmitted solar photons).

In addition to the continuous spectrum (first spectrally analyzed by Isaac
Newton), visible sunlight contains millions of absorption lines, first noticed by Wil-
liam Wollaston and studied in detail by Joseph Fraunhofer and later called
Fraunhofer lines.

A significant milestone in solar spectroscopy was reached with the introduction
of the Fourier Transform spectrometer (Brault, 1985) at the McMath-Pierce Solar
Facility at the National Solar Observatory on Kitt Peak in the early 1980s (see Doerr

FIGURE 3.1

Overview of the solar atmosphere. The images show a 500 � 500-arcsec2 part of the Sun

(recall that the visible solar radius is about 1000 arcsec) with active region AR12139

recorded on Aug. 17, 2014 around 14:49 UT. Whereas the dark sunspots in photospheric

intensity cover only a small fraction of the field of view, the magnetogram shows enhanced

magnetic flux in a much larger area (black and white show opposite polarities). The

intensity in the low chromosphere as seen in 170 nm pretty much correlates with the

strong magnetic field, whereas the upper layers at hotter temperatures show the transition

region and coronal structures connecting opposite polarities. For the latter panels, the

main ions contributing to the wavelength channels are displayed along with the rough

formation temperature.

Images are courtesy of the National Aeronautics and Space Administration/Solar Dynamics Observatory and the

Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) science teams.
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et al., 2016, for a historical overview of available solar spectra). Since then, several
versions of the Kitt Peak spectral atlases have been released (Kurucz, 1984; Kurucz,
2005a; Wallace et al., 2011).

Fig. 3.2 presents the first version of the Kitt Peak Solar Flux Atlas by Kurucz
et al. (Kurucz, 1984). The large number of absorption lines is striking; it is so

FIGURE 3.2

Kitt peak solar flux atlas (Kurucz, 1984) Upper panel: an artificially created image

representation. Each of the 50 slices covers 6 nm; together, they span the complete

spectrum across the visual range from 400 to 700 nm. The wavelength increases from left

to right along each strip, and from top to bottom. Lower panel: a graphical representation

of the same atlas between 300 and 800 nm. The flux values at every wavelengths are

normalized to the local continuum value.

Source: The image in the upper panel as well as the caption are adapted from https://www.noao.edu/image_

gallery/html/im0600.html. Credits: N.A. Sharp, National Optical Astronomy Observatory/National Solar Obser-

vatory/Kitt Peak Fourier Transform spectrometer/Association of Universities for Research in Astronomy/National

Science Foundation. The figure in the lower panel is taken from http://kurucz.harvard.edu/sun/fluxatlas2005/.
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huge that whereas current linelists used for modeling and interpreting solar spectra
contain more than 100 million atomic and molecular lines, many if not most of the
lines are so strongly blended that they cannot be identified (Kurucz, 2005b). Another
important detail that makes solar spectra look different from spectra of hotter stars is
the absence of the Balmer jump around 364.6 nm. It is practically invisible in the
solar spectrum because the dominant source of the continuum opacity in the solar
photosphere is the negative hydrogen ion. A small continuum jump introduced by
neutral hydrogen (see, e.g., Fig. 1 from Shapiro et al., 2015) is completely masked
by the Fraunhofer lines. The role of neutral hydrogen in the continuum opacity in-
creases with the effective temperature and the Balmer jump becomes one of the most
dominant features in the spectra of A stars. Interestingly, because the opacity of
negative hydrogen depends only weakly on the wavelength, the solar spectrum is
much more similar to the Planck’s law than spectra of hotter stars. The main devi-
ations of the solar spectrum from the Planck’s law in the visible spectral domain are
caused by the Fraunhofer lines.

Fig. 3.2 identifies the main physical mechanisms responsible for the creation of
the photons forming sunlight. In the UV these are scattering and thermal emissions
of photons in spectral lines. The number of lines decreases toward longer wave-
lengths where continuum photons also increasingly escape the atmosphere. Conse-
quently, starting from approximately 500e550 nm, most of the photons come from
the continuum and are produced during the recombination of neutral hydrogen with
electrons to form the negative hydrogen ion.

Whereas the main source of line opacity in the solar atmosphere is atomic lines,
the solar spectrum also contains several strong molecular features. The most prom-
inent among them are the CN violet system at about 380 nm and the CH G-band at
about 430 nm. Interestingly, approximately a quarter of solar brightness variability
on the timescale of the 11-year magnetic activity cycle comes from the molecular
lines (Shapiro et al., 2015). The contribution of molecular lines to the spectrum in-
creases for stars cooler than the Sun, and in the spectra of sunspots and pores,
comparatively dark and hence cool concentrations of magnetic flux. With a decrease
in the effective temperature, first lines of carbon-based diatomic molecules become
more pronounced and then (for temperatures below 4500K, i.e., in M stars and in
sunspot umbrae, i.e., the darkest parts of sunspots) the main contribution to line
opacity shifts to molecules composed of a-elements, in particular TiO and MgH
(see Fig. 3 from de Laverny et al., 2012).

Thevast number of lines in the spectra of stars with near-solar temperature and cooler
is an asset for detecting planets with the radial velocity (RV) method (which currently
accounts for roughly half of all discovered exoplanets (http://exoplanets.eu). The number
of spectral lines decreases with the effective temperature and the lines also become
broader owing to the faster rotation of these stars (because they are younger than the
Sun and consequently did not undergo such strong magnetic braking). Consequently,
it becomes difficult to determine the Doppler shift and most of the RV exoplanets
were discovered around stars later than spectral type F6 (Hatzes, 2016).

64 CHAPTER 3 The Sun’s Atmosphere

http://exoplanets.eu


Interestingly, spectral lines below 180 nm are observed in emission whereas
most of the lines above this threshold are observed in absorption. This happens
because of the temperature inversion in the solar atmosphere: the temperature first
decreases with height in the photosphere, reaches a minimum of about
4000e5000K, and then starts to increase in the chromosphere. The pseudocontin-
uum at about 180 nm is formed around the temperature minimum so that lines below
180 nm are chromospheric (and seen in emission) whereas lines above 180 nm are
photospheric (and seen in absorption). Interestingly, there is also a second spectral
window to observe the atmospheric layers around the temperature minimum: the
opacity in the far infrared is dominated by the negative hydrogen free-free absorp-
tion, which rapidly increases with wavelength (as l2). Consequently, the chromo-
sphere becomes optically thick at about 150 mm and similar to the UV case, this
threshold separates photospheric and chromospheric photons.

4. PHYSICS OF THE PHOTOSPHERE/CHROMOSPHERE
4.1 ONE-DIMENSIONAL MODELS
We start with a brief overview of simplified 1D models that describe the solar atmo-
sphere as a plane-parallel structure. Although they are obvious simplifications, these
models had an important role in understating some of the physical processes in the
solar atmosphere.

The 1D models can be divided into two main classes. The first class encompasses
models with a temperature structure calculated assuming radiative equilibrium
(hereafter RE models), i.e., assuming that the only source of energy transport is ra-
diation. Because this is not correct close to the solar surface, they are often corrected
for the transport of mechanical energy by convection, which is parameterized
through the mixing length theory (Böhm-Vitense, 1958) or overshooting approxima-
tion (Castelli et al., 1997). RE models can be calculated for stars with arbitrary
fundamental parameters (i.e., effective temperature, metallicity, and surface grav-
ity), and although they are gradually superseded by 3D magnetohydrodynamic
approximation (MHD) models (Tremblay et al., 2013; Beeck et al., 2013), they
are still routinely used in stellar modeling. The most prominent examples of RE
models are ATLAS9 and ATLAS12 (Kurucz, 2005c), MARCS (Gustafsson et al.,
2008), and PHOENIX (Husser et al., 2013).

A strong drawback of the RE models is that they cannot describe the temperature
rise in the chromosphere as well as structures of the bright magnetic features (such
as network and faculae). In the solar case, such a drawback is overcome by the sec-
ond class of model, namely the semiempirical models (hereafter, SE models). The
atmospheric temperature structure in these models is empirically determined from
the observed solar spectrum and its center-to-limb variation. Although the SE
models do not directly rely on the assumption of RE, their photospheric
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stratification, in particular in the quiet Sun (as well as in sunspots) often appears to
be close to RE (Fontenla et al., 1999; Rutten, 2002).

Most of the SE models still used nowadays (Avrett, 1985; Fontenla et al., 1993;
Fontenla et al., 2015 and references therein) stem from the work by Vernazza, Avrett,
and Loeser (VAL) (Vernazza et al., 1981). They used a set of observations to create a
series of models for several brightness components of the quiet Sun. For example,
they used spectra of the continuum in the 135- to 168-nm range (where the transition
from emission to absorption lines happens) (see Section 3) to constrain the proper-
ties of atmospheric layers around the temperature minimum region.

The temperature stratifications of VAL models are plotted in Fig. 3.3. Six models
that differ quantitatively from each other but are qualitatively similar are meant to
represent regions with different amounts of magnetic flux, from the dark parts of

FIGURE 3.3

Temperature as a function of height for a Vernazza, Avrett, and Loeser (Vernazza et al.,

1981, Avrett, 1985) set of semiempirical solar model atmospheres: a dark point within a

supergranule cell interior (A), the average supergranule cell interior (B), the average quiet

Sun (C), the average network (D), a bright network element (E), a very bright network

elements (F).

From Vernazza, J.E., Avrett, E. H., Loeser, R., 1981. ApJS 45 635. http://adsabs.harvard.edu/abs/

1981ApJS...45..635V.
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the interiors of supergranule cells in the quiet Sun to the brightest network elements
(even brighter plage regions are found within active regions). Basically, these re-
gions differ in the degrees of their coverage by small-scale magnetic flux tubes
(which are a widely used description of the magnetic flux concentrations on the solar
surface) (see, e.g., Solanki et al., 1993 for a detailed review) (Solanki et al., 2006).
Together with the granulation, the magnetic flux tubes are the main structuring
agents in the photosphere. Furthermore, they have an important role in structuring
and energizing the entire solar atmosphere, providing a channel for the transport
of energy from the convection zone to the outer atmosphere.

Independently of the size, all magnetic flux tubes have a roughly equally strong
field of 1e1.5 kilogauss (kG) (which is a mean field, i.e., averaged over their cross-
section) sufficient to inhibit the convection and energy flux associated with it signif-
icantly. Consequently, the flux tubes with a diameter larger than a 1000 km are
visible as dark pores and the even larger ones as sunspots. In contrast, smaller
flux tubes (often called magnetic elements) form bright points, ensembles of which
can be observed as network and faculae. This is because the optical depth unity sur-
faces within magnetic flux concentrations are found at lower layers of the Sun owing
to the horizontal pressure balance with their surroundings. This lowering of the solar
surface within magnetic flux concentrations is called the Wilson depression.
Because near the solar surface the temperature increases rapidly downward, the
flux tubes are surrounded by hot walls (Fig. 3.4) (Solanki et al., 2013). This leads
to two effects that define the spectral contrasts of magnetic elements relative to
the surrounding quiet regions: (1) interiors of flux tubes are heated by radiation
from the hot walls, and (2) the hot walls can be directly seen when magnetic ele-
ments are observed away from the disc center. In particular, the second effect is
responsible for the center-to-limb variation of contrasts of magnetic elements:
they are barely distinguishable from the quiet regions when observed close to the
disk center (because hot walls are not visible) and appear bright toward the limb.
As a result, the network and active-region faculae are mainly visible as bright struc-
tures in the continuum at visible wavelengths (e.g., in white light) mainly close to the
solar limb. The photospheric temperature stratification of six brightness components
in Fig. 3.3 is produced to emulate this purely 3D effect of hot walls’ visibility within
the constraints of 1D geometry. Namely, the temperature structures of all six models
are similar in the lower photosphere (where continuum radiation emitted near the
solar disk center is formed) and start to diverge with height, at least below the tem-
perature minimum (where the radiation emitted away from the disk center is
formed).

The decrease in the photospheric temperature with height in all components can
be easily understood in terms of RE: such a temperature gradient is needed to trans-
fer the radiative energy through the photosphere. On the contrary, the increase in the
temperature with height in the chromosphere (i.e., above the temperature minimum)
cannot be explained under the assumption of RE: there must be a nonradiative heat-
ing mechanism. For the quiet Sun, the necessary energy is transported by acoustic
waves generated in the upper convection zone and traveling upward through the

4. Physics of the Photosphere/Chromosphere 67



solar atmosphere (Solanki et al., 2002; Werner et al., 2003). The amplitude of the
waves increases with decreasing gas density in the chromosphere and they start to
form shocks in the layers above the temperature minimum, heating them. Conse-
quently, the temperature in the chromosphere, on average, steeply increases between
the temperature minimum and layers at h z 1000 km, although the actual temper-
ature is strongly perturbed in space and time. At these layers, the ionization of
hydrogen starts. It absorbs a lot of the energy released within the chromosphere,
dramatically increasing its heat capacity. Consequently, the temperature profile flat-
tens, forming the plateau. At hz 2000 km, the number density of neutral hydrogen
is no longer sufficient to absorb all of the energy from the shock waves. Furthermore,
a significant amount of energy is transported to these layers from the solar corona by
thermal conduction. As a result, the temperature suddenly jumps by more than
10,000K. Then the chromosphere starts to be transparent for Lyman-a radiation,
which effectively cools it down again, forming the second temperature plateau at
20e30/c $ 103 K seen in the models in Fig. 3.3.

FIGURE 3.4

The emergent intensity from a magneto-convection simulation observed from a vantage

point corresponding to it being near the limb.

Still from a movie by Mats Carlsson taken from:Nordlund,A�., Stein, R.F., Asplund, M., 2009.
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The calculations of the spectra emergent from 1D models are relatively fast, and
with increasing computer capacity more and more sophisticated radiative transfer
effects can be taken into account (Werner et al., 2003). Of particular importance
are the effects caused by the deviations from the local thermodynamic equilibrium
(for non-LTE effects, see Section 9.1 of Hubeny and Mihalas (Hubeny and Mihalas,
2014) for a detailed review). They arise when the coupling between photons and at-
mospheric gas (enforced by the inelastic collisions) weakens and photons created in
one part of the atmosphere affect the conditions (e.g., the degree of ionization) in
nearby parts. In this case, atomic and molecular populations can no longer be calcu-
lated with the SahaeBoltzmann equation and instead a system of statistical balance
equations has to be solved simultaneously with the radiative transfer equation. The
non-LTE effects are present when the assumption of the detailed balance, i.e., that
any process in the atmosphere is exactly balanced by the inverse process, is broken.

The non-LTE effects are especially strong in the chromosphere where the gas
density and consequently collision rates are too small to maintain LTE. Because
of the strong temperature gradient, they also have an important role in the middle
and upper photosphere: UV photons emergent in the lower and hotter parts of the
photosphere penetrate into the higher and cooler layers and cause excessive (relative
to the one given by the SahaeBoltzmann equation) iron and other metals ionization
(Short and Hauschildt, 2009).

The 1D SE models describe only some of the aspects of the highly inhomoge-
neous and dynamical 3D solar atmosphere and are by far not as reliable for the di-
agnostics of atmospheric properties as modern 3D models, at least in the
photosphere (Koesterke et al., 2008; Uitenbroek and Criscuoli, 2011) and more
recently also in the chromosphere (de la Cruz Rodrı́guez et al., 2016; Ermolli
et al., 2013). At the same time, they yield a convenient way of interpolating from
a specific set of spectral measurements (e.g., emergent intensities from quiet Sun
and magnetic features measured at some sparse grids of wavelengths and position
angles, i.e., distances to the solar disc center) to the entire parameter space of wave-
lengths and position angles. Consequently, SE models are still used extensively in
studies of solar irradiance variability (see, e.g., reviews by Ermolli et al. (Ermolli
et al., 2013) and Solanki et al. (Solanki et al., 2013)) for providing contrasts of mag-
netic features relative to the quiet Sun as functions of the wavelength and position
angle.

Because of the lack of data, the SE approach has not been widely used for stellar
atmospheres, but the main concept behind the approach proved to be useful in stellar
physics as well. For example, Liseau et al. (Liseau et al., 2013) observed the
spectrum of a Cen A in the far infrared wavelength range, where the solar
temperature minimum can be observed (see Section 3). Similar to the solar case,
they found that the brightness temperature has a minimum at around 160 mm and
Tmin ¼ 3920 � 375K. This became the first direct measurement of a temperature
minimum on a star other than the Sun.
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4.2 THREE-DIMENSIONAL MODELS
The 3D models of the solar atmosphere usually rely on the MHD, which describes
plasma as a fluid and combines equations of hydrodynamics (i.e., the continuity equa-
tion, the equation of motion, and the energy equation) with the induction equation for
the magnetic field (see a detailed description of the MHD equations in Chapter 7).
There are two main classes of 3D magnetohydrodynamic models: “idealized” and
“realistic.” Idealized studies assume a fully ionized, ideal plasma and ignore radia-
tive transfer (so that the energy is only transferred by thermal conduction and advec-
tion) (see, e.g., review by Schüssler et al. (Schüssler et al., 2001)).

The real breakthrough has been the realistic 3D simulations of the lower solar
atmosphere. Two main features of the realistic simulations are that they account
for (1) partial ionization and (2) the radiative transfer of energy in 3D. The former
is crucial in the upper convective zone because the ionization energy dominates the
convective energy transport whereas the latter takes over from convection as the
dominant energy transport mechanism in the photosphere and determines the cool-
ing of the solar atmosphere.

The effects of partial ionization are taken into account via the equation of state
(EOS), which gives the main thermodynamical quantities (e.g., pressure, electron
concentration, and internal energy) as functions of temperature and density. The
EOS can be either ideal and rely on the Saha ionization equation and chemical equi-
librium, or nonideal, e.g., include many-body effects, electron degeneracy, and cor-
rections owing to Coulomb interaction (see the detailed discussion and
intercomparison of various EOS in (Vitas and Khomenko, 2015)).

The treatment of the radiative transfer is relatively simple at depths below the
surface. The radiation is almost isotropic and trapped there, so that the diffusion
approximation can be applied (Hubeny and Mihalas, 2014 p. 374). At the same
time the photons can escape in the solar atmosphere and a more sophisticated treat-
ment of the radiative transfer is needed. Generally, the solution of the radiative trans-
fer is the most time-consuming part of the realistic simulations. The main numerical
problem here is accounting for the millions of atomic and molecular lines that affect
the structure of the solar atmosphere via the line cooling and back-warming effects
(see Sections. 4.2 and 5.3 of the doctoral thesis of Alexander Vögler). The most
direct way to take these effects into account is to solve the radiative transfer on a
fine frequency grid. This is feasible in static 1D calculations but it becomes unbear-
ably time-consuming in 2D and 3D dynamical simulations. One way to solve this
problem, which is now routinely applied in most MHD codes, is to sort all frequency
points into a small number of groups (4e12 are typically used) according to the for-
mation heights of radiation at these frequencies. Then the group-integrated intensity
values are calculated assuming gray radiative transfer within each of the groups
(Nordlund, 1982; Vögler et al., 2005).

Another important sophistication is non-LTE effects, which are especially strong
in the chromosphere where collision rates drop (see Section 4.1). In particular, non-
LTE effects influence the cooling rates in spectral lines and the EOS (owing to
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non-Saha ionization). Over the past few years, realistic simulations started to
account for various non-LTE effects, e.g., the effects of scattering in spectral lines
and the continuum (Hayek et al., 2010), non-equilibrium hydrogen and helium ioni-
zation (Golding et al., 2016), and non-LTE radiative cooling in chromospheric
hydrogen, magnesium, and calcium lines (Carlsson and Leenaarts, 2012).

In contrast to the parameterized consideration in 1D models, 3D MHD models
make it possible to simulate the structure and dynamics of the magnetic field and
granulation directly, as well as the interplay between them. In particular, modern
realistic simulations are capable of reproducing granules: areas of hot upflows
with a typical size of 1000 km surrounded by cooler lanes of downflowing gas.
Fig. 3.4 shows the granulation pattern simulated by Carlsson et al. (Carlsson
et al., 2004). The figure illustrates a remarkable property of the solar surface: it
has an uneven 3D structure. This can be explained by the strong sensitivity of the
negative hydrogen ion concentration (which is the main source of the opacity in
the lower photosphere) to temperature (see Section 3). The concentration of negative
hydrogen ions is lower in the cooler downflowing lanes (owing to a drop in the free
electron concentration there) than in the warmer upflowing interiors of granules.
Consequently, the surface of unity optical depth is approximately 35 km higher in
upflows than in downflows in nonmagnetic regions (Frutiger et al., 2000). Along
the same line, concentrations of the strong magnetic field are lower than the
nonmagnetic solar surface by up to 350 km owing to theWilson depression (see Sec-
tion 4.1).

Of particular relevance to stellar studies is that one of the best observational con-
stants in simulations of solar convection comes from the spatially unresolved obser-
vations of the Fraunhofer lines (see, e.g., a detailed discussion in Nordlund et al.,
2009). This is because whereas convective instability stops just below the solar sur-
face, it overshoots into the solar photosphere, affecting the shapes and widths of the
Fraunhofer lines. Fig. 3.5 illustrates the high quality of the agreement between
spectra computed using realistic simulations and those with observations. Namely,
it shows a comparison between the Kitt Peak solar spectral atlas (see Section 4.1)
and a spectrum computed with the SPINOR code (Frutiger et al., 2000) using a piece
of the solar atmosphere simulated with the Max-Planck-Institut für Sonnensystem-
forschung/University of Chicago Radiative MHD (MURaM) (Vögler et al., 2005)
code. The agreement between the two spectra is remarkably good for both the
UV region with numerous OH and atomic lines (upper panel) and the visible spec-
trum dominated by several intermediate strength Fe lines (lower panels). Naturally,
the comparison between simulated and observed spectra is not limited to the solar
case. Numerous studies have shown that realistic simulations of stellar atmospheres
give velocity fields consistent with observed line bisectors and widths (Allende
Prieto et al., 2002; Ramı́rez et al., 2009; Trampedach et al., 2013).

Convective motion in the photosphere and in subphotospheric layers has a crucial
role in defining the structure of the small-scale photospheric magnetic concentrations
(i.e., bright points, network, and faculae). Dynamo action in the solar convective en-
velope (and probably in the overshoot layer at its base) produces a continuum of
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magnetic structures of different sizes. These rise through the visible solar surface and
into the atmosphere in the form of loops. At the surface itself, they are visible as en-
sembles of magnetic flux tubes with mixed polarities. Convective motion quickly
drags magnetic flux tubes into the intergranular lanes, and then toward the supergra-
nule boundaries (on timescales of days) (Stein, 2012). At the same time, magnetic flux
tubes are canceling (if of opposite polarity), dissolving, fragmenting, and forming
again (so that Schrijver et al. (1998) estimated that the flux in the magnetic network
is renewed every 40 h). Consequently, the final structure of the photospheric magnetic
field is determined by the balance between the emerging field and the rate at which the
field is dragged by the convective motion, with most of the magnetic flux tubes being
concentrated in the supergranule boundaries.

The structure of the magnetic field in the quiet Sun changes dramatically in the
chromosphere. The pressure in the hotter magnetic flux tubes (see Section 4.1) de-
creases slower than in the cooler surroundings. Consequently, magnetic flux tubes
cannot be confined by the external gas at layers above about 700e1000 km (Solanki
and Hammer, 2002). As a result, large patches of an almost horizontal field known as
a magnetic canopy are formed. Above this height, the solar atmosphere is
completely filled by magnetic field and also energetically dominated by it, i.e.,
the outer atmosphere of the Sun is a magnetosphere.

Simulations of the solar atmosphere have reached a level of realism that allows pre-
dictions to be made about the structure of the atmosphere of other cool stars. Unlike
earlier, purely hydrodynamic simulations (Nordlund and Dravins, 1990; Freytag
et al., 1996; Asplund et al., 1999), they now also include magnetic field. Fig. 3.6 shows
maps of the vertically emerging bolometric intensity (upper panel) and of the vertical
component of the magnetic field simulated by Beeck et al. (2015) with the MURaM
code for main sequence stars of F3, G2 (i.e., solar case), and K0 spectral classes. The

FIGURE 3.5

Excerpts from a National Solar Observatory spectral atlas of the quiet Sun at the center of

the solar disc (black lines), spatially averaged synthetic spectra (red lines) for the part of

the OH band plus atomic lines around 311.8 nm (upper panel) and for the spectral region

around the Fe I line at 525.02 nm, often used in solar physics because of its large

magnetic sensitivity (lower panel).
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horizontal size of the simulations has been scaled with the expected granule sizes. One
can see that independently of the spectral class, the convective motion drags the mag-
netic field to the convective downflows in the intergranular lanes where a field up to
several kG is formed. The locations of a strong field coincidewith regions of enhanced
or reduced intensity. The intensity contrasts of the magnetic elements notably depend
on the spectral type (decreasing toward cooler stars) (see detailed explanations of this
effect in Beeck et al., (2015)).

5. PHYSICS OF THE CHROMOSPHERE/CORONA
One major difference between the photosphere and the corona is found in the roles
the plasma and the magnetic field have, which are characterized by the ratio of the

FIGURE 3.6

Maps of the vertical bolometric intensity for Max-Planck-Institut für

Sonnensystemforschung/University of Chicago Radiative magnetohydrodynamic

approximation simulations of F3V, G2V, and KOV stars (upper panels) and corresponding

maps of the vertical component, Bz, of the magnetic field at z ¼ 0, the average

geometrical depth of the optical surface (lower panels). For improved image contrast,

brightness in the upper panels saturates at the values indicated by the gray scales on the

right of each panel. The initial magnetic field was unipolar, vertical with a uniform field

strength of 500 G.

The figure is adapted from Beeck B., Schüssler M., Cameron R.H., et al. Three-dimensional simulations of near-

surface convection in main-sequence stars. III. The structure of small-scale magnetic flux concentrations.

Astron. Astrophys. 2015; 581:A42. doi:10.1051/0004e6361/201525788. 1505.04739.
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energy densities of the gas and the magnetic field, the plasma-b. On average, in the
photosphere (outside sunspots) b is above unity, i.e., the thermal energy dominates,
whereas in the corona b is below unity and the magnetic field dominates energeti-
cally. This causes the radically different appearance of the two atmospheric regimes.
In the photosphere, the (overshooting) convection structures the atmosphere, e.g.,
resulting in granules, and through the interplay with the magnetic field convection
creates small flux tubes with field strengths of up to kG (Lagg et al., 2016). In
contrast, in the corona the magnetic field is basically filling space and heated plasma
is trapped along the magnetic field, forming coronal loops. These are best seen in
emission from plasma at around 106K, e.g., visualized in filter images near 171 Å
that are dominated by emission lines from Fe IX (Fig. 3.1). Because the magnetic
field dominates in the corona, the gas does not alter the magnetic field significantly,
and thus the plasma outlines magnetic field lines in a way similar to that of iron fill-
ings in a school experiment.

If, in general, the gas dominates in the photosphere and the magnetic field does
so in the corona, there must be an interface where they roughly balance. This is the
case somewhere in the chromosphere. The exact height where this happens depends
on the average magnetic flux density of the region. This transition is why this atmo-
spheric regime is so interesting for the magnetic connection from the surface to the
upper atmosphere. Besides, the chromosphere is challenging with respect to a cor-
rect description of its physics. At low temperatures (Fig. 3.3), the gas is only
partially ionized, and combined with the density and collisional coupling, processes
such as the Hall effect and ambipolar diffusion become important. This basically ac-
counts for the increased slippage of the magnetic field through the plasma, or vice
versa (see Section 5.4). Together with the requirement to treat chromospheric lines
under non-LTE conditions (see Section 4.1), these effects make the chromosphere
the most challenging regime in the solar atmosphere in terms of modeling and
interpretation.

Between the chromosphere and the corona lies the transition region, in which the
temperature jumps from a few 10,000K to nearly a million K. In 1D models the tran-
sition region is extremely narrow, having a thickness well below a few dozen km. Its
properties are mainly determined by the heat conduction from the corona
downwards.

5.1 CORONAL EMISSION AND MAGNETIC STRUCTURE
Coronal loops, as seen in emission originating from gas at around 1 MK (e.g., in a
wavelength band near 171 Å), usually emerge from the magnetic concentrations in
an active region and appear roughly semicircular with lengths of around 100 Mm
and reaching heights of often 50 Mm or more. Mostly, one footpoint of these loops
is in the penumbra around the dark core of the sunspot. In a sunspot group, typically
the other footpoint is not, as one might expect, at the other sunspot, but found in a
plage region of opposite magnetic polarity, i.e., inside the region around the other
sunspot with enhanced magnetic flux density. Observations can also show plasma
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at higher temperatures above 7 MK, e.g., in X-rays or in a band near 94 Å that con-
tains emission lines of Fe XVIII. These reveal a structure different from what is seen at
around 1 MK. Here, the active region is more compact, with shorter loops mostly
connecting the sunspots: hence, the term “hot core of an active region.” An overview
of the appearance of the corona is shown in Fig. 3.1. We come back to a physics-
based interpretation of this appearance in Section 5.3, and for the moment discuss
only some basic properties of coronal loops.

To test whether the coronal emission that is visible in the form of loops really
outlines the magnetic field, one can extrapolate the magnetic field from the photo-
sphere into the upper atmosphere. Direct measurements of the coronal magnetic
field are available only above the limb in coronagraphic observations (Lin et al.,
2004; Raouafi, 2005), which provide only poor spatial and temporal resolution
(because of the limitation of the photon flux). Thus, extrapolations are the major
tool for exploring the magnetic structure of the upper atmosphere. Naturally, the
magnetic field B is solenoidal, i.e., V � B ¼ 0. If we now assume that in the corona
there are no (or negligible) currents, j f V � B, the magnetic field would also be
irrotational, V � B ¼ 0. Consequently, B can be represented by the gradient of a sca-
lar potential field, B ¼ VF. Hence, this particular case is called the potential mag-
netic field and has to satisfy DF ¼ 0. The solution of this Laplace equation in any
given volume depends on the boundary conditions only. Thus, knowledge of the
magnetic field at the solar surface is sufficient to determine the magnetic field
throughout the whole atmosphere (e.g., assuming periodic boundary conditions in
the horizontal direction and B ¼ 0 at infinity). More complex (and, it is hoped,
more realistic) forms of magnetic extrapolations exist (Feng et al., 2007). Using
these, one can show that indeed the coronal loops seen in observations match the
field lines derived from the magnetic field from the extrapolations well (Feng
et al., 2007; Wiegelmann et al., 2005).

Typically, the overall appearance of coronal loops evolves on timescales of about
30 min to 1 h. This is much longer than the typical cooling time expected from the
energy losses through optically thin radiation (mostly in the extreme UV) and
through heat conduction back to the cooler lower atmosphere (Aschwanden,
2004). Therefore, there needs to be a continuous energy input, and the bulk of the
coronal loops cannot be understood through a single short heating pulse (Warren
et al., 2003). Of course, also much faster small-scale variations are seen on time-
scales down to a few seconds. Probably these are a direct response to small heating
events (Régnier et al., 2014).

The emission in the extreme UV is seen all the way to the apex of loops at heights
of 50 Mm or more, which is almost a tenth of a solar radius. However, the barometric
scale height at 1 MK in fully ionized hydrogen plasma is 50 Mm. Therefore, one
would expect to see a considerable drop in the emission (which is proportional to
the density squared). However, that is not the case (Aschwanden et al., 2001).
Thus, these loops cannot be in hydrostatic equilibrium, but have to be overdense.
This might be achieved through the flow dynamics of the loops and their temporal
evolution (Müller et al., 2003), but it is not yet fully understood.
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5.2 BASIC CONSIDERATIONS OF THE ENERGETICS
In the corona, the magnetic field energetically dominates the gas, and thus it has to
be space filling. The field lines then basically act as a tube to define the coronal loop
in which the plasma can move only along but not across the field. Therefore, as a first
approximation, one can consider the problem of a coronal loop in only one dimen-
sion (along a field line).

Figuratively speaking, the basic question is then why we see one field line high-
lighted by coronal extreme UVemission while the neighboring field line is dark. We
will see that this is determined solely by the energy input.

Consider a loop in equilibrium between energy input, radiative losses, and heat
conduction. In a thought experiment, we now increase the energy input, and natu-
rally the temperature rises. At high temperatures, radiative losses are smaller than
the loss through heat conduction back to the Sun. So, the additional energy is con-
ducted back to the Sun. There, in the low corona (and upper chromosphere), the
plasma becomes heated and evaporates into the loop. This increases the density in
the loop. At the same time, the base of the corona moves downward to higher den-
sities (because the very top of the chromosphere was evaporated) and thus the radi-
ative losses at the coronal base increase as well. So, the loop finds a new equilibrium
between energy input, heat conduction along the loop, and radiation at its base. So
essentially, increasing the energy input results in a higher temperature, but also in a
higher density (and thus pressure). Therefore, heating a set of field lines increases
the coronal radiation from the plasma trapped between them and they appear as a
coronal loop.

This equilibrium of the loop can be described mathematically through scaling
laws (Rosner et al., 1978; Priest, 1982) that connect the energy flux FH into the
corona and the loop length L to the resulting temperature T and pressure or number
density n (Peter et al., 2012):

T½K� ¼ 1700
�
FH
�
W
�
m2
��2=7ðL½m�Þ2=7; (3.1)

n
�
cm�3

� ¼ 3:9� 1010
�
FH
�
W
�
m2
��4=7ðL½m�Þ�3=7. (3.2)

One important corollary is that the heat input sets both the temperature and the
density. This implies that for a given loop, one is not free to select the temperature
and density independently, but (in equilibrium) they are both set by the energy input
(and loop length), and hence they are not independent.

The weak dependence of the temperature on the energy input is because of the
high sensitivity of the heat conduction flux on the temperature. The heat conduction
in a fully ionized gas is given though q f T5/2VT (Spitzer, 1962). Therefore,
increasing the temperature just slightly results in a strong increase in heat conduc-
tion. In other words, increasing the heating results in a significant enhancement of
the heat conduction (carrying away most of the additional heat) and only a small
amount of energy is left for only a modest temperature increase: the heat conduction
acts like a thermostat.
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The requirements for the average heating of the corona have been derived from
early extreme UV and x-ray observations through the radiative losses. These gave
values for the required energy flux into the upper atmosphere in the quiet Sun corona
of about 100 W/m2 and some 104 W/m2 in an active region (Withbroe and Noyes,
1977). Employing these scaling laws, for a 100-Mm-long loop, this yields temper-
atures of about 1 and 5 MK, values that are consistent with modern observations
(Landi and Feldman, 2008).

5.3 HEATING PROCESSES AND MODERN MODELS
Knowing the requirement for the energy input, this still leaves the questions of
where the energy is originating, how it is transported, and how it is finally dissipated.
Generally, one distinguishes AC and DC heating, termed after alternating and direct
currents. In both cases, the magnetic field at the coronal base (or in the photosphere)
is driven by the motions in the photosphere, which essentially leads to a Poynting
flux, i.e., a flux of electromagnetic energy, into the upper atmosphere. The magni-
tude of this flux has to match the requirements in the preceding subsection to sustain
a corona.

The driving (or stressing) of the magnetic field induces a perturbation of the mag-
netic field that propagates essentially with the Alfvén speed, i.e., the speed of a trans-
versal wave of the magnetic field (see Chapter 7 and Priest, 1982). If the driving is
faster than the Alfvén speed, the perturbation will be a wave, similar to a piece of
rope held in one hand and moved back and forth quickly. The changes of the magnetic
field go along with changing induced currents, hence the term “AC.” The driving mo-
tion can be linear or torsional and will launch a range of waves into the upper atmo-
sphere (van Ballegooijen et al., 2011). If the driving is slower than the Alfvén speed,
one simply stresses the magnetic field. If the driving occurs in a randomized fashion
(through the motion of the footpoints, e.g., owing to photospheric convection), figu-
ratively speaking, one is braiding the magnetic field lines. The induced currents
will not change in a wave fashion, and hence the term “DC.” The braiding will build
up increasingly stronger currents until a (secondary) instability sets in and releases the
energy in a process termed nanoflaring (Parker, 1972, 1988).

Often AC and DC heating are treated as an either/or problem, but on the Sun we
expect a wide range of driving timescales. Therefore, wherever there is strong DC
heating, one also expects increased AC heating, and vice versa. The energy input
in a model that is based on DC or AC heating alone should therefore be considered
as a lower limit only, because one might expect both mechanisms to be operational.
In the end, what really matters is the magnitude of the Poynting flux into the upper
atmosphere used to energize the plasma.

Three-dimensional MHD models have become available that solve the problem
of the driving of the corona based on the motions in the photosphere in numerical
experiments (Gudiksen and Nordlund, 2002). These showed that indeed, the driving
at the solar surface caused a braiding-type effect that can sustain a loop-dominated
million-K hot corona (Gudiksen and Nordlund, 2005) and these models match solar
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observations in many aspects (Peter et al., 2004). Such 3D models give a good un-
derstanding of the observed Doppler shifts (Peter et al., 2006; Solanki et al., 2017),
show that most of the energy is dissipated low in the atmosphere in thin current
sheet-like structures aligned with the magnetic field (Bingert and Peter, 2011), pro-
vide some understanding of the observed constant width of coronal loops (Peter and
Bingert, 2012), and show the clear relation of the increased Poynting flux at the base
of the corona with the appearance of bright loops (Chen et al., 2015), to name a few.
The last result also clarifies why loops are not rooted in the center of a sunspot, the
dark umbra. There, the magnetic field is so strong that it suppresses the (convective)
horizontal motions in the photosphere to a large extent. Consequently, in the umbra,
the Poynting flux is low, whereas it is high in the region of the penumbra (Chen et al.,
2014), and the loops are primarily rooted in the penumbra if they come close to a
sunspot.

One key ingredient of these 3D MHDmodels is the inclusion of heat conduction.
Only then are the temperature and density of the corona set properly (see Section
5.2). This is a prerequisite to derive the coronal emission. The emission from the
corona is optically thin and dominated by emission lines from highly ionized spe-
cies. In general, the excitation of these lines is caused by electron collisions, and
mostly the de-excitation is the result of spontaneous emission. Spontaneous emis-
sion is much faster than collisional excitation; hence, all ions are in the ground state
almost all of the time. Because of the electron collisional excitation, the emissivity is
(roughly) proportional to the density squared. Mostly the assumption of ionization
equilibrium, mediated by electron collisions, is justified (Chen et al., 2014), and
the typical ionization stages are restricted to a narrow range in plasma temperature
(typically over logT[K] z 0.2, i.e., a factor of 1.5). This is why we can consider that
a narrow extreme UV band dominated by one emission line provides information
about the distribution of plasma in a narrow temperature range, e.g., why the
171 Å band dominated by Fe IX shows plasma at around 1 MK.

5.4 CONNECTION TO THE LOW ATMOSPHERE
Of course, the corona has to be magnetically connected to (or rooted in) the photo-
sphere. However, finding a clear correspondence between coronal intensity struc-
tures, such as loops, and features of the magnetic field in the photosphere is
extremely challenging. One reason for this is the significant difference in spatial res-
olution of observations, which typically is a factor of five or more worse in the
corona compared with in the photosphere. The workhorse of coronal observations,
the AIA (Lemen et al., 2012), provides a plate scale of 0.6 arcsec per pixel and a
spatial resolution of about 1.4 arcsec. On a rocket flight, the High-resolution Coronal
imager could provide a few minutes’ worth of coronal images at 0.3e0.4 arcsec res-
olution (Cirtain et al., 2013) and the Interface Region Imaging Spectrograph (De
Pontieu et al., 2014) regularly provides about 0.35 arcsec resolution, although it con-
centrates on the chromosphere and the transition region into the corona. These res-
olutions are considerably lower than those obtained in photospheric and
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chromospheric observations achieved by the SUNRISE balloon observatory
(Solanki et al., 2017) or ground-based solar observatories with apertures of up to
1.5 m that can go town to 50 km on the Sun.

Despite this mismatch in spatial resolution, one can patch together observations
from the photosphere, chromosphere, and corona to study the connectivity. One of
the most enigmatic features in the solar atmosphere is spicules and what drives
them. Reported already by Secchi in the late 19th century, they are well-
investigated observationally, but their physics is poorly understood. In spicules,
plasma is propelled upward, best seen in the emission of Ha. In one type (I), the
chromospheric plasma follows a ballistic trajectory, eventually falling back to the
Sun; in another type (II), they seem simply to dissolve in Ha (de Pontieu et al.,
2007), which probably is a signature of heating of the plasma (Pereira et al.,
2014). It has been suggested that ambipolar diffusion has a critical role
(Martı́nez-Sykora et al., 2017). Then the magnetic field can emerge more efficiently
from the photosphere upward (in slipping through the partially ionized plasma). This
then leads to more vigorous reconnection driving the spicules.

An important aspect of connecting the coronal structures to the photospheric mag-
netic field concerns the response of the corona to changes in the connectivity of the
magnetic field deep in the photosphere and chromosphere. Observations established
the important role of reconnection at height levels where the chromospherewould nor-
mally be located (Peter et al., 2014). In particular, one could track extreme UV bright-
enings and relate them to reconnection sites (determined by magnetic extrapolations)
that were located only some 500 km above the photosphere (Chitta et al., 2017a), i.e.,
near the temperature minimum (see Fig. 3.3). Comparing coronal data with the high-
resolution photospheric magnetic field in more detail shows that loops are rooted at
locations of small-scale mixed polarities (Chitta et al., 2017b). This highlights the
importance of reconnection in the chromosphere for the heating the corona. Thus, be-
sides AC and DC heating discussed in Section 5.3, this an adds a third path to coronal
energization, which needs to be explored in the future.
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