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Abstract

The goal of helioseismology is to infer proper-
ties of the Sun interior using observations of
solar oscillations on its surface. It requires a
good knowledge of the wave propagation inside
the Sun (forward model), of the noise prop-
erties of the observations and a reliable inver-
sion method. In this paper, a simplified model
(scalar acoustic wave equation) that captures
most of the propagating aspects of the physics
will be used. The goal is then to identify some
parameters of this PDE that characterize the
medium (density, sound speed) by using linear
and nonlinear inversions.
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1 Introduction

Helioseismology aims at recovering some prop-
erties of the solar interior from observations of
the line-of-sight velocity ψ(r, t) where r are points
on the surface and t is the time. From this time-
serie, one generally computes the time τ(r1, r2)
it takes for the wave to go between two points
r1 and r2 at the solar surface. These quantities
are the basic input of time-distance helioseis-
mology [1]. In order to recover some properties
q of the solar interior, they have to be linked to
the observations. A simplified forward model
that represents wave propagation in the Sun
(PDE satisfied by ψ) is presented in Section 2.
The observation operator that links travel-time
to ψ is given in Section 3 and finally different
inversion methods are compared in Section 4.

2 Forward problem

We consider that ψ satisfies an acoustic wave
equation in the Sun Ω with homogeneous Dirich-
let boundary conditions on ∂Ω. The medium is
assumed to be steady and is characterized by
its density ρ and sound speed c. The source S
is stationary and stochastic with zero mean and
known covariance. The problem decouples for

all frequencies ω and is given by{
Lψ := −σ2ψ − 2iωu · ∇ψ +Hψ = S in Ω
ψ = 0 on ∂Ω,

(1)
with σ = ω + iγ and

Hψ = −c∇ ·
(

1

ρ
∇(ρcψ)

)
. (2)

The waves are damped by γ and are subject to
a flow u. Without flow and if the coefficients
ρ and c are constant, then Eq. 1 is simply the
Helmholtz equation. In the Sun, these coeffi-
cients vary strongly close to the boundary (sev-
eral orders of magnitude) and care has to be
taken in the numerical resolution. We use the
Montjoie code 1 that solves Eq. 1 with finite ele-
ments. Details about the numerical scheme can
be found in [3] where it is also shown that even
if Eq. 1 is highly simplified, it captures most of
the propagating aspects of the physics.

3 Observation operator

In order to link travel-time to the observations,
let us first define the cross-covariances C12(ω) =
C(r1, r2, ω) in the Fourier space between pairs
of points (r1, r2) on the solar surface by

C12(ω) = ψ∗(r1, ω)ψ(r2, ω). (3)

The travel times are linearly dependent of the
cross-covariance

τ12 =

∫
W12(ω)∗

(
C12(ω)− Cref

12 (ω)
)
dω (4)

with Cref representing a reference cross-covariance
that can come from a solar model or averaged
observations [2] and W is a given function that
depends on Cref. We denote T the (quadratic)
operator that maps the observations to ψ

τ = T (ψ). (5)
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4 Inversion

The observations τ are linked to some internal
properties of the Sun q by a nonlinear inverse
problem

F (q) = τ, (6)

where F is defined implicitely by F (q) = (T ◦
L−1
q )ψ with Lq given by Eq. 1 and the obser-

vation operator T by Eq. 5. Then the inverse
problem can be stated:

The inverse problem (IP). Knowing the
observations τobs, the problem is to find the op-
timal parameter q solution of the nonlinear in-
verse problem (Eq. 6).

4.1 Linear inversion

A classical approach to solve (IP) in helioseis-
mology is to consider only first order pertur-
bations by using the first Born approximation
(single scattering approximation). In this case
the perturbations are linearly linked to the ob-
servations

E[τ ] =
∑
q

∫
Ω
Kq(r)δq(r)dV. (7)

The kernels are obtained by differentiating Eq. 4
and computing δψ at first order

Lq[δψ] = −δLq[ψ] + δS, (8)

with δLq computed by deriving formally Eq. 1.
For the different perturbations q, the sensitivity
kernels Kq can be written as a function of G,
C and of the operators H and σ. The exact
expression of the kernels can be found in [3].

Eq. 7 can be solved for example by Tikhonov
regularization

min
δq

(
‖Kqδq − E[τ ]‖2 + ‖Lδq‖2

)
, (9)

where L can be the identity or a discrete version
of a gradient or a Laplacian in order to impose
smoothness of the solution. (IP) can also be
solved by the adjoint method [4] which employs
techniques close to nonlinear inversions.

4.2 Nonlinear inversion

In order to find the optimal q by nonlinear meth-
ods, we need to be able to evaluate the forward
operator F (qk), its derivative F ′[qk]δq and the
adjoint of the derivative F ′[qk]

†δC. These three

ingredients are required for all types of nonlin-
ear inversions and can be computed by solving
the same PDEs (the forward operator and its
adjoint) but with different right hand side. For
example, the update ψk+1 = ψk+δψ is obtained
from F ′[qk]δq = T ′[ψk]δψ where δψ is the solu-
tion of

Lq[δψ] = −δLq[ψk](δq). (10)

An efficient method to solve (IP) is to use
the conjugate gradient applied to the normal
equation. We solve a quadratic least square
problem to find δqk that minimizes∥∥∥F ′[qk]δq + F (qk)− τobs

∥∥∥2
, (11)

and the regularization is made by choosing an
early stopping criterion at each iteration [5].

A comparison of the inversion methods will
be presented showing which types of perturba-
tions can be recovered with linear inversions and
when nonlinear methods become necessary.
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