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Abstract

This article gives an overview and reference to the most common coordinate systems currently used in space
science. While coordinate systems used in near-Earth space physics have been described in previous work we
extend that description to systems used for physical observations of the Sun and the planets and to systems based
on spacecraft location. For all systems we define the corresponding transformation in terms of Eulerian rotation
matrices. We also give first order Keplerian elements for planetary orbits and determine their precision for the
period 1950-2050 and describe methods to improve that precision. We also determine the Keplerian orbital
elements for most major interplanetary missions and discuss their precision. We also give reference to a large set
of web-sources relevant to the subject.
Discipline: b. Celestial Mechanics.

1 Introduction

Coordinate systems used in near-Earth space physics have been well covered by the works of Russell (1971) and
Hapgood (1992). But there has been a lack of publicly available documentation on coordinate systems used in
heliospheric space missions and in many cases the information does not seem comprehensive enough for reference
purposes1. Specifically descriptions of systems based on the physical ephemeris of the Sun and planets and systems
based on spacecraft position are currently not available in a form that makes the relation between both systems easy
to understand. Experience shows that this deficiency leads to misunderstandings and errors in the production of
spacecraft data sets. Another problem is the lack of information on the precision of transformations. This document
tries to collect all information necessary for the calculation of coordinate transformations in space science and
determines the precision of these transformations whenever possible.
We base all calculations on the current edition of the Astronomical Almanac (2000), hereafter cited as A.2and
the Expl.Suppl. (1992), hereafter cited as S.. This means that the base system of astronomical constants used is
the IAU(1976) system described in Astr.Alm.Suppl. (1984) implemented in the numerically integrated ephemeris
DE200 (Standish, 1990). In general this paper does not describe methods applicable for spatial resolutions below
the level of 1 arcsecond but the reader will be able to find the information necessary to achieve higher precision in
the cited sources.
To achieve the highest precision in planetary positions one can either (1) implement the numerically integrated
ephemeris DE200 or its more precise sequel DE405 (Standish, 1998a)3, (2) implement a polynomial expansion of
the ephemeris, for example the VSOP87 model(Bretagnon and Francou, 1988)4, which is an expansion of DE200,

�

Now at MPI für Aeronomie,D-37191 Katlenburg-Lindau,Germany
1The American National Space Science Data Center(NSSDC) maintains a webpage at http://nssdc.gsfc.nasa.gov/space/helios/coor des.html
2See the Nautical Almanac Offices webpage for details:

http://www.usno.navy.mil/and http://www.nao.rl.ac.uk/
3JPL Horizons System and DE200 at http://ssd.jpl.nasa.gov/horizons.html
4Data are available at the Institut de Mecanique Celeste at http://www.bdl.fr/
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or (3) extend the formulae given in this paper to higher order in time using the values given by Simon et al.
(1994) which are also based on VSOP87. Since the extraction code for DE200 is available in different computer
languages, its implementation is easy (see e.g. Heafner (1999)) but the size of the corresponding data files may
prevent its inclusion in distributed software. For the implementation of VSOP87 we recommend the book by
Meeus (2000). In this paper we include first order mean orbital elements from Simon et al. (1994) and give the
resulting precision with respect to DE200. The deviations are on the order of arcseconds while differences between
DE200 and DE405 are only a few milliarcseconds.
We should point out that for purposes of spacecraft navigation or problems of planetary encounters it is recom-
mended to install a tested software system whenever this is provided by the respective spacecraft navigation team.
For most NASA missions such a system is available in the form of the JPL SPICE system 5. The SPICE system is
a software library which implements DE200 and other reference systems in the form of position and attitude data
files (’SPICE kernel files’) for solar system bodies and spacecraft. Unfortunately SPICE kernels do not cover all
NASA missions and the precision of reconstructed trajectory data is usually not provided. Detailed documentation
on SPICE is only available via software file headers, this paper may provide a useful introduction to the principles
implemented in SPICE and similar software packages. Before considering implementing formulae given in this
paper in your own software package, you might consider implementing the systems cited above, though these will
not contain all the coordinate systems defined in our paper. Most data in this paper have been cross-checked by
recopying them from the text into our software and comparing the results with tested data. To ease the software
implementation of formulae given in this paper we are providing all data contained in the paper on our website 6,
and will provide corrections and updates on that site as long as possible. The website also contains orbital plots
used to determine the precision of data given in this paper.
We also cite the formulae and methods given by Hapgood (1992) for geocentric systems, which are based on the
Astronomical Almanac for Computers (1988) which is no longer updated by the Nautical Almanac Offices. The
formulae used by Hapgood (1992) are first order approximations of the third order formulae given in Expl.Suppl.
(1961). We show later that they achieve a precision of about 34

� �
for the timespan 1950-2050 if precession and

nutation are included. For many practical purposes the first order approximation is sufficient, but a geocentric
error of 34

� �
corresponds to a distance of 230km at the L1 Lagrangian point which might be of importance for

relative timings between spacecraft for geocentric systems. To keep the paper as compact as possible we will give
formulae for planetary orbits to first order only but will point the reader to the sources for improving the precision.
The formulae for nutation and precession are given to a precision of at least 2

� �
for the period 1950-2050, which

allows a higher accuracy transformation between inertial systems. Numerical values are either given in decimal
degree (

�
) or arcseconds (

� �
). Throughout this paper we use Eulerian matrix rotations to describe transformations

denoted E
�
Ω � θ � φ � (see Appendix). A concise explanation of many terms and systems used in this paper may be

found in section L of the Astronomical Almanac (2000).

2 Time

Table 1: Time-scales relevant in space science [see A. B4]

UT1 universal time, defined by the mean solar day
TAI international atomic time, defined by SI seconds
UTC coordinated universal time, TAI - leap seconds, broadcast standard
TT terrestrial time, TT=TAI+32s � 184, basis for geocentric ephemeris
TDB barycentric dynamical time, defined by the mean solar day at the

solar system barycentre, basis for solar system ephemeris

The time-scales relevant for coordinate transformations are defined in Tab.1. Formulae in the J2000.0 reference
system are in ephemeris time Teph [S. 2.26, but see also Standish (1998b)], but for most purposes of space data
analysis one may neglect the difference of less than 2 msec between Teph, Barycentric Dynamical Time (TDB)

5JPL SPICE at http://naif.jpl.nasa.gov/naif.html
6http://www.space-plasma.qmul.ac.uk/heliocoords/
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and Terrestrial Time (TT) [A. B5] and less than 0.1s between the two Universal Times (UTC, UT1). A difference
between Atomic Time (TAI) and Coordinated Universal Time (UTC) is introduced by leap-seconds tabulated in
Tab.2 [A. K9 for current table] 7.

Table 2: Leap seconds ∆A = TAI-UTC [see A. K9]

1972/1/1 +10s 1972/7/1 +11s 1973/1/1 +12s
1974/1/1 +13s 1975/1/1 +14s 1976/1/1 +15s
1977/1/1 +16s 1978/1/1 +17s 1979/1/1 +18s
1980/1/1 +19s 1981/7/1 +20s 1982/7/1 +21s
1983/7/1 +22s 1985/7/1 +23s 1988/1/1 +24s
1990/1/1 +25s 1991/1/1 +26s 1992/7/1 +27s
1993/7/1 +28s 1994/7/1 +29s 1996/1/1 +30s
1997/7/1 +31s 1999/1/1 +32s.

Thus TDB or TT can be approximated from UTC by TDB=UTC+32s � 184 � ∆A where ∆A is the number of elapsed
leap seconds to date. For earlier dates Meeus (2000) gives different approximation formulae for UTC-TDB. Space-
craft data are usually given in UTC. Relative velocities of solar system objects are small enough ( � 100 km/s) to
neglect the difference in time systems. Care must only be taken for problems of relative timing. If high precision
timing ( � 0.1s) is requested the reader should refer to McCarthy (1996) and to the documentation of the SPICE
system (see above). The reference points in time (epochs) for the ephemeris are given in Tab.3. Before 1984 the
ephemeris referred to B1950.0 and many spacecraft trajectory data are still given in the older system (see Ap-
pendix). The actual position of solar system objects and spacecraft is usually given in an epoch of date system
which means that coordinates refer to the orientation of the Earth equator or ecliptic at the time of measurement.
We give formulae to convert from the reference epoch to the epoch of date in the following section 2.1.

Table 3: Epoch definitions [S. Table 15.3, A. B4]

J1900.0 = 1900 January 1, 12.00TDB = JD 2415020.0
J1950.0 = 1950 January 1, 00.00TDB = JD 2433282.5
J2000.0 = 2000 January 1, 12.00TDB = JD 2451545.0
B1950.0 = JD 2433282.42345905

The Julian Day Number (JD) starts at Greenwich mean noon 4713 Jan. 1, B.C. [S. 2.26]. The epoch day number
is defined in this paper as the fractional number of days of 86400 seconds from the epoch:

d0 �
�
JD � 2451545 � 0 � � (1)

Formulae from S. and A. use Julian centuries (T0) from J2000.0. One Julian century has 36525 days, one Julian
year has 365.25 days, s.t. [S. T3.222.2]

T0 � d0
�
36525 � 0 and y0 � d0

�
365 � 25 (2)

We use this notation throughout the paper. When the astronomical reference systems eventually switch to the next
epoch (presumably J2050.0) formulae given in this paper have to be adapted.

2.1 Precession and Nutation

The two fundamental celestial reference systems used in heliospheric science are the ecliptic system defined by the
mean orbit of the Earth at J2000.0 and the equatorial system defined by the mean orientation of the Earth equator
at J2000.0 (see Fig.1).

7See also the webpage of the International Earth Rotation Service (IERS) at http://www.iers.org/
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The intersection of the Earth equatorial plane and the Earth orbital plane (ecliptic) defines the line of the equinoxes
(Fig.1). The ascending node of the geocentric ecliptic defines the vernal equinox (first point of Aries). The obliquity
of the ecliptic at epoch J2000.0 with respect to the mean equator at epoch J2000.0 is given by [A. K6]

ε0J2000 � 23
�
26

�
21

� � � 448 � 23
� � 439291111 (3)

The orientation of both planes changes over time by solar, lunar and planetary gravitational forces on the Earth axis
and orbit. The continuous change is called ’general precession’, the periodic change ’nutation’. Mean quantities
include precessional corrections, true quantities both precessional and nutational corrections.
The mean obliquity of the ecliptic of date with respect to the mean equator of date is given by [S. 3.222-1,A. B18]

ε0D � ε0J2000 � 46
� � � 8150T0 � 0

� � � 00059T2
0 � 0

� � � 001813T3
0 (4)

� 23
� � 439291111 � 0

� � 013004167T0 � 0
� � 000000164T2

0 � 0
� � 000000504T3

0
�

The true obliquity of date εD � ε0D � ∆ε includes the effects of nutation which are given to a precision of 2
� �

for
the period 1950-2050 by [S. 3.225-4]:

∆ε � 0
� � 0026cos

�
125

� � 0 � 0
� � 05295d0 � � 0

� � 0002cos
�
200

� � 9 � 1
� � 97129d0 � � (5)

For the calculation of true equatorial positions one also needs the longitudinal nutation which is given to first order
by [S. 3.225-4]:

∆ψ � � 0
� � 0048sin

�
125

� � 0 � 0
� � 05295d0 � � 0

� � 0004sin
�
200

� � 9 � 1
� � 97129d0 � � (6)

The corresponding rotation matrix from the mean equator of date to the true equator of date is then given by [S.
3.222.3]:

N
�
GEID � GEIT � � E

�
0

� � � εD � 0 � ��� E
�

� ∆ψ � 0 � � 0 � ��� E
�
0

� � ε0D � 0 � � � (7)

To achieve higher precision one has to add further terms for the series expansion for nutation from [S. Tables
.3.222.1-3.224.2]8.
The orientation of the ecliptic plane of date (εD) with respect to the the ecliptic plane at another date (εF ) is defined
by the inclination πA, the ascending node longitude ΠA of the plane of date εD relative to the plane of date F , and
the difference in the angular distances pA of the vernal equinoxes from the ascending node. Values for J2000.0 are
given in [S. Table 3.211.1]:

πA �
�
47

� � � 0029 � 0
� � � 06603T0 � 0

� � � 000598T2
0 � t �

�
� 0

� � � 03302 � 0
� � � 000598T0 � t2 � 0

� � � 000060t3 (8)

ΠA � 174
�
52

�
34

� � � 982 � 3289
� � � 4789T0 � 0

� � � 60622T 2
0 �

�
� 869

� � � 8089 � 0
� � � 50491T0 � t � 0

� � � 03536t2

pA �
�
5029

� � � 0966 � 2
� � � 22226T0 � 0

� � � 000042T2
0 � t �

�
1

� � � 11113 � 0
� � � 000042T0 � t2 � 0

� � � 000006t3

where T0 � εF � εJ2000 and t � εD � εF are the distances in Julian centuries between the fixed epoch εF and J2000.0
and between εD and εF respectively. The corresponding Eulerian rotation matrix is

P
�
HAEJ2000 � HAED � � E

�
ΠA � πA � � pA � ΠA � � (9)

Coordinates defined on the equator of epoch are transformed to the equator of date by the Eulerian precession
matrix

P
�
εF � εD � � E

�
90

�
� ζA � θA � � zA � 90

� � (10)

The Eulerian angles are defined in [S. Table 3.211.1]:

θA �
�
2004

� � � 3109 � 0
� � � 85330T0 � 0

� � � 000217T2
0 � t �

�
� 0

� � � 42665 � 0
� � � 000217T0 � t2 � 0

� � � 041833t3

ζA �
�
2306

� � � 2181 � 1
� � � 39656T0 � 0

� � � 000139T2
0 � t �

�
0

� � � 30188 � 0
� � � 000344T0 � t2 � 0

� � � 017998t3 (11)

zA �
�
2306

� � � 2181 � 1
� � � 39656T0 � 0

� � � 000139T2
0 � t �

�
1

� � � 09468 � 0
� � � 000066T0 � t2 � 0

� � � 018203t3

where t and T0 are defined as above. These formulae define the precession to the precision used for the Astronom-
ical Almanac but may be easily reduced to lower order.

8Note that there is a typographic error in the mean lunar ascending longitude in [S. Tab.3.222.2], the first argument should read Ω �
125 � 02

�
40
� ���

280.
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Figure 1: Ecliptic and Equatorial Systems: the ecliptic plane is inclined by the obliquity ε towards the Earth
equatorial plane. The vernal equinox

�
defines the common +X-axis, the +Z-axes are defined by the Northern

poles P and K. The position of an object S is defined by Right Ascension α and Declination δ in the equatorial
system, by ecliptic longitude λ and latitude β in the ecliptic system.

Hapgood (1997) gives only the first order transformation between epoch of J2000.0 and epoch of date which is a
reduction of the above formulae and also given to higher precision in [A. B18]:

θA � 0
� � 55675T0 � 0

� � 00012T2
0

ζA � 0
� � 64062T0 � 0

� � 0008T 2
0 (12)

zA � 0
� � 64062T0 � 0

� � 00030T2
0

For the heliocentric position of the Earth a complete neglect of precession results in an error of 1
� � 0 for the period

1950-2050, a neglect of nutation results in an error of 20
� �
. Using first order nutation and precession reduces the

error to 2
� � � 0.

3 Description of Coordinate Systems

Each coordinate system we describe in the following is defined by the orientation of its three right handed cartesian
axes in euclidean space and the position of its origin, relative to some other system. The +Z-axis always defines
the polar axis of the respective spherical coordinates: latitudes are counted from the XY-plane (polar axis 90

�
),

co-latitudes from the polar axis, longitudes are counted from the +X-axis (prime meridian) clockwise (left handed,
+Y-axis � 90

�
) or counter-clockwise (right handed, +Y-axis 90

�
) as specified.

3.1 Celestial Systems
� Geocentric Earth Equatorial GEIJ2000 (Hapgood, 1995)

This system is realized through the International Celestial Reference Frame (ICRF), which is the base system
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for star catalogues and reference values of planetary positions (see the IERS webpage cited above).
XY-plane: Earth mean equator at J2000.0
+X-axis: First Point of Aries, i.e. vector(Earth-Sun) of vernal equinox at epoch J2000.0
Angles: Declination δ and Right Ascension α right handed.

� Mean Geocentric Earth Equatorial GEID (Hapgood, 1995)
XY-plane: Earth mean equator of date.
+X-axis: First point of Aries, i.e. vector(Earth-Sun) of vernal equinox of date.
Transform: T

�
GEIJ2000 � GEID � � P

�
εD � ε0 � as defined in eqn.10.

� True Geocentric Earth Equatorial GEIT (Hapgood, 1995)
Base system for actual position of objects.

XY-plane: Earth true equator of date.
+X-axis: First point of Aries, i.e. vector(Earth-Sun) of vernal equinox of date.
Transform: T

�
GEID � GEIT � as defined in eqn.7.

� Heliocentric Aries Ecliptic HAEJ2000 (Fig.1)
XY-plane: Earth mean ecliptic at J2000.0
+X-axis: First point of Aries, i.e. vector(Earth-Sun) of vernal equinox at epoch J2000.0
Angles: Celestial latitude β and longitude λ right handed.
Transform: T

�
GEIJ2000 � HAEJ2000 � � � ε0 � X � � E

�
0 � ε0 � 0 �

and subtraction of solar position vector if necessary.

� Heliocentric Aries Ecliptic HAED
XY-plane: Earth mean ecliptic of date
+X-axis: First point of Aries, i.e. vector(Earth-Sun) of vernal equinox of date
Transform: T

�
HAEJ2000 � HAED � � E

�
ΠA � πA � � pA � ΠA � as defined in eqn.9 and

T
�
GEID � HAED � � E

�
0 � εD � 0 � where εD is defined by eqn.5.

3.2 Heliographic Systems

3.2.1 Solar Pole and Prime Meridian

Heliographic coordinate systems use the position of the solar rotation axis which is defined by its declination δ�
and the right ascension α � with respect to the celestial pole (GEIJ2000 � Z). Values for J2000.0 are [S. Table 15.7]:

δ � � 63
� � 87 α � � 286

� � 13 (13)

The traditional definition refers to the ecliptic of date with the values for the inclination i� of the solar equator and
longitude of the ascending node Ω � [S. 7.2, note the typo]:

i � � 7
� � 25 Ω � � 75

� � 76 � 1
� � 397T0 (14)

The ecliptic values for the polar axis have been in use since their first determination by Carrington. Newer mea-
surements show that the axis direction is less well defined (Balthasar et al., 1987) but for the purpose of coordinate
transformations one sticks with the original values. The same is true for the Solar rotation period for which the
adopted values are [A. C3] :

rsid � 25 � 38days and rsyn � 27 � 2753days � (15)

where the sidereal period rsid is relative to the celestial sphere, and the synodic relative to the rotating Earth (see
also Rosa et al. (1995)). The time dependence in Ω � takes approximate account of the ecliptic precession such
that no further precessional transformation should be applied but there is of course a small difference between the
ecliptic and the equatorial definition. In transformation of datasets always the equatorial values should be used.
Physical observations of the Sun refer to the apparent center of the visible disk from Earth (subterrestrial point)
whose heliocentric ecliptic longitude is the apparent longitude of the Earth λ � � λgeo � a defined in eqn.36 cor-
rected for light aberration (a � 20

� �
, see Appendix A.3).
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3.2.2 Systems

As pointed out in section 4.3 heliographic systems should refer to a solar reference ellipsoid, but since the oblate-
ness of the Sun is difficult to measure (Stix, 1989), for the following definitions the Sun is assumed to be spherical.

� Heliographic Coordinates HGC (Expl.Suppl., 1961; Stix, 1989)
Physical features on the surface of the Sun are located in Heliographic coordinates (Expl.Suppl., 1961,
11.B). Heliographic latitude is measured from the solar equator positive towards North, Heliographic lon-
gitude is defined westward (i.e. in the direction of planetary motion) from the solar prime meridian which
passed through the ascending node on the ecliptic of date on 1854 Jan 1, noon (JD 239 8220.0). Heliographic
longitude is sometimes identified with Carrington longitude, but this usage should be avoided since there
have been different definitions of the later term over time.

XY-plane: Solar equator of date
+X-axis: ascending node on 1854 Jan 1, noon (JD 239 8220.0)
Angles: Heliographic latitude Ψ and longitude Φ right handed.
Transform: T

�
GEIJ2000 � HGCJ2000 � � E

�
α � � 90

� � 90
�

� δ � � W0 �
with the values from eqn.13 and W0 � 84

� � 10 � 14
� � 1844d0[S. Table 15.7].

Alternatively (but less exact) one may use the transformation from ecliptic coordinates:
Transform: T

�
HAEJ2000 � HGCD � � E

�
Ω � � i � � w0 � where Ω � and i � are defined in eqn.14 and the prime

meridian angle is given by

w0 �
�
d0 � 2415020 � 0 � 2398220 � 0 � �

25 � 38 � 360
�

(16)

� Solar Rotations(Expl.Suppl., 1961)
Rotations of the Sun are counted in Carrington rotations R; a rotation starts when the heliographic prime
meridian crosses the subterrestrial point of the solar disc. The angular offset θ between this point and the
ascending node can be calculated from (Hapgood, 1992):

θ � � arctan
�
cos i � tan

�
λ � � Ω � � � (17)

such that the quadrant of θ is opposite that of λ � � Ω � . Note that θ is called L0 � M in Expl.Suppl. (1961).
The first Carrington rotation started on 1853 Nov 9 (JD 2398167.329), later start points can be calculated
using the synodic period rsyn � 27 � 2753 days. The term Carrington Time has been used for the pair of
numbers

�
R � L0 � , where L0 is the heliographic longitude of the subterrestrial point. For geophysical effects

Bartels rotations have been used which start at 1832 Feb 8.00 (JD 239 0190.50) with a period of 27.0 days
(Bartels (1952)).

� Heliocentric Earth Ecliptic HEE (Hapgood, 1992)
XY-plane: Earth mean ecliptic of date.
+X-axis: vector (Sun-Earth).
Transform: T

�
HAED � HEED � � E

�
0

� � 0 � � λgeo �
where λgeo is the geometric ecliptic longitude of the Earth which can be determined by one of the methods
described in section 4.2.1 or directly from eqn.36 to a precision of 34

� �
.

� Heliocentric Earth Equatorial HEEQ (Hapgood, 1992)
XY-plane: Solar equator of date.
+X-axis: Intersection between solar equator and solar central meridian of date.
Angles: Heliocentric latitude Ψ and central longitude θ (increasing eastward) right handed.
Transform: T

�
HAED � HEEQ � � E

�
Ω � � i � � θ � � , where θ � is defined in eqn.17.

� Heliocentric Inertial HCI (Burlaga, 1984)
Burlaga (1984) originally defined a system, called heliographic inertial (HGI), with reference to the orien-
tation of the Solar equator in J1900.0. We propose to call the system heliocentric and base it on J2000.0
instead:

XY-plane: Solar equator of J2000.0.
+X-axis: Solar ascending node on ecliptic of J2000.0.
Transform: T

�
HAEJ2000 � HCI � � E

�
Ω �

�
T0 � 0 � � i � � 0 � �



Fränz and Harper: Corrected Version March 12, 2002 8

� Heliocentric of Date HCD
XY-plane: Solar equator of date.
+X-axis: Solar ascending node on ecliptic of date.
Transform: T

�
HAED � HCD � � E

�
Ω � � i � � 0 � �

3.3 Geocentric Systems

Geocentric systems have been described by Russell (1971) and Hapgood (1992) with corrections given in Hapgood
(1995) and Hapgood (1997)9. You will also find a comprehensive introduction in Appendix 3 of Kivelson and
Russell (1995). The ESA SPENVIS system contains an extensive description of geocentric systems 10. A software
package by J.-C. Kosik is also maintained and documented at the Centre de Données de la Physique des Plasmas
11. We do not describe systems relevant for observations from the Earth surface, see [S., Ch.4] for a decription of
these systems.

3.3.1 Greenwich mean sidereal time

The Greenwich mean sidereal time is defined by the hour angle between the meridian of Greenwich and mean
equinox of date at 0h UT1: [A. B6]:

ΘGMST � 24110s � 54841 � 8640184s � 812866TU � 0s � 093104T2
U � 6s � 2 � 10

� 6T 3
U � (18)

in seconds of a day of 86400s UT1, where TU is the time difference in Julian centuries of Universal Time (UT1)
from J2000.0.
From this the hour angle in degree θGMST at any instant of time d0 (Julian days from J2000.0) can be calculated by

θGMST � ΘGMST
�
TU

�
0h � � � 360

� �
86400s � 180

�
� 360

� � d0 (19)

For the precision needed in this paper we may neglect the difference between TU and T0, such that (Meeus, 2000):

θGMST � 280
� � 46061837 � 360

� � 98564736629d0 � 0
� � 0003875T2

0 � 2
� � 6 � 10

� 8T 3
0

� (20)

3.3.2 Earth magnetic pole

The geographic position of the Earth magnetic pole and the dipole moment ME can be calculated from the first
three coefficients of the International Geomagnetic Reference Field (IGRF) published 5-yearly by IAGA Working
Group 812. For full precision interpolate the values g10 � g11 � and h11 for the date requested and determine the
geographic longitude λD, latitude ΦD and moment ME by (Hapgood, 1992, 1997; Kertz, 1969):

λD � arctan
�
h11

�
g11 � ΦD � 90

�
� arctan

g11 cosλD � h11 sinλD

g10
ME �

�
g2

10 � g2
11 � h2

11 � R3
E � (21)

where RE= 6378.14 km is the Earth equatorial radius and λD lies in the fourth quadrant.
For the period 1975-2000 we derive following linear approximations with a precision of 0

� � 05:

λD � 288
� � 44 � 0

� � 04236y0 ΦD � 79
� � 53 � 0

� � 03556y0 ME � 3 � 01117 � 0 � 00226y0 � 10
� 6T � R3

E � � (22)

where y0 are Julian years from J2000.0.

3.3.3 Systems

The following systems are referred to the true Earth equator or ecliptic of date, that is corrections for nutation and
precession should be applied in transformations. We also give the bracket notation � � � used by Hapgood (1992)
(see Appendix).

9See also their webpage at http://sspg1.bnsc.rl.ac.uk/Share/Coordinates/ct home.htm
10ESA SPENVIS webpage at http://www.spenvis.oma.be/spenvis/
11See under MAGLIB at http://cdpp.cesr.fr
12See their webpage at http://www.ngdc.noaa.gov/IAGA/wg8/
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� Geographic Coordinates GEO (Hapgood, 1992)
XY-plane: True Earth equator of date.
+X-axis: Intersection of Greenwich meridian and Earth equator.
Angles: Geographic latitude and longitude (increasing westward) right handed,

in the sense of a planetographic system (see section 4.3).
Transform: T

�
GEIT � GEO � � � θGMST � Z � � E

�
0

� � 0 � � θGMST �
where the θGMST is given by eqn.20.

� Geocentric Solar Ecliptic GSE (Hapgood, 1992)
XY-plane: Earth mean ecliptic of date.
+X-axis: vector Earth-Sun of date.
Transform: T

�
HAED � GSE � � � λgeo � 180

� � Z � � E
�
0

� � 0 � � λgeo � 180
� � with λgeo from eqn.36

and subtraction of solar position vector if necessary.
Also T

�
GEID � GSED � � T

�
GEID � HAED � � 1 � T

�
HAED � GSE � � 1 �

� Geocentric Solar Magnetospheric GSM (Hapgood, 1992)
+Z-axis: projection of northern dipole axis on GSED YZ plane.
+X-axis: vector Earth-Sun of date.
Transform: T

�
GSED � GSM � � � � ψ � X � � E

�
0

� � � ψ � 0 � � where ψ � arctan
�
ye

�
ze � and Qe �

�
xe � ye � ze �

is the Earth dipole vector in GSE-coordinates.
This can be calculated from the geographic position Qg given in eqn.22 by
Qe � T

�
GEID � GSED ��� T

�
GEID � GEO � � 1Qg

�
� Boundary Normal Coordinates LMN (Russell and Elphic, 1978)13

+Z-axis: Normal vector to Earth Magnetopause.
+Y-axis: cross-product of +Z-axis and GSM-Z-axis.

The normal vector may be determined by a model or by minimum-variance analysis of data.

� Solar Magnetic SM (Chapman and Bartels, 1962)
+Z-axis: Northern Earth dipole axis of date.
+Y-axis: cross-product of +Z-axis and Earth-Sun vector of date.
Transform: T

�
GSM � SM � � � � µ � Y � � E

�
90

� � � µ � � 90
� �

where µ � arctan xe�
y2

e � z2
e

with Qe given above.

The longitude of this system is also called magnetic local time (MLT) increasing eastwards from the anti-
solar (0h) to the solar (12h) direction.

� Geomagnetic MAG (Chapman and Bartels, 1962)
+Z-axis: Northern Earth dipole axis of date.
+Y-axis: cross-product of Geographic North Pole of date and +Z-axis.
Transform: T

�
GEO � MAG � � � ΦD � 90

� � Y � � � λD � Z � � E
�
λD � 90

� � 90
�

� ΦD � � 90
� �

where ΦD and λD are given in eqn.22.

Geomagnetic latitude βm and longitude λm (increasing eastward) refer to this system.

� Invariant magnetic shells
�
Bd � Ld � (McIlwain, 1966)

These coordinates are used for functions of the magnetic field which are constant along the lines of force.
For a position of radial distance R from the dipole center and magnetic latitude βm in a dipolar field the
magnetic field strength Bd and equatorial distance Ld of the line of forth are given by

Bd �
M
R3

�
1 � 3sin2 βm Ld �

R
cos2 βm

� (23)

where M is the magnetic moment of the dipole (see eqn.22 for Earth value). The offset between dipole center
and gravity center ( � 500 km for Earth) has been neglected (Kertz, 1969).

13See also C.T. Russell’s page at http://www-ssc.igpp.ucla.edu/ssc/tutorial/magnetopause.html
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� Other magnetospheric coordinates 141516

Many coordinate systems depend on a specific magnetic field model. For example Corrected Magnetic
Coordinates (CGM)17are constructed by field line tracing. Magnetospheric Equatorial Coordinates (GME)
use specific magnetotail models (Dunlop and Cargill, 1999). For a field model again

�
B � L � coordinates may

be derived for which particle drift shells can be defined (McIlwain, 1966). See the references for details.

3.4 Position Dependent Systems

For the study of the local plasma environment of a spacecraft it is common to choose an axis system which depends
on the position of the spacecraft. Widely used are Radial-Tangential-Normal systems defined by the radial vector
from a central body to the spacecraft and the magnetic or rotational normal axis of that body. For highest precision
one should use reference systems at the epoch of date.

� Heliocentric RTN System HGRTN (Burlaga, 1984)
This system was, for example, used by the Ulysses mission.

+X-axis: vector (Sun-S/C).
+Y-axis: cross-product of (heliographic polar axis) and +X-axis.
Transform: T

�
HCD � HGRT N � � E

�
φS � C � 90

� � θS � C � 90
� �

where φS � C and θS � C are the longitude and latitude of the spacecraft in the HCD system. Cartesian coordi-
nates of this system are commonly called Radial, Tangential, Normal (RTN) coordinates.

� Dipole Meridian System DM (Kivelson and Russell, 1995)
This system can be used in any dipolar field to separate radial and angular motions.

+X-axis: vector (dipole Center-S/C).
+Y-axis: cross-product of (dipole polar axis) and +X-axis.
Transform: T

�
MAG � DM � � E

�
φS � C � 90

� � θS � C � 90
� �

where φS � C and θS � C are the longitude and latitude of the spacecraft in the MAG system.

� Spacecraft solar ecliptic SSE [F.Neubauer (personal communication)]
This system was for example used by the Helios mission.

XY-plane: Earth mean ecliptic of date.
+X-axis: projection of vector S/C-Sun on XY-plane.
+Z-axis: ecliptic South pole.
Transform: T

�
HAED � SSE � � E

�
φS � C � 90

� � 180
� � 90

� �
� Spin axis ecliptic SAE [NSSDC, Pioneer data pages]

This spacecraft centered system was for example used by the Pioneer missions (under the acronym PE).
+Z-axis: spacecraft spin axis vA (towards Earth).
+X-axis: cross-product of ecliptic polar axis of date and vA.
Transform: T

�
HAED � SAE � � E

�
φ � 90

� � θ � 0 � 0 �
where φ and θ are the ecliptic longitude and co-latitude of the spacecraft spin axis.

� Spin axis Sun pulse SAS
This system is a fundamental reference system for most spinning spacecraft since the S/C - Sun meridian can
easily be determined on board using a narrow-slit sun sensor. Thus a spacecraft-fixed instrumental system
has only a longitudinal offset with respect to SAS linear in time.

+Z-axis: spacecraft spin axis vA, right-handed orientation.
+Y-axis: cross-product between +Z-axis and S/C - Sun vector vS.
Transform: T

�
HAED � SAS � � E

�
φ � 90

� � θ � Φ �
vS � �

where φ and θ are the ecliptic longitude and co-latitude of the spacecraft spin axis and Φ
�
vS � is the longitude

of the vector vS0 � E
�
φ � 90

� � θ � 0 � ��� vS and vS is given in the ecliptic system.

14See also the APL Superdarn webpage http://superdarn.jhuapl.edu/aacgm/
15See also the University of Oulu spaceweb at http://spaceweb.oulu.fi/
16See also S. Haaland’s page at http://gluon.fi.uib.no/ haaland/
17See also the NSSDC Modelweb at http://nssdc.gsfc.nasa.gov/space/cgm/
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Figure 2: Keplerian orbital elements for the elliptical orbit of the point rm around the focus F with true anomaly
ν. Parameters of the ellipse are the axes a and b, the focal distance c � ae, the semi-latus rectum p and the point
of periapsis Pa at distance ra from F . Also shown are the concentric circles for the eccentric motion of the point
r

�
q with eccentric anomaly E, and mean motion of the point rq with mean anomaly M (dashed).

4 Planetary Systems

4.1 Planetary Orbits

As pointed out in the introduction transformations based on classical Keplerian elements can only achieve a limited
precision. But for many applications it is useful to have approximate positions available. For this reason we
describe in the following the calculation of position and velocity of objects in Keplerian orbits. There are many
textbooks on this subject – we recommend Murray and Dermott (2000) but e.g. Bate et al. (1971),Danby (1988)
or Heafner (1999) are also very useful. There are also some good web sites devoted to the subject18.
The gravitational motion of two bodies of mass M and m and position vectors rM and rm can be described in
terms of the three invariants: gravitational parameter µ � γ0

�
M � m � , specific mechanical energy E � v2

2 � µ
r , and

specific angular momentum h ��� r � v � , where r � rM � rm, r ��� r � and v � ṙ. γ0 is the constant of gravitation
whose IAU1976 value is determined by [A. K6]:

γ0 � k2 with k � 0 � 01720209895 (24)

when masses are given in solar masses, distances in AU [1 AU = 149 597 870 km], and times in days.
The elements of the conical orbit (shown in Fig.2) are then given as semi-major axis a � � µ

�
E and semi-minor axis

b � h
� �

� E , or alternatively as semi-latus rectum p � b2 �
a � h2 �

µ � a
�
1 � e2 � and eccentricity e ��� 1 � b2

�
a2 �

� 1 � Eh2
�
µ2. Let the origin be at the focus rM, the vector r then describes the motion of the body rm. The true

anomaly ν is the angle between r and the direction to the closest point of the orbit (periapsis) and can be determined
from

r �
p

1 � ecosν
� (25)

If there are two focal points (ellipse, hyperbola) their distance is given by c � e � a, the distances of the periapsis
and apoapsis are given by rp � a

�
1 � e � and ra � a

�
1 � e � . An elliptical orbit has the period P � 2πa � a

�
µ.

Mean elements of a body in an elliptical orbit (e � 1) are defined by the motion of a point rq on a concentric
circle with constant angular velocity n � � µ

�
a3 and radius

�
ab, such that the orbital period P � 2πa � a

�
µ is

the same for rq and rm. The mean anomaly M ��� µ
�
a3

�
t � T � is defined as the angle between periapsis and

rq. Unfortunately there is no simple relation between M and the true anomaly ν. To construct a relation one
introduces another auxiliary concentric circle with radius a and defines r

�
q as the point on that circle which has the

18For example K.Burnett’s site at http://www.btinternet.com/ � kburnett/kepler/
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Figure 3: Orientation of a Keplerian orbit of the point rm around the focus O with respect to the ecliptic plane.
Symbols are given for the equinox

�
, the ascending node � and its longitude Ω, the periapsis rp and its argument

ω, the inclination i, and the true anomaly ν. The perifocal system is denoted by (X’,Y’,Z’).

same perifocal x-coordinate as rm. The eccentric anomaly E is the angular distance between r
�
q and the periapsis

measured from the centre and is related to the mean and true anomalies by the set of equations:

M � E � esinE (Kepler equation) (26)

cosν �
e � cosE

ecosE � 1
cosE �

e � cosν
1 � ecosν �

r
p

�
e � cosν � r � a

�
1 � ecosE � (27)

Thus, if the orbital position is given as an expansion in t0 of the mean longitude λ � Ω � ω � M, the true longitude
λ0 � Ω � ω � ν can be found by an integration of the transcendental Kepler equation. In most cases a Newton-
Raphson integration converges quickly (see Danby (1988) or Herrick (1971) for methods). For hyperbolic orbits
(e � 1) one can as well define a mean anomaly Mh � � µ

� � a � 3 �
t � T � but this quantity has no direct angular

interpretation. The hyperbolic eccentric anomaly Eh is related to Mh and the true anomaly ν by

Mh � esinhEh � Eh cosν �
e � coshEh

ecoshEh � 1
coshEh �

e � cosν
1 � ecosν

r � a
�
1 � ecoshEh � (28)

The orientation of an orbit with respect to a reference plane (e.g. ecliptic) with origin at the orbital focus is defined
by the inclination i of the orbital plane, the longitude of the ascending node Ω, and the argument of periapsis ω
which is the angle between ascending node and periapsis rp (see Fig.3). The position of the body on the orbit
can then be defined by its time of periapsis passage T , its true anomaly ν0 at epoch t0, or its true longitude
λ0 � Ω � ω � ν0 at epoch t0. The perifocal coordinate system has its X-axis from the focus to the periapsis, and
its Z-axis right-handed perpendicular to the orbital plane in the sense of orbital motion. In this system the position
and velocity vector are given by

r � r
�
cosν � sinν � 0 � v � � µ

�
p

�
� sinν � e � cosν � 0 � � (29)
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Table 4: Heliocentric mean orbital elements of the planets in HAEJ2000 to a precision of 10
� 7 or 1

� �
for 1950-2050

after Simon et al. (1994). The elements are semi-major axis a [1 AU = 149 597 870 km], eccentricity e, mean
longitude λ, longitude of periapsis ϖ, inclination i, and ascending node Ω. The time parameter T0 is scaled in
Julian centuries of 36525 days from J2000.0. EMB denotes the Earth-Moon barycentre. The first column µ gives
the IAU1976 mass ratio Sun/planet.

µ a[AU] e � 10
� 7 � λ � � �

Mercury 6023600 0.38709831 2056318+204T0 252.2509055+149472.6746358T0

Venus 408523.5 0.72332982 67719-478T0 181.9798009+58517.8156760T0

EMB 328900.5 1.0000010 167086-420T0 100.4664568+35999.3728565T0

Mars 3098710 1.5236793 934006+905T0 355.4329996+19140.2993039T0

Jupiter 1047.355 5.2026032 484979+1632T0 34.3515187+3034.9056606T0

Saturn 3498.5 9.5549092 555481-3466T0 50.0774443+1222.1138488T0

Uranus 22869 19.2184461 463812-273T0 314.0550051+428.4669983T0

Neptune 19314 30.1103869 94557+60T0 304.3486655+218.4862002T0

ϖ � � � i � � � Ω � � �
Mercury 77.4561190+0.1588643T0 7.0049863-0.0059516T0 48.3308930-0.1254227T0

Venus 131.5637030+0.0048746T0 3.3946619-0.0008568T0 76.6799202-0.2780134T0

EMB 102.9373481+0.3225654T0 0.0 +0.0130548T0 174.8731758-0.2410908T0

Mars 336.0602340+0.4439016T0 1.8497265-0.0081477T0 49.5580932-0.2950250T0

Jupiter 14.3312069+0.2155209T0 1.3032670-0.0019877T0 100.4644070+0.1767232T0

Saturn 93.0572375+0.5665415T0 2.4888788+0.0025514T0 113.6655025-0.2566722T0

Uranus 173.0052911+0.0893212T0 0.7731969-0.0016869T0 74.0059570+0.0741431T0

Neptune 48.1202755+0.0291866T0 1.7699526+0.0002256T0 131.7840570-0.0061651T0

These might directly be expressed by the eccentric anomaly E:

r � a
�
cosE � e � � 1 � e2 sinE � 0 � v �

� µ
�
a

r

�
� sinE � � 1 � e2 cosE � 0 � (30)

In the hyperbolic case replace cos by cosh and sin by sinh. The transformation from the reference system to the
perifocal system is given by the Eulerian rotation E

�
Ω � i � ω � as defined in the Appendix. The ecliptic position of a

planet is then given by re � E
�
Ω � i � ω � r.

4.2 Planetary Positions

Tab.4 gives the 6 orbital elements a � e � λ � ϖ � i � Ω and their time development for the 7 major planets and the Earth-
Moon barycentre (EMB), where ϖ � Ω � ω is the longitude of the periapsis. Values are reduced to a relative
precision of 10

� 7 from Tab.5.8 in Simon et al. (1994). This precision is sufficient for the calculation of planetary
positions to the highest precision possible with a single set of mean elements for the period 1950-2050. The
resulting precisions in relation to the DE200 ecliptic position are given in Tab.5. The positions are calculated from
the mean elements by determining the true anomaly from eqn.26 and applying eqns.30. The last three columns of
Tab.5 are not corrected for disturbances by Jupiter and Saturn, while these disturbances are included in the first
four columns using Tab.6 of Simon et al. (1994). As one can see from Tab.5 it is – at least for the outer planets
– recommendable to apply these corrections. To save space we do not give the numerical values in this paper but
refer the reader to Simon et al. (1994) or to our web-page (cited above). The last row of Tab.5 gives the loss in
precision when using mean elements (not solving eqn.26) instead of true elements for the EMB: mean and true
position differ by up to 2

� � 7.

4.2.1 Position of Earth and Moon

Tab.5 gives also ecliptic positions of Earth and Moon. DE200 and VSOP87 give only the heliocentric position
rEMB of the EMB. DE200 gives in addition the geocentric position rgM of the Moon. If both values are given the
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Table 5: Precision of planetary positions derived from orbital elements (Tab.4) for the period 1950-2060 compared
to DE200 positions on the ecliptic of date. Maximal differences are given for heliocentric ecliptic latitude β,
longitude λ, and distance r and orbital velocity v. Values ’With Disturbances’ use the corrections given in Tab.6 of
Simon et al. (1994).

With Disturbances Without Disturbances
δβ � � �

� δλ � � �
� δr[1000km] δv[m/s] δβ � � �

� δλ � � �
� δr[1000km]

Mercury 0.8 6.0 0.51 1.2 3.2 26 1.6
Venus 0.9 5.5 1.0 1.8 1.6 28 5.0
EMB 0.6 7.6 1.2 1.9 0.6 29 7.0
Mars 1.0 26 8.1 4.5 4.3 160 39
Jupiter 5.5 46 71 15 20 830 990
Saturn 14 81 170 37 62 2100 6700
Uranus 4.9 86 510 27 44 3600 8800
Neptune 1.7 10 170 22 69 2400 11000
Earth 1.0 7.9 1.8 3.6 1.1 29 7.2
Moon 51 64 62 180 51 84 67
Earthapprox 1.1 16 8.6 260 1.1 34 8.6
Earth-EMB 1.1 14 5.8 14 1.1 29 7.2
EMBmean 1.1 6900 2500

position of the Earth rE can be calculated exactly (within the IAU1976 system) using the mass ratio Moon/Earth
of µM � 0 � 01230002[A. K6] (or its respective value used for the ephemeris) by:

rE � rEMB � rgM
µM

1 � µM
(31)

The velocity vector has the same transformation. For the VSOP87 system we apply following formula by J.L.Simon
[personal communication] describing the rotation of the Earth around the EMB:

λE � λEMB � 6
� � � 468sinD rE � rEMB � 4613cosD[km] � (32)

where D is the Delauney argument from eqn.3.5 in Simon et al. (1994):

D � 297
� � 8502 � P � T0 � (33)

where the rotation period is P � 445267
� � 11

�
century. The Earth velocity vector vE can be calculated by

vE � vEMB � ΩE � rD � (34)

where rD � rE � rEMB and the ecliptic angular velocity vector is given by ΩE � 2π
�
P � �

0 � 0 � 1 � .
If only rEMB and rE are given the ecliptic position and velocity of the Moon can then be calculated by

rM �
� �

1 � µM � rEMB � rE � �
µM

� (35)

But the precision of the resulting lunar velocity is rather low (190 m/s). Neglecting the difference between rEMB
and rE increases the total error in the Earth position to 14

� �
(Earth-EMB in Tab.5).

For slightly lower precision without solving the Kepler equation (26) the geometric ecliptic longitude of the Earth
can be calculated by the approximation given for the Solar longitude in [A. C24]:

λgeo � λmean � 1
� � 915sing � 0

� � 020sin2g rgeo � 1 � 00014 � 0 � 01671cosg � 0 � 00014cos2g[AU] � (36)

where λmean and the mean anomaly g � λmean � ϖ for the EMB can be taken from Tab.4. This approximation has
also been used by Hapgood (1992). The respective precision is 34

� �
(Earthapprox in Tab.5).
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Table 6: Physical Ephemeris of the Planets GEIJ2000[S. Table 15.7, A. E87]:
�
α0 � δ0 � is the position of the North

pole in GEIJ2000,
�
α̇ � δ̇ � its change per Julian century T , W0 is the position of the prime meridian at GEIJ2000, Ẇ

its change per day

Name α0 � � � α̇ � � �
T � δ0 � � � δ̇ � � �

T � W0 � � � Ẇ � � �
d �

Sun 286.13 63.87 84.10 +14.1844000
Mercury 281.01 -0.003 61.45 -0.005 329.71 +6.1385025
Venus 272.72 67.15 160.26 -1.4813596
Earth 0.00 -0.641 90.00 -0.557 190.16 +360.9856235
Mars 317.681 -0.108 52.886 -0.061 176.868 +350.8919830
Jupiter III 268.05 -0.009 64.49 +0.003 284.95 +870.5360000
Saturn III 40.58 -0.036 83.54 -0.004 38.90 +810.7939024
Uranus III 257.43 -15.10 203.81 -501.1600928
Neptune 299.36 +0.70sinN 43.46 -0.51cosN 253.18 536.3128492-0.48sinN
(where N= 359.28 +54.308)
Pluto 313.02 9.09 236.77 -56.3623195

4.3 Planetocentric Systems

For solar system bodies the IAU differentiates between planetocentric and planetographic body-fixed coordinates
: Planetocentric latitude refers to the equatorial plane and the polar axis, planetographic latitude is defined as the
angle between equatorial plane and a vector through the point of interest that is normal to the biaxial ellipsoid ref-
erence surface of the body. Both latitudes are identical for a spherical body. Planetocentric longitude is measured
eastwards (i.e. positive in the sense of rotation) from the prime meridian. Planetographic longitude of the sub-
observation point increases with time, i.e. to the west for prograde rotators and to the east for retrograde rotators.
All systems defined in the following are planetocentric.

Table 6 gives the orientation of the planetary rotation systems for all major planets at epoch GEIJ2000 and their
change with time. These are defined by the equatorial attitude

�
α � δ � of the rotation axis and the prime meridian

angle w0. Data are taken from [S. Table 15.7] which is identical to the table given by Davies et al. (1996). The
ascending node right ascensions are given by Ω � α � 90

�
. The respective transformation matrices are

T
�
GEIJ2000 � PLAJ2000 � � E

�
α0 � 90

� � 90
�

� δ0 � W0 � (37)

T
�
GEIJ2000 � PLAD � � E

�
α0 � α̇T0 � 90

� � 90
�

� δ0 � δ̇T0 � W0 � Ẇd0 �
where d0 and T0 are defined in eqn.1 and 2.

4.3.1 Jovian Systems

Since we have used different Jovian coordinate systems in previous work (Krupp et al., 1993) we include a de-
scription of these systems. Most of these systems are discussed in Dessler (1983). The Jovian pole of rotation is
defined by the values

�
α � δ � given for ”Jupiter III” in Table.6. The transformation from GEIJ2000 can be calculated

from

T
�
GEIJ2000 � JUPX � � E

�
α � 90

� � 90
�

� δ � w0 � (38)

where the prime meridian angle w0 is given in the following table. Note that longitudes are counted left-handed
(clockwise) from the prime meridian in the following Jovian systems.

� System I JUPI , mean atmospheric equatorial rotation [S. Table 15.7]
+Z-axis: Pole of rotation. p-angle: w0I � 67

� � 1 � 877
� � 900d0

� System II JUPII , mean atmospheric polar rotation [S. Table 15.7]
+Z-axis: Pole of rotation. p-angle: w0II � 43

� � 3 � 870
� � 270d0
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� System III JUPIII , magnetospheric rotation [S. Table 15.7]
+Z-axis: Pole of rotation. p-angle: w0III � 284

� � 95 � 870
� � 536d0

Transform: T
�
GEIJ2000 � JUPIII � � E

�
α � 90

� � 90
�

� δ � w0III �
This is the 1965 definition of System III, the Pioneer missions used the 1957 definition:

w01957 � w0III � 106
� � 31209 � 0 � 0083169d0

which can be calculated from eqn.7c in Seidelmann and Divine (1977) and was originally defined by the
magnetospheric rotation period.

� System III fix Sun Line
+Z-axis: Pole of rotation. +Y-axis: cross-product of +Z-axis and vector (Jupiter-Sun)

� Magnetic Dipole System JUPD (Dessler, 1983)
+Z-axis: dipole axis defined by its System III latitude and longitude:

latD �
�
90

�
� 9

� � 8 � λD � 200
�

+X-axis: intersection of System III prime meridian and magnetic equator.
Transform: T

�
JUPIII � JUPD � � E

�
λD � 90

� � 9 � � 8 � � λD � 90
� � (approximately).

� Centrifugal System JUPC(Dessler, 1983)
+Z-axis: centrifugal axis defined by its System III latitude and longitude:

latC �
�
90

�
� 7

� � 0 � λC � 200
�

+X-axis: intersection of System III prime meridian and centrifugal equator.
Transform: T

�
JUPIII � JUPC � � E

�
λC � 90

� � 7 � � 0 � � λC � 90
� � (approximately).

� Magnetic Dipole System fix Sun line
+Z-axis: dipole axis. +Y-axis: cross-product of +Z-axis and vector (Jupiter-Sun)

� Magnetic Dipole rθφ System
+X-axis: vector (Jupiter-S/C) +Z-axis: (dipole axis) � +X-axis
This system depends on the S/C-position.

5 Spacecraft Elements

To determine approximate positions of spacecraft relative to each other or to planets without using positional
data files it is useful to have orbital elements of spacecraft in Keplerian orbits. This excludes most near Earth
missions since their orbits are not Keplerian. In Tab.7 we list orbital elements for most major interplanetary
missions. We have fitted these elements to trajectory data provided by NSSDC19. Not much accuracy is claimed
by NSSDC for the propagated trajectories of any heliospheric spacecraft. But random cross-comparison with
published papers had revealed mismatches of � 0

� � 1 in angles or � 1% in radial distanceHEE (R.Parthasarathy,
personal communication). We used the vector method given in ch.2 of Bate et al. (1971) to calculate initial values
for the elements which we then fitted to achieve the smallest maximal deviation from the position data. The
deviations are listed in the last three columns of Tab.7. The spatial resolution of the NSSDC position data is
only 0 � 1 �

and the temporal resolution 1 day. This results in a poor precision of the orbital elements at perihelion
specifically for the Helios mission where the spacecraft moves 8

�
/day. For this reason we re-calculated the Helios

orbits by integration from cartesian state vectors provided by JPL and then fitted elements to the re-calculated
orbits. See also the JPL Voyager home page20for more Voyager orbital elements, and the ESA Ulysses home
page21for a discussion of Ulysses orbital elements.

19NSSDC at http://nssdc.gsfc.nasa.gov/space/helios/heli.html
20Voyager at http://vraptor.jpl.nasa.gov
21Ulysses at http://helio.estec.esa.nl/ulysses/
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Mission Period a[AU] e λ � � � ϖ � � � i � � � Ω � � � ∆r[AU] ∆φ � � � ∆θ � � �
Galileo 1990.4-1990.9 0.982 0.298 195.36 + 366.670y0 182.17 3.39 76.51 0.014 1.2 0.10
Galileo 1991.2-1992.8 1.572 0.439 304.32 + 181.146y0 -240.47 4.57 -103.37 0.036 0.7 0.09
Galileo 1993.8-1996.0 3.113 0.700 180.16 + 64.938y0 -277.61 1.68 -105.39 0.014 0.8 0.09
Helios1 1977.0-1986.0 0.6472 0.5216 126.77 + 691.475y0 -101.84 0.004 70.18 0.001 0.39 0.016
Helios2 1977.0-1981.0 0.6374 0.5436 147.76 + 707.453y0 294.58 0.024 121.85 0.002 0.89 0.004
Pioneer10 1972.4-1973.9 3.438 0.715 291.99 + 56.479y0 160.02 2.08 -17.06 0.019 0.18 0.07
Pioneer10 1974.3-2005.0 -6.942 1.727 111.81 + 19.700y0 -42.02 3.14 -28.57 0.019 0.02 0.007
Pioneer11 1973.5-1974.8 3.508 0.7166 220.69 + 54.797y0 195.46 3.05 16.64 0.013 0.10 0.06
Pioneer11 1975.0-1979.6 16.729 0.7767 180.91 + 5.264y0 55.05 15.29 -5.24 0.012 0.25 0.20
Pioneer11 1979.7-2000.0 -8.059 2.161 127.99 + 15.668y0 173.21 16.63 160.40 0.06 0.23 0.12
Ulysses 1991.1-1992.1 9.035 0.8905 143.48 + 13.272y0 21.13 1.99 13.57 0.014 0.07 0.06
Ulysses 1992.2-2005.0 3.375 0.6032 256.31 + 58.073y0 -22.93 79.15 -21.85 0.007 0.92 0.50
Voyager1 1978.0-1979.1 5.020 0.8009 332.66 + 31.820y0 -17.71 0.93 -11.4 0.010 0.44 0.12
Voyager1 1979.2-1980.8 -4.109 2.258 302.05 + 43.088y0 112.12 2.46 113.23 0.010 0.23 0.06
Voyager1 1980.9-2005.0 -3.203 3.742 332.47 + 62.642y0 157.35 35.71 178.95 0.034 0.10 0.11
Voyager2 1977.9-1979.4 3.624 0.7244 65.98 + 52.225y0 -20.65 0.84 -33.03 0.013 0.13 0.06
Voyager2 1979.6-1981.6 -17.345 1.2905 216.12 + 5.000y0 110.80 2.58 120.05 0.017 0.10 0.06
Voyager2 1981.7-1986.0 -3.913 3.4537 324.52 + 46.379y0 189.87 2.66 77.65 0.017 0.12 0.05
Voyager2 1986.1-1989.3 -2.902 6.0618 7.18 + 72.400y0 -144.23 2.81 -98.07 0.034 0.12 0.12
Voyager2 1990.7-2000.0 -4.021 6.2853 256.56 + 44.661y0 231.66 78.92 101.65 0.045 0.13 0.10

Table 7: Heliocentric mean orbital elements of major interplanetary spacecraft in HAEJ2000 fitted to data provided
by NSSDC. The elements are semi-major axis a, eccentricity e, mean longitude λ, longitude of periapsis ϖ, in-
clination i, and ascending node Ω. The time parameter y0 is scaled in Julian years of 365.25 days from J2000.0,
periods are given in decimal Julian years from J2000.0+2000.0. The last three columns contain the precision of
positions determined from the elements relative to NSSDC position data: Maximal difference in HAE distance,
longitude and latitude over the period given.
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Figure 4: Eulerian Rotation E
�
Ω � Θ � Φ � (after Madelung (1964)): the transformation between system S

�
X � Y � Z �

and system S
� �

X
� � Y � � Z � � can be expressed by the three right-handed principal rotations: 1. � Ω � Z � around the

Z-axis towards the ascending node � , 2. � ϑ � X � around the ascending node axis, 3. � φ � Z � around the Z
�
-axis

towards the � X
�
-axis.

6 Summary

We have collected formulae relevant for the transformation between planetocentric and heliocentric coordinate
systems and determined the precision of these transformations for the period 1950-2060, most relevant for space
science. We give a very short but complete description of orbit determination from Keplerian orbital elements.
With the simple set of formulae given in this paper (and adapted from Simon et al. (1994)) the positions of the
inner planets can be determined to 160

� �
though for the Earth this precision can be increased to 29

� �
. Adding

disturbance terms from Simon et al. (1994) increases the precision to 8
� �
. This sets the limits for the precision to

be achieved by a single set of Keplerian elements. For higher precision the installation of an integrated ephemeris
is recommended.
We also determined Keplerian orbital elements for major interplanetary spacecraft within the precision limits given
by the NSSDC data source. These allow quick approximate calculations of spacecraft positions and also allow to
cross check existing position data sets. Formulae given in this paper can easily be implemented in software.
Programs used in preparation of this paper have been written in the IDL language and are available from our
website 22.
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A Appendix

A.1 Eulerian Rotation

In this paper we describe transformations between cartesian coordinate systems in Euclidean space. Let system S
be defined by the orthonormal right-handed basis vectors X � Y � Z and system S

�
by the orthonormal right-handed

basis vectors X
� � Y � � Z �

with a common origin O. The position of system S
�

in system S is then defined by the
angular coordinates of its pole (Z

�
�

�
θ � Ψ � Ω � 90

�
)) and the prime meridian angle φ (see Fig.4) which is the

angular distance between prime meridian X
�
and ascending node � . The Eulerian transformation matrix from S to

S
�
is then defined by (Madelung, 1964):

E
�
Ω � θ � φ � �

��
cosφcosΩ � sinφsinΩcosθ cosφsinΩ � sinφcosΩcosθ sinφsinθ

� sinφcosΩ � cosφsinΩcosθ � sinφsinΩ � cosφcosΩcosθ cosφsinθ
sinΩsinθ � cosΩsinθ cosθ

��
(39)

Such that a vector v given in S has coordinates v
�

� E � v in S
�
. This corresponds to three principal rotations:

E � R3
�
φ ��� R1

�
θ ��� R3

�
Ω � � � φ � Z � � � θ � X � � � Ω � Z � (40)

in the notation of Hapgood (1992) where ’*’ denotes matrix multiplication. The three principal rotations are on
the other hand given by

R1
�
ζ � � � ζ � X � � E

�
0 � ζ � 0 � R2

�
ζ � � � ζ � Y � � E

�
90

� � ζ � � 90
� � R3

�
ζ � � � ζ � Z � � E

�
0 � 0 � ζ � � (41)

Note that all rotation matrices are orthogonal, s.t. E
� 1 � ET and transformations between all systems defined in

this paper can easily be calculated by a series of matrix multiplications.

A.2 Velocity Transformations

While position and magnetic field vectors are independent of the relative motion of the coordinate system this is
not true for other vectors for example for the solar wind velocity vector. Usually this vector is originally given in
a spacecraft reference frame. For solar wind studies it is advisable to subtract the effect of the spacecraft motion
relative to a heliocentric inertial system. If the spacecraft velocity vector is not provided together with the positional
data the velocity can be calculated from the temporal derivative of the position time series. The velocity vector in
the transformed system is generally given by

v
�

� Ėr � Ev � vc � (42)

where vc is the relative speed of the system origins and Ė is the temporal derivative of the rotation matrix:

Ė
�
Ω � θ � φ � � A � EΩ̇ � B � Eθ̇ � E � Aφ̇ (43)

A � Ṙ3RT
3 �

��
0 1 0

� 1 0 0
0 0 1

��
B � R3

�
φ � Ṙ1RT

1 RT
3

�
φ � �

��
cos2 φ cosφsinφ sinφ

� cosφsinφ � sin2 φ cosφ
sinφ � cosφ 0

��

For the transformation into planetocentric systems φ is the only angle changing rapidly such that Ė
�
Ω � θ � φ � �

E � Aφ̇.
One of the most common transformations is the transformation from a heliocentric inertial system like HAED to
a geocentric rotating system like GSED. Since λ̇E � 1

� �
day � 2 � 10

� 7rad
�
s the rotational part of the velocity

transformation can be neglected for geocentric distances of less than 5 � 106 km to keep an accuracy of � 1km/s.
In that case the transformation reduces to the subtraction of the orbital velocity of the Earth which in the ecliptic
system is given by

vEHAE � v0 �
�
cos

�
λgeo � 90

� � � sin
�
λgeo � 90

� � � 0 � � (44)

where v0 � 29 � 7859 km/s is the mean orbital velocity of the Earth and λgeo the Earth longitude defined in eqn.36.

22http://www.space-plasma.qmul.ac.uk/heliocoords/
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Table 8: Numerical example for a geocentric S/C position vector in different coordinate systems . Positions are
in geocentric cartesian coordinates in units of Earth equatorial radii [RE = 6378.14 km] for the date Aug 28, 1996
16:46:00 TT.

System X [RE] Y [Re] Z [RE]
GEOT 6.9027400 -1.6362400 1.9166900
GEIT -5.7864335 -4.1039357 1.9166900
GEID -5.7864918 -4.1039136 1.9165612
HAED -5.7864918 -3.0028771 3.3908764
HAEJ2000 -5.7840451 -3.0076174 3.3908496
GEIJ2000 -5.7840451 -4.1082375 1.9146822
HGCJ2000 -5.4328785 4.1138243 2.7493786
HEED -4.0378470 -5.1182566 3.3908764
HEEQD -4.4132668 -5.1924440 2.7496187
HCD -4.3379628 5.2555187 2.7496187
GSED 4.0378470 5.1182566 3.3908764
GSMD 4.0378470 6.0071917 1.2681645
SMD 3.3601371 6.0071917 2.5733108
MAGD 3.3344557 6.0215108 2.5732497
HGRTNE 4.0360303 5.1931904 -3.2771992

A.3 Light Aberration

For physical effects which depend not on the geometric relative position of two objects B1 � B2 but on the apparent
position of B1 relative to B2 one has to take light travel into account. The relativistic deflection of light by the
Sun is only larger than 1

� �
for angular distances from the Sun of less then 0

�
5 (see [S. Table 3.26.1]) and may be

neglected for our purposes. The change in position during the light travel time (for example 20
� �

between Sun and
Earth) can be calculated by iteration by determining the geometric position at time t1 � t0 � R

�
t0 � �

c where R
�
t0 � is

the distance between B1 and B2 at t0 and c is the speed of light [S. 3.314-315]. The light aberration is caused by
the relative speeds of the observer B1 to the light coming from object B2 and the aberrated position of B2 moving
with relative speed v can be calculated by r2 � r20 � Rv

�
c [S. 3.317].

B Numerical Example

In the following we give a numerical example for the application of some formulas given in the paper for compar-
ison with software implementations. As pointed out in the introduction all numerical values in this paper will be
available through our website.

B.1 Position Transforms

Note that in the version of this paper published in Planetary&Space Science, 50, 217ff, the date taken for
this example is erroneously given as Aug 28, 1996 16:46:00 UTC, not TT.
We assume that a spacecraft position is given in true geographic coordinates (GEOT ) on the date Aug 28, 1996
16:46:00 TT (JD 2450324.19861111). Numerical results are given in Tab.8 (We have chosen this date and po-
sition because software by M. Hapgood [personal communication] uses these values as a reference set.) The
Julian century for this date is T0 � � 0 � 0334237204350195 (eqn.2). In the following we apply the formulas
of section 3.3.3. To convert from GEOT to GEIT we calculate θGMST � 228

� � 68095 by eqn.20. To convert
from the true equator of date to the mean equator of date we have to apply the nutation matrix (eqn.7) with
ε0D � 23

� � 439726 � ∆ψ � 0
� � 0011126098 � ∆ε � � 0

� � 0024222837. Then we apply E
�
0 � ε0D � 0 � to transform to the

mean ecliptic of date (HAED), the precession matrix (eqn.9) to transform to the ecliptic of J2000 (HAEJ2000) and
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Table 9: Heliocentric position and velocity vectors of the Earth and the Ulysses spacecraft on Jul 31, 1994 23:59:00
UTC.

Vector Source System Units X Y Z
rUN NSSDC GEIB1950 km -135 927 895.1 126 880 660.0 -340 567 928.0
vUN NSSDC GEIB1950 km/s 18.54622396 -8.287477214 2.89468231
rUP Tab.7 HAEJ2000 km -134 998 220 -208 472 970 -362 990 550
vUP Tab.7 HAEJ2000 km/s 18.624175 -6.2275813 5.9890246
rUJ Tab.7 GEIJ2000 km -134 998 220 125 262 330 -341 329 890
vUJ Tab.7 GEIJ2000 km/s 18.624175 -8.0959913 3.0176330
rUB Tab.7 GEIB1950 km -135 246 410 126 772 910 -340 673 310
vUB Tab.7 GEIB1950 km/s 18.546949 -8.3037658 2.9273224
rUS SPICE GEIB1950 km -135 922 227 126 877 772 -340 564 861
vUS SPICE GEIB1950 km/s 18.546466 -8.287645 2.894987
rEMB Tab.4 HAEJ2000 km 94 752 993 -118 648 910 -1 355
vEMB Tab.4 HAEJ2000 km/s 22.792 18.478 0.00025
rE Tab.4 HAEJ2000 km 94 750 228 -118 652 770 -1 355
vE Tab.4 HAEJ2000 km/s 22.802 18.471 0.00025
rEJ Tab.4 GEIJ2000 AU 0.633 3661 -0.727 6925 -0.315 5032
rEAA AstrAlm GEIJ2000 AU 0.633 3616 -0.727 6944 -0.315 5035

E
�
0 � ε0J2000 � 0 � to transform to the equator of J2000 (GEIJ2000). (The vector is still geocentric since we did not

apply a translation. So it might better be called GAED etc. but we stick with the H to avoid more acronyms.)
We use T

�
GEIJ2000 � HGCJ2000 � and T

�
HAED � HCD � of section 3.2.2 to transform to the heliographic systems.

To transform to geocentric Earth Ecliptic (HEED) coordinates we use T
�
HAED � HEED � from section 3.2.2, for

HEEQD we use θ � � 259
� � 89919 (eqn.17). To transform to GSED with low precision we use the ecliptic lon-

gitude of the Earth λgeo � � 24
� � 302838 (eqn.36). To transform to GSMD we use the Earth dipole position

λD � 288
� � 58158 � ΦD � 79

� � 411145 (eqn.22) and angles ψD � � 21
� � 604166 � µD � 20

� � 010247.
To proceed to position dependent systems we now determine the Earth position to a higher precision using the
orbital elements of the EMB from Tab.4 corrected by Tab.6 of Simon et al. (1994) (values available on our website):

a � 1 � 0000025 � λ � � 22
� � 769425 � e � 0 � 016710039 � ϖ � 102

� � 92657 � i � � 0
� � 00043635047 � Ω � 174

� � 88123 � (45)

Using eqns.26 and 30 with µE � 1
�
332946(Tab.4), we get the EMB position in HAEJ2000:

λEMB � � 24
� � 305587 � βEMB � � 0

� � 00014340633 � rEMB � 1 � 0099340[AU] � (46)

Using the Delauney argument D � � 184
� � 63320 we get the Earth position in HAEJ2000 (eqn.32):

λE � � 24
� � 305442 � rE � 1 � 0099033[AU] � (47)

We apply the precession matrix (eqn.9) to get the Earth position vector in HAED (1AU = 149 597 870km, 1RE

=6378.14km):

XE � 21579 � 585 � RE � � YE � � 9767 � 205 � RE � � ZE � 0 � 000016 � RE � (48)

Adding this vector to the geocentric position (GAED) and transforming to HCD we get the HCD longitude and
latitude of the spacecraft:

ΦS � C � � 100
� � 11050 � ΘS � C � 7

� � 1466473 � (49)

from which we calculate the S/C-centered position vector of the Earth HGRTNE .
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B.2 State Vectors

Note that in the version of this paper published in Planetary&Space Science, 50, 217ff, the values calculated
from Tab.4&7 are calculated for Jul 31, 1994 23:59 TT, not UTC.
The position and velocity vectors (state vector, rUN � vUN in Tab.9) of the Ulysses spacecraft which we used to
determine the orbital elements in Tab.7 was provided by NSSDC for the Julian date JD � 2449565 � 5000137 (Jul
31, 1994 23:59:00 UTC) in heliocentric earth-equatorial coordinates for epoch εB1950.
In the following we describe how to derive the state vectors for Ulysses and Earth from the orbital elements for
this date and compare the values with the respective data of the JPL SPICE system. The Julian century for this
date is T0 � � 0 � 054195755956093 (eqn.2). From Tab.7 we take the values for the orbital elements for Ulysses in
HAEJ2000:

a � 3 � 375d � λ � 256
� � 31 � 58

� � 073 � T0 � 100 � e � 0 � 6032 � ϖ � � 22
� � 93 � Ω � 79

� � 15 � i � � 21
� � 84 (50)

Using eqns.26 and 30 and 1 AU � 149597870km we calculate the HAEJ2000 state vector (rUP � vUP).
This position is in agreement with the ecliptic position available from the spacecraft Situation Center for day
213, 1994:

�
λHAEJ2000 � 188

� � 8 � βHAEJ2000 � � 69
� � 4 � r � 2 � 59 AU). To compare this vector with the NSSDC

value (rUN � vUN) we have first to transform from the ecliptic HAEJ2000 system to the equatorial GEIJ2000 sys-
tem using T

�
HAEJ2000 � GEIJ2000 � � E

�
0 � � ε0 � 0 � . Since GEIB1950 refers to the orientation of the Earth equator at

εB1950
�
T0B1950 � � 0 � 50000210 � we have to calculate the precession matrix using eqn.10 :

P
�
0 � 0 � εB1950 � �

��
0 � 99992571 0 � 011178938 0 � 0048590038

� 0 � 011178938 0 � 99993751 � 2 � 7157926 � 10
� 5

� 0 � 0048590038 � 2 � 7162595 � 10
� 5 0 � 99998819

��
(51)

Finally we derive the Ulysses state vector in GEIB1950 (rUB � vUB).
The distance to the original NSSDC position (rUN � vUN) is 697950 km (0.0046 AU), the difference in velocity 36
m/s in agreement with the precision cited in Tab.7 for the orbital elements. The respective position provided by the
JPL SPICE system is (rUS � vUS), which deviates by 7062 km and 0.42 m/s from the NSSDC state vector.
Now, we calculate the HEIJ2000 state vector of the Earth at the same time. From Tab.4 we get the undisturbed
orbital elements of the EMB:

a � 1 � 0000010 � λ � � 50
� � 546769 � e � 0 � 016710876 � ϖ � 102

� � 91987 � Ω � 174
� � 88624 � i � � 0

� � 00070751475(52)

To increase precision we apply the disturbance corrections by Tab.6 of Simon et al. (1994) (values available on our
website) and get:

a � 0 � 99998900 � λ � � 50
� � 549526 � e � 0 � 016710912 � ϖ � 102

� � 91987 � Ω � 174
� � 88624 � i � � 0

� � 00070754223(53)

Using eqns.26 and 30 with µE � 1
�
332946(Tab.4), we get the EMB state vector in HAEJ2000 (rEMB � vEMB). Given

the low precision of the Ulysses position this would already be good enough to get the geocentric Ulysses state
vector but to compare with SPICE data or the Astronomical Almanac we now apply eqn.32 to get the Earth state
vector in HAEJ2000 (rE � vE), where we used the Delauney argument D � � 73

� � 746062. Finally we transform
from HAEJ2000 to GEIJ2000 using E

�
0 � � ε0 � 0 � as above to get rEJ , which can be compared with the value given in

section C22 of the Astronomical Almanac for 1994 (rEAA,which agrees with the value given by the SPICE system).
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Edition. Vol.III Astronomie und Geophysik. Springer, Berlin, p. 728ff.

Bate, R. R., Mueller, D. D., White, J. E., 1971. Fundamentals of Astrodynamics. Dover, New York.

Bretagnon, P., Francou, G., 1988. Planetary theories in rectangular and spherical variables - VSOP-87 solutions.
Astron. Astrophys. 202 (1-2), 309–315.

Burlaga, L. F., 1984. MHD processes in the outer heliosphere. Space Sci. Rev. 39, 255–316.

Chapman, S., Bartels, J., 1962. Geomagnetism. Oxford and the Clarendon Press, Oxford.

Danby, J., 1988. Fundamentals of Celestial Mechanics. Willman-Bell, Richmond,VA, 2nd ed.

Davies, M., Abalakin, V., Bursa, M., Lieske, J., Morando, B., Morrison, D., Seidelmann, P., Sinclair, A., Yallop,
B., Tjuflin, Y., 1996. Report of the IAU/IAG/COSPAR working group on cartographic coordinates and rotational
elements of the planets and satellites: 1994. Celest. Mech. Dyn. Astron. 63 (2), 127–148.

Dessler, A. E., 1983. Physics of the Jovian Magnetosphere. Cambridge Univ. Press, Cambridge,UK.

Dunlop, M., Cargill, P., 1999. Ordering the Earth’s magnetic field by geocentric magnetospheric equatorial coor-
dinates: Lessons from HEOS. J. Geophys. Res. 104 (A8), 17449–17457.

Expl.Suppl.(1961), 1961. Explanatory Supplement to the Astronomical Ephemeris. H.M. Nautical Almanac Office,
HM Stationary Office, London, (corrected imprint 1977).

Expl.Suppl.(1992), 1992. Explanatory Supplement to the Astronomical Almanac (K.P. Seidelmann(ed.)). U.S. &
H.M. Nautical Almanac Offices, University Science Books, Mill Valley,CA.

Hapgood, M., 1992. Space physics coordinate transformations: A user guide. Planet. Space Sci. 40, 711–717.

Hapgood, M., 1995. Space physics coordinate transformations: the role of precession. Ann. Geophys. 13 (7),
713–716.

Hapgood, M., 1997. Corrigendum,space physics coordinate transformations: A user guide. Planet. Space Sci.
45 (8), 1047.

Heafner, P., 1999. Fundamental Ephemeris Calculations. Willman-Bell, Richmond,VA.

Herrick, S., 1971. Astrodynamics: orbit determination, space navigation, celestial mechanics.Vol. 1&2. Van Nos-
trand, London.
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