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Abstract. In this article we present our state of the art
of fitting helioseismic p-mode spectra. We give a step by
step recipe for fitting the spectra: statistics of the spectra
both for spatially unresolved and resolved data, the use
of Maximum Likelihood estimates, the statistics of the p-
mode parameters, the use of Monte-Carlo simulation and
the significance of fitted parameters. The recipe is applied
to synthetic low-resolution data, similar to those of the
LOI, using Monte-Carlo simulations. For such spatially
resolved data, the statistics of the Fourier spectrum is as-
sumed to be a multi-normal distribution; the statistics of
the power spectrum is not a χ2 with 2 degrees of free-
dom. Results for l = 1 shows that all parameters describ-
ing the p modes can be obtained with negligible bias and
with minimum variance provided that the leakage matrix
is known. Systematic errors due to an imperfect knowl-
edge of the leakage matrix are derived for all the p-mode
parameters.

Key words: methods: analytical; data analysis;
statistical — Sun: oscillations

1. Introduction

In the past decade, helioseismology has been able to pro-
vide the internal structure of the Sun and its dynamics.
These inferences have been made possible by inverting
the frequencies and rotational splitting of the pressure
modes. The most commonly used technique for obtain-
ing the p-mode parameters is to fit the p-mode spectra
using Maximum Likelihood Estimators (MLE) assuming
that the statistical distribution of the p modes in the
power spectra is a χ2 with 2 degrees of freedom (Woodard
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1984). The MLE with this statistics were first applied
on helioseismology data by Duvall & Harvey (1986) and
Anderson et al. (1990). This technique is used for fitting
spectra obtained with integrated sunlight instruments.
For low- or high-resolution instruments, the (m, ν) power
spectra are commonly fitted assuming that each m spec-
trum has the same statistics as the for the integrated
sunlight instruments (LOI instrument: Appourchaux
et al. 1995; Rabello-Soares et al. 1997; GONG instru-
ment: Hill et al. 1996). Unfortunately, none of these im-
plementations are correct since the assumed statistics is
wrong. Only Schou (1992) described a more correct way
of fitting (m, ν) diagrammes using not the power spectra
but the complex Fourier spectra.

The pioneering work of Schou (1992) has inspired this
series of 3 articles for addressing our state of the art of
fitting (m, ν) diagrams. In this paper (Part I), we de-
scribe the statistics of the p modes, and how the MLE can
be used in helioseismology. In Appourchaux et al. (1997)
(hereafter Part II), we show how one can measure the
mode leakage matrix and the noise correlation from the
data which knowledge is required for using the Part I. In
Appourchaux & Gizon (1998) (hereafter Part III), we will
apply these techniques to the LOI instrument of VIRGO
on board SOHO (For a description of the performance of
the instrument see Appourchaux et al. 1997).

In this paper, we explain how the MLE can be used in
helioseismology. In the first section, we recall the proper-
ties of MLE. In the second section, we describe the statis-
tics of the p-mode Fourier spectra. In this section, we have
generalized the approach of Schou (1992), to any complex
leakage matrices. We have also used complex matrices to
generate the covariance matrices of the p modes and of
the noise. In the third section we show how to use Monte-
Carlo simulations for testing both the use of MLE and the
model of the p-mode spectra, and then conclude.
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2. Maximum likelihood estimators

Some of the properties of MLE were given by Toutain &
Appourchaux (1994). We repeat them here for complete-
ness. We also address 2 issues that were not covered in
their paper: are MLE biased?, and how significant are the
estimated parameters.

2.1. Fundamental properties

The aim of this section is to introduce some definitions and
properties of MLE. A comprehensive study of this area of
statistics can be found, e.g. in Kendall & Stuart (1967).
Given a random variable x with a probability distribution
f(x,λ), where λ is a vector of p parameters. We define
the logarithmic likelihood function ` of N independent
measurements xk of x as

lnL = ` = −
N∑
k=1

ln f(xk,λ). (1)

where L is the likelihood. The main property of ` is that
the position of its minimum in the λ-space gives an esti-
mate of the most likely value of λ, denoted hereafter as
λ̃. Hence λ̃ is the solution of the set of p simultaneous
equations:

∂`

∂λi
= 0 with i = 1, 2, ..., p. (2)

Moreover, in the limit of very large sample (N → ∞)
this estimator λ̃ tends to have a multi-normal probability
distribution. In this case, this estimator is asymptotically
unbiased with minimum variance; which implies its expec-
tation and variance are respectively:

lim
N→∞

E(λ̃) = λ. (3)

lim
N→∞

σ2(λ̃) = cii (4)

where cii are the diagonal elements of the inverse of the
Hessian matrix h, with elements:

hij = E(
∂2`

∂λi∂λj
). (5)

The covariances between any 2 components of λ̃ are given
by the corresponding off-diagonal elements of the inverse
matrix. Equation (5) is used when computing the so-called
formal error bars on λ̃; as a matter of fact according to the
Cramer-Rao theorem, Eq. (5) gives only a lower bound to
the error bars (Kendall & Stuart 1967, reference therein).
Toutain & Appourchaux (1994) showed that Eq. (5) is
valid for most purpose in helioseismology.

2.2. Biased or unbiased?

The fact that MLE are asymptotically unbiased does not
necessarily mean that this property is kept for a finite
amount of data. As an example, it is well known that an

estimator of the standard deviation (σ) of N measurement
of a normally distributed random variable x is given by:

σ2 =
1

N − 1

N∑
i=1

(xi − m̃)2 (6)

where xi is the i-th measurement of the random variable
x and m̃ is an estimate of the mean. It is well known that
the σ of Eq. (6) is unbiased. In this case, MLE would give
the following estimator:

σ2
MLE =

N − 1

N
σ2 (7)

Clearly the MLE expression give a bias that vanish asymp-
totically for an infinite number of points. It is often diffi-
cult to derive explicit relation, similar to Eq. (7) between
the estimator and the finite number of data points. When
analytical expression can not be found, we advice to use
Monte-Carlo simulations to verify the unbiasness; an ex-
ample for l = 1 splittings is given in Chang (1996) and
Appourchaux et al. (1997).

In any case MLE are intrinsically biased estimators be-
cause they are also minimum variance estimators (Kendall
& Stuart 1967). It may be useful to find other estimators
that do not bias the estimates (Quenouille 1956); they
might not necessarily have minimum variance. These es-
timators are yet to be found.

2.3. Significance of fitted parameters

When one uses Least Square for fitting data, one can test
the significance of its fitted parameters using the so-called
R test (Frieden 1983). For MLE, a useful test can be used:
the likelihood ratio test. It was first used by Appourchaux
et al. (1994). This method requires to maximize the likeli-
hood e−`(ωp) of a given event where p parameters are used
to described the line profile. If one wants to describe the
same event with n additional parameters, the likelihood
e−`(Ωp+n) will have to be maximized. The likelihood ra-
tio test consists in making the ratio of the two likelihood
(Brownlee 1965). Using the logarithmic likelihood, we can
define the ratio Λ as:

ln(Λ) = `(Ωp+n)− `(ωp). (8)

If Λ is close to 1, it means that there is no improvement
in the maximized likelihood and that the additional pa-
rameters are not significant. On the other hand, if Λ� 1,
it means that `(Ωp+n) � `(ωp) and that the additional
parameters are very significant. In order to define a signif-
icance for the n additional parameters, we need to know
the statistics of ln(Λ) under the null hypothesis, i.e. when
the n additional parameters are not significant. For this
null hypothesis, Wilks (1938) showed that for large sample
size the distribution of −2lnΛ tends to the χ2(n) distribu-
tion.
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3. The statistics of p-mode spectra

3.1. Single mode

It is well known that p modes are stochastically excited
oscillators (Kumar et al. 1988). The source of excitation
lies in the many granules covering the Sun. The modes are
assumed to be independently excited provided that their
spatial scale is larger than the granule size (Chang 1996).
From the equation of an oscillator, the statistics of the
p-mode profile can be derived as:

d2x

dt2
+ 2πγ

dx

dt
+ (2π)2ν2

0x = F (t) (9)

where t is the time, x is the displacement, γ is the damping
term or the linewidth, ν0 is the frequency of the mode and
F (t) is the forcing function. From this equation the Fourier
transform of x can be written as:

x̃(ν) =
F̃ (ν)

(2π)2(ν2
0 − ν

2 + iγν)
(10)

where x̃(ν) and F̃ (ν) are the Fourier transform of x(t)
and F (t). From the large number of granules, it can be
derived that the forcing function is normally distributed.
Therefore the 2 components (the real and imaginary parts)
of the Fourier transform of the forcing function are also
normally distributed. For the p modes, each component of
the Fourier transform is normally distributed with a mean
of zero, and a variance given by:

σ2(ν) =
1

2

σ2
F̃

(ν)

(2π)4[(ν2
0 − ν

2)2 + ν2γ2]
· (11)

The square of the modulus of x̃(ν), or power spectrum,
has a χ2 with 2 degree of freedom statistics and its mean
is twice that of Eq. (11). This is the p-mode profile that
is usually approximated by a Lorentzian profile. Similarly
other effects such as asymmetry can be introduced in the
profile of Eq. (11).

3.2. Unresolved observations

Instruments integrating over the solar surface the velocity
or the intensity signal observe a superposition of various
modes of different degrees. They are mainly sensitive to
the low-degree modes (l ≤ 4). For a given l, they de-
tect a mixing of azimuthal order m for which a visibility
is prescribed (Toutain & Gouttebroze 1994; Christensen-
Dalsgaard & Gough 1982). Most often they can only de-
tect modes for which l+m is even. Since the Fourier com-
ponents of the observed time series have a normal dis-
tribution, and since the different m are uncorrelated, the
statistics of the power spectra of unresolved observation is
a χ2 with 2 degrees of freedom. Toutain & Appourchaux
(1994) gave an analysis of the problem associated with
these observations; we will not repeat it here.

3.3. Resolved observations

When the solar image is resolved many more degrees can
be detected making the data analysis somewhat more
complicated. In order to extract a single l,m mode from
resolved observations, one has to apply a specific spatial
filter or weight to the velocity or intensity images. Most
often these weights are such that imperfect isolation of the
l,m mode is achieved; especially because the most com-
monly used filters (spherical harmonics) are not orthogo-
nal over half a sphere. This leads to the existence of other
modes in the Fourier spectrum generated for a given l,m
filter. Therefore, the observed Fourier spectrum is a lin-
ear combination of the modes to be detected. This linear
combination of the modes can be understood as modes
leaking into each other spectrum: this is represented by
the so-called leakage matrix. These leakages will produce
correlations between the different Fourier spectra. These
correlations will modify the statistics of the Fourier spec-
tra, such that their power spectra cannot be described as
a χ2 with 2 degrees of freedom. Therefore the statistics of
the 2l + 1 power spectra of a given l cannot be derived
from the product of 2l+1 χ2 with 2 degrees of freedom as
in Appourchaux et al. (1995). Nevertheless, the real and
imaginary parts of the Fourier spectra will still be nor-
mally distributed; in other words, the Fourier spectra have
a multi-normal distribution defined by a covariance ma-
trix. This fact will be used to derive the statistics of the
observation. The covariance matrix is the sum of the noise
and mode covariance matrices, which are not necessarily
the same. Last but not least, the theoretical probability
distribution has to be generated using the previous covari-
ance matrix.

In summary, to understand the statistics of resolved
observation, one has to follow four steps:

– Compute leakage matrices,
– Compute mode covariance matrices (related to the

leakage),
– Compute noise covariance matrices,
– Generate the likelihood from the theoretical probabil-

ity distribution.

Each step is described in detail hereafter.

3.3.1. Leakage matrices

Due to the spherical symmetry of the Sun, the most likely
weights to be used to isolate the modes are the spheri-
cal harmonics Yl,m. Here we generalize the approach to
any weight Wl,m. The result is the observation of Fourier
spectra ylm(ν) that are related to what we want to de-
tect, i.e. the Fourier spectra of the individual Fourier spec-
trum xl

′

m′(ν), by the so-called leakage matrix (Schou 1992;
Schou & Brown 1994). The following expression can be de-
rived for as many different degrees as needed; for simplicity
we wrote it for 2 different degrees l, l′ as:

y = C(l,l′)x (12)
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where x(ν) and y(ν) are 2 complex vectors made each of
2l + 2l′ + 2 component: 2l + 1 components for l, 2l′ + 1
components for l′ and C(l,l′) is the leakage matrix of both l
and l′. The dimension of C(l,l′) is (2l+2l′+2)×(2l+2l′+2).
The coefficient of the leakage matrix can be computed as:

C(l,l′)
m,m′ =

b
(l,l′)
m,m′

b
(l′,l′)
m′,m′

(13)

with:

b
(l,l′)
m,m′ =

∫
D

W ∗l,m(θ, φ)

nl,m
Ỹl′,m′(θ, φ)A(θ, φ) sin θdθdφ (14)

where m = −l, . . . , l, m′ = −l′, . . . , l′, ∗ denotes the com-
plex conjugate, θ, φ are the angles in a spherical coordinate
system, D is the integration domain, Ỹl′,m′ is the general-
ized velocity or intensity perturbation of the mode (l′,m′).
The Ỹl′,m′ are not necessarily the usual spherical harmon-
ics Yl′,m′ . For instance, the horizontal component of the
velocity perturbation, and the intensity perturbation due
the distortion of the the surface by the modes are both ex-
pressed as derivative of spherical harmonics. A(θ, φ) is an
apodization function, nl,m is a sensitivity correction factor

associated with Wl,m. The ratio ensures that C(l,l)
m,m = 1.

The apodization function A is the product of 3 different
function as:

A(θ, φ) = An(θ, φ)Ad(θ, φ)Aa(θ, φ) (15)

An is the natural apodization function due to the way
the images are obtained: for intensity this is the limb
darkening (I(µ)), and for velocity the projection factor
(µ = sin θ cosφ). Ad is the data analysis apodization: for
data re-mapped on the Sun’s surface it is unity; for no
re-mapping, it is the projection factor (µ = sin θ cosφ).
Aa is the artificial apodization that can take into account
the non-linear velocity (or intensity) response of the in-
strument over the solar disk, or can help to reduce limb
effects. Here we must point out that the leakage matrix
has a useful property such as:

C(l,l′)
m,m′ = C(l′,l)∗

m′,m

b
(l,l)∗
m,m

b
(l′,l′)
m′,m′

b
(l,l′)
m,m′

b
(l′,l)∗
m′,m

· (16)

It shows that C(l,l′) is in general not hermitian nor sym-
metrical. Nevertheless, when Wl,m = Ỹl,m, it is possible
with a proper sensitivity factor correction of Wl,m to have
such a property. In this case the sensitivity correction is
given by:

nl,m =

√∫
D
Ỹ ∗l,m(θ, φ)Ỹl,m(θ, φ)A(θ, φ) sin θdθdφ (17)

which is the “natural” normalization factor of the pertur-
bation Ỹl,m. Of course in this latter case, we have:

C
(l,l′)
m,m′ = C

(l′,l)∗
m′,m · (18)

Unfortunately, the leakage matrix does not always have
such a nice property, especially because Wl,m 6= Ỹl,m. This
was the case for the ground-based Luminosity Oscillations

Imager (LOI) (Appourchaux et al. 1994) and for the
GONG instrument (Hill 1997, private communication). In
both cases, this is not produced by the observation tech-
niques but by the data analysis techniques.

If the weight functions Wl,m and the observed pertur-

bations Ỹl,m have the same symmetry properties as the

spherical harmonics Yl,m (or if Wl,m = Ỹl,m = Yl,m), the
leakage matrix is real as shown by Schou (1992). In addi-

tion the leakage elements of C(l,l′)
m,m′ are zero if l+m+l′+m′

is odd; this is the case when the Sun is not tilted with re-
spect to the observer’s axis of reference (P = 0, B = 0). If
the axes of reference of Wl,m differ from that of the Yl,m
these 2 properties can be lost. For instance, an incorrect
orientation of the Sun axis with respect to the detector
axis could lead to a complex leakage matrix; or a Sun
seen at an angle B 6= 0 give a real leakage matrix with
non-zero elements with l + m + l′ + m′ odd. This latter
property has been used by Gizon et al. (1997) to infer the
inclination of the Sun’s core.

Equation (13) is valid when the size of the pixel is small
compared with the spatial scale of the degree. When the
pixels are larger, one should write the following:

C(l,l′)
m,m′ =

nl′,m′

nl,m

∑
iw

(l,m)∗
i ỹ

(l′,m′)
i∑

i w
(l′,m′)∗
i ỹ

(l′,m′)
i

(19)

where the ỹi are given by:

ỹ
(l′,m′)
i =

∫
Di

Ỹm
′

l′ (θ, φ)A(θ, φ) sin θdθdφ (20)

where Di is the area defined by the i-th pixel and w
(l,m)
i

is the weight applied to the i-th pixel to extract the l,m
mode. Equation (19) is the more general form used for
the LOI (Appourchaux & Andersen 1990). As a starting

point, the w
(l,m)
i can also be taken as the ỹ

(l,m)
i .

3.3.2. p-mode covariance matrix

To compute the covariance of the complex vector y(ν) as
a real number we form the vector zy(ν) defined as:

zT
y (ν) = (Re(yT), Im(yT)).

In absence of noise, the covariance matrix M(ν) of the
vector zy(ν) can be generated using a complex notation:

M(l,l′)(ν) =

(
Mr(ν) Mi(ν)
−Mi(ν) Mr(ν)

)
. (21)

M(l,l′) is a super matrix where Mr(ν) and Mi(ν) are
the real and imaginary parts of a complex matrix M(l,l′)

which elements are given by:

M(l,l′)
m,m′(ν) =

∑
l′′=l,l′

l′′∑
m′′=−l′′

C(l′′,l′)
m′′,m′C

(l′′,l)∗
m′′,m f

l′′

m′′(ν) (22)

where f l
′′

m′′(ν) is the variance of the l′′,m′′ mode which
profile is given by Eq. (11), in which ν0 is a function of m.
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The real and imaginary parts of Eq. (22) will give respec-
tively the covariance of the real (or imaginary) part of y,
and the covariance between the real and imaginary part
of y. It is obvious from Eq. (22) thatM(l,l′) is hermitian.

Schou (1992) gave an equation similar to Eq. (22) for
a real leakage matrix and for a single degree. Here we add
a subtlety to the formulation of Schou (1992), the matrix
M(l,l′)(ν) can be decomposed as follows:

M(l,l′)(ν) =

(
v(ν) w(ν)
−w(ν) v(ν)

)(
vT(ν) −wT(ν)
wT(ν) vT(ν)

)
(23)

where T is the transpose of a matrix. The elements of v
and w are given by:

v
(l,l′)
m,m′(ν) =

√
f lm(ν)Re(C(l,l′)

m,m′) (24)

w
(l,l′)
m,m′(ν) =

√
f lm(ν)Im(C(l,l′)

m,m′)· (25)

We will see later on that this decomposition is of prime
importance for understanding the statistics of the obser-
vation.

3.3.3. Noise covariance matrix

Unfortunately, the observed vector y(ν) include a noise
contribution. Due to the way the data are combined, the
noises between the different 2l+2l′+2 components of this
vector are also correlated. Schou (1992) gave the correla-
tion matrix when the filter used are spherical harmonics
Yl,m. A more general formulation can be written as:

B(l,l′)(ν) =

(
Br(ν) Bi(ν)
−Bi(ν) Br(ν)

)
(26)

B(l,l′) is a super matrix where Br(ν) and Bi(ν) are the
real and imaginary parts of the complex matrix B(l,l′).
The dimension of B(l,l′) is (2l+ 2l′+ 2)× (2l+ 2l′+ 2). Its
elements are given by:

B(l,l′)
m,m′ =

∫
D

W ∗l,m(θ, φ)

nl,m

Wl′,m′(θ, φ)

nl′,m′
a(θ, φ) sin θdθdφ (27)

with

a(θ, φ, ν) = A2
a(θ, φ)A2

d(θ, φ)σ2
�(θ, φ, ν) (28)

where a is an apodization function which characterizes
through σ2

�(θ, φ, ν) how the noise varies over the solar im-
age, assuming that the noise is uncorrelated between dif-
ferent points on the Sun; Aa, Ad are defined in Eq. (15).
When the instrumental noise is low, a is derived from the
characteristics of the solar noise. The evaluation of B(l,l′)

is less straightforward than that of C(l,l′) because we need
to know a model of the solar noise. An easier way to under-
stand the noise correlation is to built the ratio covariance
matrix or “pseudo” noise leakage matrix R as:

R(l,l′)
m,m′ =

B(l,l′)
m,m′

B(l′,l′)
m′,m′

· (29)

Here we can see the similarity between R and C. In veloc-
ity, the granulation noise is rather low at the center of the

disk and then increases towards the limb; the meso- and
super-granulation exhibits somewhat different or comple-
mentary center-to-limb variations. In intensity, the gran-
ulation noise is a function of the number of granules; the
noise is larger at the center of the disk and decreases slowly
towards the limb. In addition the solar noise in inten-
sity has no contribution from mesogranulation (Fröhlich
et al. 1997), making the spatial dependence of the noise al-
most independent of frequency across the p-mode range.
This is not the case in velocity where mesogranulation still
contributes to the noise in the p-mode range. Therefore in
intensity the apodization a is closer to A than in velocity,
making the ratio covariance matrixR(l,l′) very close to the
leakage matrix C(l,l′). Although R(l,l′) is not mathemati-
cally useful, it is a matrix easy to visualize and understand
(See Part II). The ratio matrix has some properties of the
leakage matrix like being not necessarily hermitian. This
is not the case of B(l,l′) which is hermitian by definition.

Again, when the size of the pixel is large compared
with the spatial scale of the degree, Eq. (27) is rewritten
as follows:

B(l,l′)
m,m′(ν) =

∑
i

w
∗(l,m)
i w

(l′,m′)
i bi(ν) (30)

where bi is the variance of the noise of pixel i. Equation
(30) is the more general form used for the LOI.

3.3.4. Probability density of the observation and
likelihood

The statistical distribution of the Fourier spectra or of the
vector zy is a multi-normal distribution. The probability
density is given by:

py(ν) =
e−

1
2z

T
y (ν)V−1(ν)zy(ν)

(2π)d/2
√
|V(ν)|

(31)

where d is the number of elements of zy, V is a short no-

tation for the following matrix: V(l,l′)(ν) = M(l,l′)(ν) +
B(l,l′)(ν); this is the matrix given by the sum of the p-
mode and noise covariance matrix; the p modes and the
noises are assumed to be independent of each other. The
matrix V(l,l′)(ν) can also be built from sub-matrices as:
V(l,l′) = M(l,l′) + B(l,l′); as a result V(l,l′) is also hermi-
tian. Equation (31) is the most general formulation for any
multi-normal distribution with a given covariance matrix
V (Kendall & Stuart 1967).

Using Eq. (31), we can write the likelihood L of an
observation of zy(νi) at N different frequencies νi as given
by:

L(l,l′)
y =

N∏
i=1

e−
1
2z

T
y (νi)V−1(νi)zy(νi)

(2π)d/2
√
|V(νi)|

· (32)

We assumed that the frequency bins are independent of
each other. This is the case when the data have no gaps.
For unresolved observation having gap, the expression of
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the likelihood becomes extremely complicated as shown
by Gabriel (1994). For resolved observation having gaps,
as for the LOWL data of Tomczyk et al. (1995), it is im-
practicable to use the full formulation of the likelihood:
Tomczyk et al. (1995) used Eq. (32) as an approximation
for fitting the LOWL data.

In principle, given the observed vector y, it is always
possible in the absence of noise to recover the vector x.
Due to the presence of noise only a solution close to the
ideal one can be found that will minimize the correlation
between the components. Provided that the leakage ma-
trix can be inverted, we have by analogy to Eq. (12):

x̃ = C−1y (33)

where C = C(l,l′). Then we can write a similar equation
for zy and zx̃ as:

zx̃ = C−1zy (34)

where C is defined as:

C(l,l′)(ν) =

(
Cr(ν) Ci(ν)
−Ci(ν) Cr(ν)

)
(35)

C(l,l′) is a super matrix where Cr and Ci are the real and
imaginary parts of the complex matrix C(l,l′). Using Eq.
(34) to replace zy by zx̃ in Eq. (32) we can rewrite this
latter as:

L(l,l′)
y =

N∏
i=1

e−
1
2z

T
x̃(νi)V′−1

(νi)zx̃(νi)

(2π)d/2
√
|V′(νi)|

1

|C|
=

1

|C|N
L

(l,l′)
x̃ (36)

with V′ given by:

V′ = C−1VCT−1
= C−1M(l,l′)CT−1

+ C−1B(l,l′)CT−1
. (37)

We recognize in Eq. (36) the probability density of the
vector zx̃(ν) to a constant (i.e. |C|−N ). As a matter of
fact, it is well known that using a linear transformation
similar to that of Eq. (34) will produce the new covariance
matrix V′ of zx̃ as written in Eq. (37) (Davenport & Root
1958). It can be easily shown using Eqs. (23) and (37)

that the matrix D(ν) = C−1M(l,l′)CT−1
is diagonal and

its element are given by:

Dm′′,m′′(ν) = f l
′′

m′′(ν) (38)

where l′′ = l or l′ and m′′ = −l′′, . . . , l′′. Therefore Eq.
(37) is the sum of a diagonal matrix representing the corre-
lation between the p modes; and of a new noise covariance
matrix representing the correlation of the components of
the vector x̃ after the transformation of Eq. (33). It means
that x̃ has no correlation due to the p modes as we could
expect from Eq. (33): the leakage matrix of x̃ is the iden-
tity matrix. In summary, there is no gain in fitting data
for which the leakage matrix is the identity matrix: the 2
approaches are identical. The main problem is really to
know the leakage matrices, not only theoretically but also
experimentally: this is the subject of the Part II.

It can be derived from Eq. (37) that it is also possible
to remove correlation due to the noise by replacing C by
a proper matrix associated with B(l,l′). The derivation of
this matrix is given in Appendix A.

3.3.5. The use of the likelihood in practice

When a single degree is observed, it is quite simple to
maximize the likelihood of Eq. (32) using y, or using x̃ as
in Eq. (36). For low degree and low frequency modes, this
is possible for l = 0, 2, 3. As soon as the mode linewidth
increases, at high frequencies, the assumption of a single
degree is not valid anymore. For example, l = 0 and l = 1
overlap with l = 2 and l = 3, respectively. At high fre-
quencies, the effect of the aliasing degree should be taken
into account.

For the other low degree modes, the likelihood becomes
somewhat more complicated. It is well known, that in the
(m, ν) diagramme of l = 1, there are leaks coming from
other degrees. The l = 6 and l = 9 modes overlap with
the l = 1, while the l = 3 modes overlap only at higher
frequencies when the linewidth is larger than about 5 µHz.
In the (m, ν) diagramme of l = 4, there are leaks of l = 7
and vice versa (Appourchaux et al. 1997). The leaks have
severe effects on determination of the p-mode parameters
of the l = 1. When many degrees are overlapping, one
should use Eq. (32) using the covariance matrix for l and
l′. Nevertheless, we do not advice to do so for fitting the p
modes; it has some severe computer speed penalty. Instead
we advice to clean the data by inverting the full leakage
matrix taking into account the effects of the various de-
grees on each other, in a similar way to Eq. (33). For
example for l = 1, one should compute the leakage ma-
trix on a sub-space of degrees namely for l = 1, 6 and
9. These 3 degrees interact strongly in the Fourier spec-
tra. For l = 4 and l = 5 one should compute the leakage
matrix on sub-spaces for l = 4 and 7, and for l = 5 and
8. The advantage of this direct cleaning is to replace the
original aliasing degrees by new aliasing degrees which are
further away, in frequency, from the modes to be fitted.
This technique has been applied to the LOI and GONG
data, and is developed in Part II.

Last but not least, when the signal-to-noise ratio is
high (i.e. we neglect B(l,l′) in Eq. (37)), the elements of
the vector zx̃(ν) are all independent of each other, leading
to a statistical distribution which is a product of χ2 with
2 degree of freedom. This is an approximation which is
useful and less incorrect that using this statistics for the
GONG data for the vector zy(ν) as in Hill et al. (1996).

4. Monte-Carlo simulations

4.1. Why are they needed?

Before applying Eq. (32) to real data, it is always advisable
to test the power of MLE on synthetic data, i.e. performing
Monte-Carlo simulations. They are not merely for playing
games; these simulations are real tools for understanding
what we fit and how we fit it. Assuming that the statistics
of the real solar spectra is known, performing Monte-Carlo
is useful for the following reasons:
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– Assessing the model of the mode and noise covariance
– Assessing the statistical distribution of the parameters
– Assessing the precision of parameters.

First, the model of the covariances can be imperfect. The
effect of an imperfect knowledge of the covariance can help
us understand how these will influence the determination
of the parameters, i.e. deriving the sensitivity of the sys-
tematic errors to this imperfect knowledge. Second, the
parameters derived by the MLE should have the desir-
able properties of having a normal distribution; if not we
advise to apply a change of fitted parameters. For exam-
ple, as we will see later on, we do not fit the linewidth
itself but the log of the linewidth. A normal distribution
is necessary to derive meaningful error bars, this is the
assumption behind Eq. (5). Third, in order to be able to
derive a good estimate of the error bars using one real-
ization, the standard deviation of a large sample of fitted
parameters should be equal to the mean of formal errors
return by the fit (See Eq. (4)).

4.2. Generation of synthetic data for the LOI

The performance of this instrument has been described in
Appourchaux et al. (1997). Briefly, it is a small instrument
made of 12 pixels for detecting solar intensity fluctuations.
The p-mode signals were generated in the Fourier spectra
by using the following:

y(ν) = C(l,l)x(ν) +

Npix∑
i=1

ỹlipi (39)

where y is the observed vector of 2l + 1 Fourier spec-
tra, C(l,l) is the leakage matrix given by Eq. (19), x is
a complex random vector with 2l + 1 components (each
component represents the signal of an l,m mode, with un-
correlated real and imaginary part), ỹli are computed as
in Eq. (20) using spherical harmonics, and pi is the noise
for a given pixel i. The variance of the real or imaginary
part of the m-th component of x is given by f lm(ν); the
mean of x is 0. The function f lm(ν) describes the profile
of each m which is displaced from m by an amount which
is given by:

νm = ν0 + l

5∑
i=1

aiP
(l)
i (m/l) (40)

where the P(l)
i are derived from the Clebsch-Gordan coef-

ficients, the expression of which can be found in Ritzwoller

& Lavelly (1991); they are normalized such that P(l)
i (1) =

1. Here we assumed a common linewidth for the l, n mode,
and different amplitudes for the 2l + 1 components. The
profile are symmetrical in the shape of a lorentzian.

The variance of the pixel noise is assumed to be the
same for the pixels with the same shape. The mean of the
pixel noise is 0. For the LOI with its 12 pixels, there are
3 different shapes giving 3 independent noises.

After generating the synthetic signals according to Eq.
(39), the data are fitted by minimizing the likelihood of
Eq. (32). Figure 1 shows an example of Fourier spectra
generated synthetically. The typical signal-to-noise ratio
in the power spectra is about 20-30. The frequency res-
olution is equivalent to 4 months of data. We performed
1000 simulations of the spectra.

4.3. Results

4.3.1. For the nominal leakage matrix

The data are fitted assuming a perfect knowledge of the
leakage and noise covariance matrices, i.e. we know what
we fit. Figure 2 shows the distribution of the fitted pa-
rameters: the central frequency, splitting, log(linewidth),
3× log(amplitude), 3× log(pixel noise). For the last 7 pa-
rameters, we fit the log of the parameter because this
transformation give a statistical distribution closer to a
normal distribution (or log-normal distribution). It can
be observed that the parameters derived are in most cases
unbiased. Figure 3 shows the distribution of the error bars
returned by the fit. In most case the mean of the error bars
(returned by the fit) is not very different from the 1-σ de-
viation of the parameter distribution. Similar simulations
have been performed for various degree (up l = 3). They
show the same typical results as for Figs. 2 and 3, i.e. the
fitted parameters are not, or weakly, biased, and the error
bars returned by the fit give a good estimate of the real
error bars.

4.3.2. Influence of a wrong leakage matrix

As was shown by Eq. (36), fitting p-mode spectra for
which the leakage matrix is explicitly diagonal is equiv-
alent to fitting p-mode spectra for which the matrix is not
diagonal. Of course, it is always possible to construct data
with a purely diagonal leakage matrix using Eq. (33), but
we do so assuming that we know the leakage matrix C. As
a matter of fact, what matters is not to have the identity
matrix as leakage matrix, but more the knowledge of the
latter.

Hereafter, we have investigated the influence of a
wrongly assumed leakage matrix on the fitted parameters
of l = 1. We made 100 realizations and change the leakage
parameter between m = −1 and m = +1 by ±50% from a
nominal value for the LOI of 0.45. Figure 4 shows the influ-
ence of varying the assumed leakage element on the fitted
parameters. It is quite interesting to note that the inferred
central frequency is insensitive to mistakes in the leakage
matrix. The linewidth becomes underestimated when the
error is larger than 20%, while the amplitudes become
overestimated. The most important result is the fact that
the systematic error made on the splitting is not linear
but quadratic. This systematic error can become as large
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Fig. 1. (Left) Power spectra of a synthetic l = 1 as it would be observed by the LOI. The frequency resolution corresponds to 4
months of data. The signal-to-noise ratio is about 20-30. The traces from bottom to top corresponds to m = −1, 0, +1. (Right)
Fourier spectra for l = 1 (same data). The first, third and fifth traces from the bottom represents the real part of the spectrum
of m = −1, 0 and 1, respectively; the other traces are the imaginary parts. The leakage between m = −1 and m = +1 is 0.45
in the Fourier spectra

Fig. 2. Histograms for the fitted parameters: (Plain line) Data, (Dashed line) Normal distribution with the same mean and
σ as the fitted parameters. (Top) Frequency (in µHz), splitting a1 (in µHz), log(γ) (γ in µHz); (Middle) log(Amplitude) for
m = −1, 0, 1; (Bottom) log(pixel noise). For each histogram, the target value, the mean fitted value and the 1-σ fitted valued are
displayed. The Kolmogorov-Smirnov test (Kol.) is displayed for each histogram; a number close to 0 show that the distribution
is not normal
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Fig. 3. Histograms for the error bars: (Plain line) Data, (Dashed line) Normal distribution with the same mean and σ. (Top)
Frequency error (in µHz), splitting a1 error (in µHz), log(γ) error (γ in µHz); (Middle) log(Amplitude) error for m = −1, 0,
1; (Bottom) log(pixel noise) error. For each histogram, the target value, the mean fitted value and the 1-σ fitted valued are
displayed. The Kolmogorov-Smirnov test is displayed for each histogram; a number close to 0 show that the distribution is not
normal

as the error bars. For example, with 1 year of LOI data
and averaging over 10 modes, the error bars on the mean
splitting is about 15 nHz; this should be compared to a
systematic error of 10 nHz for an error of 10% of the l = 1
leakage elements.

Another test similar to that of the l = 1 was performed
with the l = 2 mode. We have assumed that all the off-
diagonal elements of the leakage matrix were wrong by
the same fixed amount. Figure 5 shows the results only
for the splitting coefficients (from a1 to a4). The other
parameters linewidth, amplitudes and noises behave in the
same manner as for l = 1. The systematic error on the
splitting has also the same quadratic dependence as for
l = 1. For l = 2 the splitting error bars are typically

√
5

smaller than for l = 1. In this case the systematic errors
become larger than the error bars, and therefore start to
influence the inverted solar rotation.

It means that it is quite easy to underestimate the
splitting whenever we under- or overestimate the leakage

element. As a matter of fact, this behaviour was also found
in the GONG data for l = 1 and 2 (Rabello-Soares &
Appourchaux 1998, in preparation). On the other hand,
errors in the leakage matrix will not result in overestimat-
ing the splitting. If the splitting is overestimated, the most
likely source should be the presence of other degrees not
taken into account in the analysis.

We also checked the correlation of the splitting coef-
ficients derived for l = 2. Figures 6 and 7 show respec-
tively the variance and the covariance of the splitting co-
efficients as a function of the leakage elements error. It can
be concluded that the splitting coefficients become corre-
lated only when a large overestimation of about 50% is
made for the off-diagonal leakage elements. This result is
only valid when fitting Fourier spectra. For other methods,
such as fitting power spectra, possible correlation amongst
the splitting coefficients could have drastic consequences
for the inverted solar rotation profiles.
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Fig. 4. Influence of the fitted parameters to relative changes of the assumed leakage element between m = −1 and m = +1 for
l = 1. (Top) Frequency, splitting a1, log(γ); (Middle) log(Amplitude) for m = −1, 0, 1; (Bottom) log(pixel noise). The target
parameters are the same as for Fig. 2. Please note the parabolic shape for the splitting

4.3.3. Comparison with other methods

We have also performed Monte-Carlo simulations to com-
pare the different fitting techniques commonly used. For
each simulation of a mode, the data were fitted in 3 dif-
ferent ways:

– Assuming that the 2l + 1 power spectra are indepen-
dent of each other and are not influenced by m leaks,
i.e. a single mode is present for a given m. This is the
way the GONG data are commonly fitted.

– Assuming that the 2l + 1 power spectra are inde-
pendent of each other but are influenced by m leaks,
i.e. we use only the diagonal of the mode covariance
matrix. This is the way the LOI data were fitted by
Appourchaux et al. (1995).

– Assuming that the 2l + 1 Fourier spectra are depen-
dent of each other and are influenced by m leaks. This
is the way described in this paper after the work of
Schou (1992).

Figure 8 shows the results of this comparison only for the
splitting which is the parameter the most sensitive to the

fitting way. The splittings derived by the GONG fitting
way are obviously underestimated. This underestimation
will eventually disappear with the degree but for l = 1 the
bias is unacceptable. The splittings derived using the old
LOI way are slightly overestimated with a bias of about
10 nHz for l = 1. Although this bias is not substantial for
the LOI data, it can be of the same order of magnitude as
the error bars for instrument with better signal-to-noise
ratio than used in the simulations, such as GONG, and
for observation time longer than these simulations. Last
but not least, the Fourier spectra fitted according to the
guidelines given in this paper provides a splitting without
substantial bias and also with smaller error bars. This lat-
ter way of fitting will considerably improve the consistency
of the splittings measured.

5. Conclusion

We have given a step by step recipe for fitting
(m, ν) Fourier spectra. If one wants to implement sim-
ilar fitting technique, one should compute, first the



T. Appourchaux et al.: The art of fitting p-mode spectra. I. 117

Fig. 5. Influence of the fitted splitting parameters to relative changes of the assumed of the assumed off-diagonal leakage element
for l = 2. (Top, left) a1, target value: 410 nHz; (Top, right) a2, target value: −30 nHz; (Bottom, left) a3, target value: −10 nHz;
(Bottom, right) a4, target value: +50 nHz

Fig. 6. Diagonal elements of the covariance matrix of the splitting coefficient, for l = 2. They are given as a function of the
relative change of the assumed off-diagonal leakage element. (Top, left) For a1; (Top, right) For a2; (Bottom, left) For a3;
(Bottom, right) For a4
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Fig. 7. Off-diagonal elements of the covariance matrix of the splitting coefficient, for l = 2. They are given as a function of the
relative change of the assumed off-diagonal leakage element. (Top, left) For a1 and a2; (Top, right) For a1 and a3; (Middle, left)
For a1 and a4; (Middle, right) For a2 and a3; (Bottom, left) For a2 and a4; (Bottom, right) For a3 and a4

Fig. 8. Comparison of low-degree splittings measured using
1000 Monte-Carlo simulations by 3 different fitting techniques.
The nominal splitting is 410 nHz. The + is the technique com-
monly used by GONG, the asterisk is the technique used by
Appourchaux et al. (1995), the diamond is the technique de-
scribed in this paper and also used for the SOI/MDI data. The
error bars are the formal error bars for a single realization

leakage matrices according to Eqs. (13) and (14), second
the mode covariance matrices with Eq. (22) (or using Eq.
(23)), third the noise covariance matrices with Eq. (27)
using a model of solar noise, fourth compute the like-
lihood function using Eq. (32). The use of Monte-Carlo
simulations will ensure the success of the implementation.
Routines for fitting p-mode Fourier spectra are available as
freeware on the VIRGO home page: virgo.so.estec.esa.nl;
they are written in the IDL macro language.

Last but not least, Eq. (36) showed us the equivalence
between fitting data for which the leakage matrix is not
the identity, and fitting data for which it explicitly is. This
last statement is true provided that we know perfectly well
the leakage matrix. In this case the p-mode parameters fit-
ted using MLE are not, or very weakly, biased, and have
minimum variance. For instance, we showed for the split-
ting that other commonly fitting methods result either in
a bias and/or larger formal errors. We have also studied
the effect of an imperfect knowledge of the leakage ma-
trix on the fitted parameters, in order to derive the effect
of systematic errors on the most interesting parameters:
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the splitting and mode frequency. We found that the cen-
tral frequency is insensitive to systematic errors in the
leakage matrix, while the splitting coefficients (ai) have
a quadratic dependence upon those errors. These system-
atic errors will have influence on the inverted solar rotation
profiles.

Finally, we would like to stress again that the correct
statistical treatment of the p-mode data is of vital impor-
tance for deducing unbiased p-mode parameters.
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Appendix A:

The purpose of this appendix is to show that using a
proper matrix CB, the noise covariance matrix of Eq. (37)
given by:

B′
(l,l′)

= C−1
B B(l,l′)CT

B

−1
(A1)

can have a diagonal form. The matrix B(l,l′) can be diag-
onalized and we can write.

B(l,l′) = P−1b(l,l′)PT−1
(A2)

where b(l,l′) is diagonal and P is an orthogonal matrix
(P−1 = PT). Replacing Eq. (A2) into Eq. (A1), we have:

B′
(l,l′)

= C−1
B P−1b(l,l′)PT−1

CT
B

−1
. (A3)

Since B(l,l′) is positive definite all its eigenvalues are
positive, therefore the square root of b(l,l′) is defined.
Therefore if we apply the following transformation to the
data:

CB = P−1
√

b(l,l′) (A4)

we can rewrite Eq. (A3) as:

B′
(l,l′)

= I (A5)

where I is the identity matrix. So replacing C in Eq. (33) by
CB will have the effect of removing the artificial correlation
due to the noise, and also of performing a normalization.
We should point out that the transformation matrix CB

that can achieve this is not unique, and any multiplication
by an orthogonal matrix will achieve this. Nevertheless, we
give a solution to the problem which can be solved as an
eigenvalue and eigenvector problem. The transformation
given above does not remove the artificial correlation due
the p modes but more or less preserve it. This can have
some useful application when one wants to produce spec-
tra with uncorrelated noise but with correlated p-mode
signals.
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Telljohann U., Wehrli C., 1997, Sol. Phys. 170, 27
Appourchaux T., Gough D.O., Sekii T., Toutain T., 1997, IAU

181, Nice, Provost J. and Schmider F.-X. (eds.)
Appourchaux T., Gizon, 1998 (in preparation)
Appourchaux T., Toutain T., Telljohan U., Jiménez A.,
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