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ABSTRACT

In time-distance helioseismology most inversion procedures ignore the correlations in the data errors. Here
we simulate the travel-time perturbations of wavepackets that result from known distributions of sound speed
inhomogeneities. The forward and inverse problems are carried out using recently developed Born approximation
sensitivity kernels. A realistic solar noise component, with the correct statistics, is added to the data. We then apply a
three-dimensional inversion procedure based on an improvedmultichannel deconvolution algorithm that includes the
full covariance matrix of the simulated data and constrains the solution both in the vertical and horizontal directions.
The validation of the inversion is achieved through comparison of the inferred sound speed distributions with the
exact solutions. We show that including the covariance matrix matters for sound speed inhomogeneities varying on a
length scale smaller than the correlation length. We also find that the inversion procedure is improved by adding
horizontal regularization.

Subject headinggs: methods: data analysis — Sun: helioseismology

1. INTRODUCTION

Solar acoustic waves give access to local properties of the
plasma below the visible surface of the Sun. Time-distance anal-
ysis (Duvall et al. 1993) uses observations of the solar surface
line-of-sight velocity to provide measurements of the wave travel-
time perturbations caused by buried inhomogeneities. Here we
consider sound speed inhomogeneities only. For the sake of sim-
plicity a plane-parallel geometry is assumed, with r the horizon-
tal coordinate vector and z the vertical coordinate (height). First,
the velocity signal is filtered in Fourier space to select different
parts of the wave propagation diagram. Then, travel times are
obtained from temporal cross-covariances between the velocity
signal measured at two different locations on the solar surface
(z ¼ 0). In a standard averaging scheme (Duvall et al. 1997), a
cross-covariance function is computed between the velocity sig-
nal at a central point, r, and the signal averaged over an annulus
at a distance� from r. Travel times, averaged over acoustic waves
travelling outward from and inward to the center of the annulus,
are measured from fits to the cross-covariance function and de-
noted by �(r,�). In this paper we consider travel-time perturba-
tions, ��(r, �), caused by a given distribution of steady sound
speed inhomogeneities, �c(r, z). All perturbations are defined
with respect to a reference solar model that is invariant by hori-
zontal translation.

The dominant source of noise in time-distance helioseismology
is realization noise because of the stochastic nature of the exci-
tation mechanism of solar oscillations (Jensen et al. 2003; Gizon
& Birch 2004). In a first approximation, we assume that signal
and noise separate:

�� ¼ �� þ �n; ð1Þ

where �� ¼ E½�� � is the expectation value of the travel-time
perturbation (the ‘‘signal’’) and �n is the random noise compo-
nent. We ignore noise perturbations arising from changes in
solar structure. In particular, noise is presumed to be spatially

homogeneous. Such an assumption is likely to be acceptable for
quiet-Sun data only. We note that the variance of the noise scales
like 1/T , where T is the integration time over which the cross-
covariances are computed (Gizon & Birch 2004). Thus, �� is
the travel-time perturbation that would be measured in the limit
T ! 1.

The linear forward problem is computing �� given small
steady perturbations �c(r; z). This problem was solved by Birch
et al. (2004) in the single-scattering Born approximation, fol-
lowing the method described by Gizon &Birch (2002). In plane-
parallel geometry, the travel-time perturbations can be written as

��(r; �) ¼
Z Z

dr0
Z 0

�1
dz K(r� r0; z; �)

�c2

c2
(r0; z); ð2Þ

where the function K, which gives the linear sensitivity of the
travel times to relative perturbations in the squared sound speed,
depends on the details of the measurement procedure. We cau-
tion the reader that perturbations are large in the sunspots and
that �� is not necessarily linear in �c2/c2.

The random noise �n has zero mean and is characterized by the
cross-covariance ‘‘matrix’’:

�ij(r) ¼ E½�n(r0; �i)�n(r
0 þ r; �j)�: ð3Þ

An expression for the noise covariance can be estimated di-
rectly from real travel-time data (Jensen et al. 2003) or calcu-
lated from a model (Gizon & Birch 2004). The model of Gizon
& Birch (2004), which is used in this paper, assumes that solar
oscillations are stationary and homogeneous on the solar sur-
face. The cross-covariance matrix �ij depends implicitly on ob-
servation time, T.

Our goal is to solve equation (2) for �c2/c2 inside the Sun,
given a set of travel-time measurements, �� . Such inverse prob-
lems were solved without taking into account the noise covari-
ance by, e.g., Jensen et al. (1998), Giles (2000), and Hughes et al.
(2004).We use a technique developed by Jensen et al. (1998) and
named multichannel deconvolution (MCD). In general, the so-
lution of the inverse problem depends on the noise properties
specified by equation (3). The importance of noise correlations
for two-dimensional linear inversions of global helioseismic data
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has been stressed by Gough & Sekii (2002). The effect of noise
in three-dimensional inversions of time-distance was first inves-
tigated by Jensen et al. (2003). They studied the propagation of
noise through the inversions. However, they did not consider the
correlations between travel times with different�-values, nor did
they explicitly include the noise covariance matrix in their inver-
sion algorithm. Here we improve the original inversion code of
Couvidat et al. (2004) by including the full noise covariance ma-
trix and by adding horizontal regularization to theMCD algorithm.

This paper is organized as follows. In x 2 we generate real-
izations of filtered power spectra of solar oscillations for a hori-
zontally homogeneous solar model. From these data, we compute
noise travel times and derive the noise cross-covariance matrix.
In x 3 we choose a distribution of sound speed inhomogeneities
from which signal travel-time perturbations are computed. In
x 4 we present a modified MCD algorithm for solving the in-
verse problem; this algorithm includes the full noise covariance
matrix obtained in x 2.3. The results of the inversion are dis-
cussed in x 5. We show that taking into account the correlation
in the data errors matters when sound speed perturbations vary
on a scale that is smaller than the correlation length of the noise.
We conclude in x 6.

2. NOISE PROPERTIES

2.1. Simulation of Artificial Data

In order to compute the noise covariance, we first produce
many realizations of travel-time maps ��(r; �) for various dis-
tances�. We generate artificial data cubes of simulated Doppler
velocities �(r; t) for a reference solar model following the pro-
cedure of Gizon & Birch (2004). This procedure consists in sim-
ulating the observable in the discrete Fourier domain:

�(k; !)¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P(k; !)

p
N (k; !); ð4Þ

where k is the horizontal wavevector and ! is the angular fre-
quency. Here P ¼ E½j�j2� is the expectation value of the solar
oscillation power spectrum andN is a complexGaussian random
variable with independent real and imaginary parts, zero mean,
and unit standard deviation. The random variables N (k; !) are
independent at different grid points in the k-! domain, except
for the fact that N (k; !) ¼ N �

(�k; �!) since �(r; t) has no
imaginary part. We take a spatial sampling of hx ¼1:652 Mm,
corresponding to four high-resolution pixels of the Michelson-

Doppler Imager instrument (MDI; Scherrer et al. 1995). The
temporal sampling is ht ¼ 1 minute. Each data cube �(r; t) con-
tains 220 ;220 ; 512 grid nodes, so that the computation do-
main is L ¼ 362 Mm on the side and the time duration is T ¼
512 minutes. The sampling in Fourier space is hk ¼ 2�/L ¼
12:1/R� and h! ¼ 2�/T ¼ 0:20 mrad s�1. For P(k; !) we use
the model power spectrum of solar oscillations introduced by
Birch et al. (2004). This theoretical power spectrum was ob-
tained for a plane-parallel background solar model, which is
invariant by translation and isotropic, i.e., P only depends on
k ¼k k k and !. It spans the following ranges: 77 < kR� <
2074, and 1:8 mHz < !/2� < 6:5 mHz. This model is a fair
representation of observed average quiet-Sun power spectra. For
more detail, we refer the reader to the paper of Birch et al. (2004).
In time-distance analysis, data cubes are filtered in Fourier

space before cross-covariance functions and travel-time maps
are computed. This filtering uses Gaussian phase speed filters
(Duvall et al. 1997). The rationale for this choice is that waves
with similar horizontal phase speeds follow approximately the
same path as they travel inside the Sun. For any given target dis-
tance,�, corresponds a phase speed filter, F. The filtered signal,
�, is obtained by multiplication in Fourier space:

�(k; !) ¼ F(k; !; �)�(k; !); ð5Þ

where F is a phase speed filter of the form

F(k; !; �) ¼ exp ½�(!=k � v)2=2�v2�: ð6Þ

The mean phase speed, v, and the filter width, �v, both depend on
�. Here we use 11 filters provided by T. L. Duvall (2003, private
communication) and listed in Table 1. While v can be derived
from the solar model, there is no obvious rule for choosing the
width �v. Rather, �vwas chosen empirically to yield a good signal-
to-noise ratio for the travel-time measurements.

2.2. Measurements of Travel Times

For each 512 minute data cube, we compute maps of point-to-
annulus temporal cross-covariance functions, C(r; �; t). We
derive these cross-covariances for the 55 distances � listed in
Table 1, corresponding to 55 one-pixel wide annuli. These cross-
covariances are computed from 11 filtered data cubes: a partic-
ular filter is applied to five consecutive distances. Eventually, the
55 travel-timemaps are averaged over five consecutive distances.

TABLE 1

Annuli and Phase Speed Filter Parameters

Index

Mean �

(Mm)

�

(Mm)

v

(km s�1)

�v

( km s�1)

t0
(minutes)

1...................... 6.20 03.7, 04.95, 06.20, 07.45, 08.7 12.77 2.63 16.1, 17.8, 18.9, 20.2, 21.4

2...................... 8.70 06.2, 07.45, 08.70, 09.95, 11.2 14.87 2.63 18.9, 20.2, 21.4, 23.0, 24.1

3...................... 11.60 08.7, 10.15, 11.60, 13.05, 14.5 17.49 2.63 21.4, 23.2, 24.4, 25.6, 27.0

4...................... 16.95 14.5, 15.72, 16.95, 18.17, 19.4 25.82 3.86 27.0, 27.9, 28.7, 29.6, 30.6

5...................... 24.35 19.4, 21.87, 24.35, 26.82, 29.3 35.46 5.25 30.6, 32.2, 33.5, 34.6, 35.7

6...................... 30.55 26.0, 28.27, 30.55, 32.82, 35.1 39.71 3.05 34.2, 35.2, 36.3, 37.2, 38.1

7...................... 36.75 31.8, 34.27, 36.75, 39.22, 41.7 43.29 3.15 36.8, 37.8, 38.7, 39.5, 40.4

8...................... 42.95 38.4, 40.67, 42.95, 45.22, 47.5 47.67 3.57 39.3, 40.0, 40.8, 41.6, 42.3

9...................... 49.15 44.2, 46.67, 49.15, 51.62, 54.1 52.26 4.46 41.3, 42.0, 42.8, 43.6, 44.3

10.................... 55.35 50.8, 53.07, 55.35, 57.62, 59.9 57.16 3.78 43.3, 44.0, 44.7, 45.4, 46.1

11.................... 61.65 56.6, 59.12, 61.65, 64.18, 66.7 61.13 3.41 45.1, 45.9, 46.6, 47.3, 48.1

Notes.—Eleven filters of mean phase speed v and dispersion �v are used for different ranges of annulus radii �. The first column gives
the annulus index, the last column gives the center of the window function f (t) used to measure first-bounce travel times (see text). We
caution the reader that these windows are not perfectly centered on the first-bounce ridge.
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The temporal cross-covariance functions are computed accord-
ing to the procedure of Gizon & Birch (2004). At fixed target
distance �, we first compute maps of point-to-point cross-
covariance functions,

C(rjr0; t) ¼ ht

T � jtj
X
i

�(r; ti)�(r
0; ti þ t); ð7Þ

where � is the oscillation signal filtered with the appropriate
function F(k; !; �). Point-to-point cross-correlations are then
averaged over an annulus:

C(r; �; t) ¼
P

i A(k ri � r k ��)C(rjri; t)P
j A(k rj � r k ��)

: ð8Þ

The spatial weight function A, defined by

A(r ��) ¼ e�(r��) 2=2�2

; ð9Þ

selects an annulus of radius� and thickness � ¼ hx /2. A mean
cross-covariance function, C(�; t), is obtained by averaging
C(r; �; t) over r and over all realizations. It is an estimate of
the expectation value of the cross-covariance function for our
background solar model:

C(�; t) ¼ E½C(r; �; t)�: ð10Þ

Figure 1 shows C as a function of � and t > 0 (it is symmetric
in time by construction). The functionC is used as a reference to
measure individual travel-time perturbations.

We use the definition provided by Gizon & Birch (2004) to
measure these travel-time perturbations, averaged over incoming
and outgoing waves:

��(r; �) ¼
X
i

W (�; ti)½C(r; �; ti)� C(�; ti)�: ð11Þ

The weight function W is given by

W (�; t) ¼ � ½ f (t)� f (�t)�@tC(�; t)

2
P

i f (ti)½@tC(�; ti)�2
; ð12Þ

where @tC is the partial derivative of C with respect to time. In
the above definition, the function f (�t) is a window function
that selects a time interval around the first-bounce arrival time
of thewavepacket. The functions we use are rectangular windows
such that f (t) ¼ 1 for jt � t0j � 10 minutes and f (t) ¼ 0 other-
wise. The central times t0 are listed in Table 1 as a function of
annulus radius,�. The travel-timemaps obtained by this procedure
provide uswith an estimate of realization noise on travel-time per-
turbation measurements, i.e., the term �n(�; t) in equation (1).

2.3. Noise Covariance Matrix

The noise covariance matrix �ij(r) (eq. [3]) is obtained from
spatial/ensemble averaging over 20 realizations of travel-time
maps. Purely horizontal correlations correspond to the case�ii(r),
while purely ‘‘vertical’’ correlations correspond to �ij(r ¼ 0).
The term ‘‘vertical’’ is used because the larger the travel distance,
the deeper the sensitivity to sound speed perturbations.

At fixed distance �i, horizontal correlations are equivalently
specified by the power spectrum of the travel times �ii(k) ¼
E½j�n(k; �i)j2� (see Gizon & Birch 2004). Further averaging is
performed over the direction of k, since travel-time maps are iso-
tropic. Figure 2 shows the spatial power spectra of �n as a func-
tion of k for three particular values of�i. Similar power spectra
were previously measured by Jensen et al. (2003) and Gizon &
Birch (2004). In particular, we observe a sudden drop in power
beyond a characteristic wavenumber, kc. This cutoff wavenumber
decreases with� and is related to the dominant wavenumber of
the wave packets, k, according to kc � 2k. The horizontal cor-
relation length is at most 6 Mm for the largest annulus. For the
small annuli there is almost no horizontal correlations (corre-
lation length less than hx ¼ 1:652 Mm).

The vertical noise covariance is given by the 11 ; 11 matrix
�ij(r ¼ 0). Figure 3 shows these vertical correlations averaged

Fig. 1.—Average cross-covariance function C(�; t) obtained for the 55 distances � and 11 phase speed filters listed in Table 1. Shown are the 11 groups of five
consecutive distances. The first-bounce travel times are measured from the most prominent ridge. The ridge at small times is an artifact caused by the phase speed filters.
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over all the simulated data, for any set (�i, �j). We see that the
correlation falls off quite fast away from the diagonal i ¼ j.
Travel times for radii �i and �j are weakly correlated for ji�
jj � 2. The vertical correlation is controlled by the overlap in
phase speed between the different wavepackets that contribute to
the travel times. In particular, the correlation cannot be very im-
portant when the phase speed filters do not overlap significantly
(see Gizon & Birch 2004 for details). To illustrate this point,
we have computed the vertical correlations in the case when no
phase speed filtering is applied. Figure 4 shows the vertical noise
correlation matrix without filtering, which displays larger verti-
cal off-diagonal correlations (in absolute value). When no phase
speed filter is applied, there is almost no impact on the horizontal
correlations except for �P 20 Mm: the correlation length is
increased but remains below 10 Mm.

3. SOUND SPEED PERTURBATIONS

We wish to produce realizations of travel-time maps, ��(r; �),
when the sound speed is not uniform inside the Sun. To do this,

we choose a three-dimensional sound speed distribution, �c2/c2.
A vertical cut through this distribution is shown in Figure 5.
These perturbations were chosen because they correspond (re-
motely) to sunspot-like structures, with the difference that the
sound speed perturbation amplitude is sometimes reversed com-
pared to real sunspots. Using equation (2) we obtain 11 maps of
travel-time perturbations, ��(r; �), one for each annulus radius.
We then add the noise realizations �n(r; �) computed above for
T ¼ 512 minutes to obtain realizations of ��(r; �). The S/N
ratio on these maps, defined here as the maximum value of j�� j
divided by the noise dispersion is close to what is actually mea-
sured fromMDI data. In this paper, this S/N ratio varies between
5 and 10, depending on the value of �.
The linear forward problem is solved using the Born-

approximation sensitivity kernels computed byBirch et al. (2004).
The Born kernels take into account the sensitivity of wavepack-
ets to the sound speed perturbations off the ray paths. They de-
pend on the phase speed filters and travel-time definition used to
derive them. The set of kernels weworkwithwere computedwith

Fig. 2.—Spatial power spectra of travel time maps, j�n(k; �)j2, for different distances �. These plots are averaged over 20 noise realizations. The Nyquist
wavenumber is at kR� ¼ 1323. (a) � ¼ 6:2 Mm, (b) � ¼ 30:55 Mm, and (c) � ¼ 61:65 Mm.

Fig. 3.—Vertical correlationmatrix for the phase speed filters listed in Table 1. Each
pixel gives the correlation in the travel-time noise for any two annulus radii�i and�j.

Fig. 4.—Vertical correlation matrix obtained when no filtering is applied to
the velocity signal (except exclusion of f modes).
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the sameGaussian filters and the same travel-time definition de-
fined above. This self consistency in the analysis is important and
was often neglected in previous studies (e.g., Couvidat et al. 2004).

4. INVERSION PROCEDURE

4.1. MCD Algorithm with Horizontal Regularization

The inversion of the travel times is done with a regularized
least-squares method through a modified MCD algorithm. The
MCD is based on the horizontal translational invariance of the
sensitivity kernels that makes equation (2) a convolution prod-
uct in the horizontal plane. In the Fourier domain, this convolu-
tion product becomes amultiplication. It is advantageous to invert
the travel times in the k plane. Instead of solving a huge three-
dimensional inverse problem, we solve many one-dimensional
problems in the vertical (z) direction: one inversion for each
k. Because the transformation to the Fourier domain can take
advantage of the fast Fourier transform, the MCD algorithm is
typically several orders of magnitude faster than a conventional
regularized least-squares approach. Our inversion code also re-
turns the averaging kernels, which give an estimate of the effec-
tive horizontal and vertical resolutions reached in the inversion
results (Hansen 1997).

In order to formulate the problem in Fourier space we intro-
duce the following vectors (Jensen 2001):

di ¼ ��(k; �i); ð13Þ
ni ¼ �n(k; �i); ð14Þ

Gi� ¼ K(k; z� ; �i); ð15Þ

m� ¼ �c2

c2
(k; z� ); ð16Þ

where all functions of k are obtained by two-dimensional spa-
tial Fourier transformation. For each k we want to minimize the
misfit to the data and solve (in matrix notation)

minf(d � Gm)H��1(d � Gm)g; ð17Þ

where

� 	 E½nnH � ð18Þ

is the noise covariance matrix. For computational expediency we
rewrite equation (17) as an equivalent linear least-squares problem:

minfjj��1(d � Gm)jj22g; ð19Þ

where

� ¼ ��T ð20Þ

is theCholesky decomposition (Golub&VanLoan1996) of�with
� being a lower triangular matrix, and k : : : k2 is the 2-norm. Be-
cause the data errors can be assumed to beGaussian, the solution d to
equation (19) is the best unbiased linear estimate, for the component
with wavenumber k, of the solution to equation (2). In practice,
however, thematrixG is highly ill-conditioned and to obtain awell-
behaved solutionwe need to add a regularization term to equation (19):

minfjj��1(d � Gm)jj22 þ k2(k)jjLmjj22g; ð21Þ

where L is a regularization operator, and k(k) is the regulariza-
tion parameter; together these determine the effect of the regu-
larization and must be chosen carefully to obtain a reliable and
effective inversionmethod. It is natural to choose L so that jjLmjj22
is a discrete approximation to

R
(�c2/c2)2(k; z) dz. Consequently,

L is a diagonal matrix whose elements are the inverse of the square
root of the spatial sampling�z at each depth. Such a weighting
is necessary because our grid in z for �c2/c2 is roughly uniform in
acoustic depth, which means the spatial sampling of deep layers
is larger than the sampling of surface layers. Without this weight-
ing, deep layers would be more constrained than surface ones.

Unlike the standard MCD algorithm, our regularization pa-
rameter k varies with k, and takes the form k2(k) ¼ k2v þ k2h(k),
where kv is a vertical regularization parameter, and kh is a hori-
zontal one. In the standard MCD there is no regularization in the
horizontal direction: kh ¼ 0, and because the deconvolution is
intrinsically ill-conditioned, MCD may give spurious inversion
results by emphasizing the high-wavenumber components of the
results in the horizontal direction. The result is a large amount of
noise with high horizontal wavenumbers in the inverted �c2/c2.
To counter this effect we add a second regularization parameter
kh, and we change a singly constrained regularization algorithm
into a multiply constrained one. In light of the problems in the
regular MCD algorithm one would suggest that kh increases with
k, such that high horizontal wavenumbers are regularized more
than lowwavenumbers. This procedure is commonly used in im-
age restoration applications (Kang 1998).We advocate choosing
either kh ¼ k2k or kh ¼ k2k2, with k2 constant, which means that
our regularization term is proportional to the 2-norm of the first
or second horizontal derivative of the solution—a very commonly
used regularization operator. Since we invert in the Fourier
domain, kjjLmjj2 is the norm of the Fourier transform of the first
horizontal derivatives of �c2/c2(r; z), while k2jjLmjj2 is the
norm of the second horizontal derivatives. Owing to Parseval’s
theorem, the 2-norm of a function is equal to the 2-norm of its
Fourier transform. Consequently, with our choice of kh the reg-
ularization applied in the MCD algorithm is the same as if we
had explicitly regularized by the norm of the first or second
derivatives of the solution in the horizontal direction. This makes
the inversion procedure more complex than with the standardMCD,
especially when it comes to choosing the best regularization pa-
rameter values, but it gives significantly better inversion results.

Fig. 5.—Vertical cut through the input sound speed perturbations, �c2/c2.
Each structure is axisymmetrical: the axis is vertical and is in the plane of the
figure. The numbers below the structures are used as labels in Figs. 7 and 9.
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When inverting travel times corresponding to a known solu-
tion, the improvement due to the horizontal regularization can be
quantified by computing the mean squared error (MSE):

MSE(kv; k2)¼
1

N

XN
r; z

�
�c2

c2
(r; z)�

�
�c2

c2

�
(kv; k2)

(r; z)

�2
; ð22Þ

where N is the total number of grid nodes, �c2/c2(k v; k2)
(r; z) is the

regularized inverse solution, and �c2/c2(r; z) is the true solution.
For our specific �c2/c2 perturbation—sunspot-like structures—
the minimumMSE calculated in a small region around the ‘‘sun-
spots’’ location is reduced by 30% when we add horizontal reg-
ularization (see Fig. 6). The corresponding averaging kernels are
also slightly better localized in the vertical direction. As expected,
in the horizontal direction these kernels are slightly broader, which
explains the smoother aspect of the solution. The spurious high-
frequency features have been reduced significantly.

In the following, all the inversion results we show are obtained
by regularizing vertically with the norm of �c2/c2 and horizon-
tally with the norm of the second derivatives of �c2/c2. To speed
up the inversion procedure we do not invert the travel-time maps
for kR� � 665, which is the cutoff wavenumber on the power
spectrum of �n(r; �) for the largest�. We assume that the inver-
sion result is zero at higher wavenumbers. We invert for 13 lay-
ers in depth for �c2/c2: the center of the deepest layer is located
28.5 Mm below the solar surface.

4.2. Choosing the Regularization Parameters

In the test cases we know the exact inverse solution �c2/c2(r; z).
Therefore, we use a least-squares (LS) estimator to get the ‘‘best’’
regularization parameters. The LS estimator merely returns the
(kv; k2) pair corresponding to the minimum of the MSE. Larger
values of the regularization parameters give larger bias and
smaller variance of the estimated inversion result. The inver-
sion is always biased because we minimize the norm of the so-
lution in the vertical direction, meaning that the solution is biased
toward zero. The LS estimator constraints a minimum variance
more than a minimum bias. Thus, it returns as best (kv; k2) pair
one that systematically overregularizes the solution: the ‘‘best’’
regularization parameters found are too large, and the inverted
�c2/c2 amplitudes are too small compared to the exact solution.
The signal we try to invert is located in a small region of the
�c2/c2(r; z) slab, the main part of this slab is noise only. The LS
estimator systematically overregularizes because it does not dis-
criminate between useful signal and useless noise. It tries to find
the best inverse solution over the entire slab, while a human being
knowing where the signal is located focuses on this region and
prefers a better solution there at the expense of the rest of the slab.

To test the impact of the way we pick (kv; k2) on the inversion
results, we invert our 20 realizations of travel-time maps ��(r; �),
with ��(r; �) based on the sunspot-like perturbations. We in-
vert these maps using either (kv; k2) returned by the LS esti-
mator over the entire �c2/c2 slab, or (kv; k2) returned by the
LS estimator applied to a small region around the sunspot-like
structures. We then average the 20 inversion results obtained in
each case. Figure 7 shows that applying the LS criterion to the
entire slab produces an unsatisfactory result. Applying it to a
small region surrounding the structures we want to retrieve gives
better results (Figs. 8 and 9). In this paper the latter method is the
preferred one to pick the best regularization parameters.

Whenworkingwith the actual time-distance data obtained from
MDI, kv and k2 may be chosen through the so-called L-surface
criterion (e.g., Hansen 1997; Belge et al. 2002). The L-surface is a

plot of the residual jjd � Gmjj2 as a function of the norms jjLmjj2
and k2jjLmjj2. This criterion is a generalization of the L-curve
criterion and consists in choosing as best regularization parame-
ters the (kv; k2) pair corresponding to the maximum Gaussian
curvature of the L-surface. According to Belge et al. (1998), the
regularization parameters producing the maximum curvature and
the parameters producing the minimum MSE are very close:
L-surface criterion and LS estimator are equivalent. Therefore, the
L-surface criterion should also overregularizewhen it is applied to
the entire slab, and a solutionmight be to compute the residual and
norms only on the region where the signal is located. Such a

Fig. 6.—Vertical cuts in the inverted �c2/c2 slabs.Upper panel: inversion re-
sult for a specific noise realization and with no horizontal regularization (standard
MCD). Lower panel: inversion with horizontal regularization (modified MCD).
TheminimumMSE has been reduced by 30%by adding horizontal regularization.

COUVIDAT ET AL.222 Vol. 158



process could be applied to the travel-time maps obtained from
MDI: when we invert the sound speed below an active region, it
is easy to locate on the maps where the sunspots are located and
derive optimal regularization for this area. However, this ap-
proach may not resolve structures outside the spot.

5. INVERSION RESULTS

5.1. Inversion of Travel Times Obtained
with Sunspot-like Perturbations

To properly compare the inversion results when equation (21)
is, or not, scaled by ��1, we average the inversion results for

20 ��(r; �) realizations and for both cases, andwe compare these
averages. The regularization parameters kv and k2 are not the
same for inversions done with and without ��1. In each case and
for each of the 20 sets of travel-time maps, we pick the best regu-
larization parameters, and then we average these 20 parameters.
We use these mean parameters to invert the ��(r; �) maps. The
averaged inversion results are shown on Figures 8 and 9. The so-
lutions seem too much regularized, and indeed the regularization
parameters chosen pragmatically, with no automatic program,
give slightly better results. This confirms that when it comes to
choosing regularization parameters human beings are sometimes
more efficient than numerical algorithms.

Fig. 7.—Vertical profiles of the four inverted sunspot-like structures shown in Fig. 5. We averaged �c2/c2 over the volumes roughly occupied by the different
structures. The regularization parameters used for the inversion are returned by the LS estimator applied to the entire �c2/c2 slab. The solid line is the exact solution, the
dot-dashed line is the inversion with noise covariance matrices. We also show the corresponding 1 � vertical error bars. These plots are an average over 20 realizations.
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Although on an inversion of travel-time maps obtained with
a specific noise realization we may notice differences between
the use or not of noise covariance matrices, on the averaged in-
version results any difference is hardly noticeable. That was ex-
pected considering the low off-diagonal ‘‘vertical’’ correlations
and the very low horizontal correlations that our set of phase
speed filters and 11 � distances produce. To test the impact on
the inversion results of the signal-to-noise ratio of the travel-
time maps, we produce noise realizations with a dispersion
twice as large as previously, and we invert the new ��(r; �):

again, taking into account the noise covariance does not affect
the averaged inversion results. The �c2/c2 perturbation we try
to retrieve is too smooth in both the horizontal and vertical di-
rections: the numerical code has no difficulty to invert the cor-
responding maps even without including the ��1 matrices.
��(r; �) is clearly separated from �n(r; �) in the Fourier space
and is only located in the small wavenumbers domain of the
spectrum, which makes it easy for the regularization to suppress
the noise. The characteristic horizontal sizes of the four ‘‘sun-
spots’’ are larger than the largest horizontal correlation length
on the noise travel-time maps. Actually in this case the use of
��1 even slightly degrades the inversion results according to
the LS criterion: the minimumMSE increases by a few percent.
The reason may be twofold. First, there is a lack of accuracy
in the covariance matrices determination: these matrices are ob-
tained from 20 noise realizations only and are assumed to be
isotropic. However, the use of the fast Fourier transform pro-
duces edge effects: horizontal and vertical stripes on the two-
dimensional power spectra of travel-time maps make the noise
slightly anisotropic. Moreover, we average over k, and the
precision on � is better for high k than for low k (because there
are more points to average): 20 noise realizations may be too
small a number to have precise enough � at low k. Indeed, we
recompute the covariance matrices over 40 travel-time noise
realizations, and the minimum MSE of the inversion result ob-
tained with these matrices is closer to the minimum MSE of
the inversion results without covariance matrices. However,
this minimum MSE is still larger than when no ��1 is in-
cluded. A second reason to explain the apparent lack of im-
provement with ��1 is the negative slope of the power spectra
of the �n maps (Fig. 2), which means that the inversion code
regularizes less the intermediate and high wavenumbers when
the ��1 matrices are included. For a smooth sound speed per-
turbation with no signal at intermediate and high k, that means
a slightly larger noise variance on the inversion results, ex-
plaining the small increase in the minimum MSE. This larger
variance makes the uncertainties on the surface layers larger for
inversions with covariance matrices. On Figure 9 the error bars
are the dispersion of the �c2/c2 results at each layer amongst
the 20 inversions. For deepest layers, the uncertainty seems to
be reduced when covariance matrices are included, probably be-
cause the horizontal correlation length increases with � and be-
comes important enough for the covariance matrices to make a
slight difference. The averaging kernels corresponding to these
inversions are shown in Figures 10, 11, and 12. On average, the
kernels obtained with ��1 are less oscillatory and have smaller
negative sidelobes, but reduced amplitudes. Including the co-
variancematrices has no positive impact on the vertical and hor-
izontal resolutions of the inversion results, and even degrade
them.
With the specific phase speed filters and � distances we use,

for the signal-to-noise ratio we have on the travel-time maps, and
above all for the smooth perturbation �c2/c2 we invert, taking
into account the ��1 matrices in the inversion procedure does
not improve the inversion results. The small correlations in the
data errors and the smoothness of the sound speed perturbation
explain this result.

5.2. Fast-Varying Sound Speed Perturbation/Increased
Noise Correlations

To further study the role of correlations in the inver-
sion procedure we use another artificial �c2/c2 perturbation:
this one looks like a checkerboard and has sharp and rapidly

Fig. 8.—Vertical cuts in the inverted �c2/c2. Upper panel: inversion re-
sults averaged over 20 realizations without including the noise covariance
matrices. Lower panel: averaged inversion results with the noise covariance
matrices.
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changing features, which make it more difficult to invert
(Fig. 13). Owing to the small-scale features of the new �c2/c2

perturbation, the power is spread over a larger wavenumber
range than with the sunspot-like perturbations. On the corre-
sponding travel-time maps, it is less easy to separate noise from
signal.

We invert these maps obtained for the 11 phase speed filters
listed in Table 1 and for a specific noise realization (no averag-
ing). The result confirms that the shape of the sound speed per-
turbation matters: for the checkerboard-like perturbation, taking

into account the noise correlation does improve the result, ac-
cording to the LS criterion. TheminimumMSE is reduced by 9%
when we include ��1, even though this is hardly visible on the
upper panels of Figure 14. The inversion code regularizes rela-
tively too much the intermediate and high wavenumbers when
no��1 is provided. Therefore, the inverted signal at these wave-
numbers is also damped.

To test the case of large off-diagonal vertical correlations,
we compute the travel-time maps related to the new �c2/c2 per-
turbation and we add extra correlations between these different

Fig. 9.—Vertical profiles of the four inverted sunspot-like structures shown in Fig. 5. We averaged �c2/c2 over the volumes roughly occupied by the differ-
ent structures. The regularization parameters used in the inversion are returned by the LS estimator applied to a small region of the �c2/c2 slab, where the signal is
located. The solid line is the exact solution. The dot-dashed curve is the inversion result when we include the covariance matrices, the dotted curve is when we invert
without the noise covariance matrices. We also show the corresponding 1 � vertical error bars for the case with covariance matrices. These plots are an average over
20 realizations.
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Fig. 10.—Profiles of the averaging kernels corresponding to the inversion results of Figs. 8 and 9. Solid lines: inversions done with noise covariance matrices.
Dashed lines: inversion done without noise covariance matrices. We show the kernels for six target depths z indicated by vertical dot-dashed lines, and for (x ¼
0 Mm; y ¼ 0 Mm). (a) z ¼ �0:6Mm, (b) z ¼ �3:7Mm, (c) z ¼ �8:6Mm, (d ) z ¼ �13:5Mm, (e) z ¼ �15:9Mm, and ( f ) z ¼ �20:8Mm. These profiles are an av-
erage over x and y.

Fig. 11.—Vertical cuts in the averaging kernels for the targets (x ¼ 0 Mm; y ¼ 0 Mm) and (a) z ¼ �3:7 Mm, (b) z ¼ �8:6 Mm, and (c) z ¼ �15:9 Mm. Inversion
done with noise covariance matrices.



maps by combining them through a specificmatrix. On Figure 15
we show the corresponding vertical correlation matrix. There
are strong off-diagonal correlations and negative values are pres-
ent instead of only positive values. We combine our Born sensi-
tivity kernels the same way before applying the forward and then
inverse problems. The inversion results with and without includ-
ing the noise covariance matrices are clearly different (Fig. 14,
middle panels): the use of ��1 reduces the minimum MSE by
68%. Not surprisingly, this confirms the strong need to include
��1 in the inversion procedure when travel-time maps are strongly
correlated. However, the amount of extra correlation we added
here is clearly unrealistic. We also add extra horizontal correlations
to the original (no vertical correlation added) travel-time maps: we
convolve these maps with f (r) ¼ 2 cos (2�r/T ) exp (�r2/�2),
where T ¼ 58 Mm, and � ¼ 33 Mm. We convolve the sensitiv-

ity kernels using this function. The characteristic horizontal
correlation length on the travel-time maps is now about 25 Mm,
larger than the horizontal length scale of the checkerboard-like
structure. As shown on the lower panels of Figure 14, the use
of noise covariance matrices again improves the inversion re-
sults: the minimum MSE is reduced by 55% and the upper part
of the checkerboard-like structure becomes visible, which is
not the case when we do not include��1. The near surface layers
are especially poorly resolved with no ��1 owing to the hori-
zontal length scale of the perturbation: this length scale is well
below the correlation length. The deeper layers, where the hori-
zontal size of the perturbation is larger, are better retrieved. This
example shows the interest of using the noise covariance ma-
trices in the inversion procedure when there are large horizontal
correlations.

Fig. 12.—Profiles of the averaging kernels for the targets (x ¼ 0 Mm; y ¼ 0 Mm) and (a) z ¼ �3:7 Mm, (b) z ¼ �8:6 Mm, and (c) z ¼ �15:9 Mm. Solid
lines: inversion done with noise covariance matrices. Dashed lines: inversion done without noise covariance matrices. These profiles are an average over z
and y.

Fig. 13.—Left panel: vertical cut through the input sound speed perturbation, �c2/c2. This perturbation is a checkerboard-like structure. Right panel: horizontal cut at
the surface.
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Fig. 14.—Vertical cuts in the inversion results for the perturbation simulating a checkerboard-like structure (Fig. 13). The left column shows the results obtained
without including the noise covariance matrices in the inversion procedure, the right column shows the results obtained with the noise covariance matrices. We show
the inversion results derived with the 11 mean �-values and phase speed filters listed in Table 1 (upper panel ), with additional vertical correlations (middle panel ),
or with additional horizontal correlations (lower panel ). The gray scale is the same as on Fig. 13.



The averaging kernels for this section are much better local-
ized when the ��1 are included, which means a finer horizontal
and vertical resolution on the inversion results.

6. CONCLUSION

Although inverse algorithms of time-distance data already
reach a good level of accuracy, they still need to be refined to
fully take advantage of the data that will be provided by the fu-
ture Helioseismic and Magnetic Imager (HMI) instrument on
board the Solar Dynamics Observatory satellite. This refinement
implies better sensitivity kernels, faster, lessmemory-consuming,
and more accurate algorithms, and taking into account the noise
covariance. In this paper, we applied the recently developed
Born approximation kernels to the forward and inverse prob-
lems. These kernels introduced in Birch et al. (2004) take into
account the sensitivity of waves to perturbations off the ray path.
We showed that inversions can be made with these kernels that
are expected to derive more realistic sound speed perturba-
tions. To improve the inversion we introduced horizontal regu-
larization in the multichannel deconvolution algorithm. This
allows us to regularize with the norm of the first or second de-
rivatives of the solution in the horizontal direction. The inversion
results are significantly improved, if we base on theminimummean
squared error. Unfortunately, this makes it more time-consuming
to find the best regularization parameters, and work needs to be
done to determine the best estimator to pick these parameters.

We suggest that when inverting the sound speed perturbations
below localized structures, applying the L-surface criterion to
a small region of the �c2/c2 slab where the signal is located
should yield better inversion results than applying this criterion
to the entire slab.

The main results concern the noise correlations and their im-
pact on the inverted sound speed perturbations.Wemanaged to in-
clude the full noise covariance matrix in the inversion code. This
does improve the results, provided that the sound speed per-
turbation changes rapidly on small scales. If the perturbation is
very smooth, meaning that the vertical and/or horizontal length
scale of variation is larger than the characteristic correlation
length, the covariance matrix has—at best—no impact on the
inversion result. It may even degrade these results by increas-
ing the noise variance. However, when inverting actual time-
distance data from MDI, we do not know the vertical shape of
the sound speed perturbations, which makes it safer to include
the ��1 matrices in the inversion procedure: if the �c2/c2 per-
turbation presents small-scale features, including thesematrices
definitely helps to retrieve the correct perturbation shape and
amplitude. Also, it is worth mentioning that when working on
point-to-point instead of point-to-annulus travel times, the spa-
tial correlations are expected to be larger, making the use of��1

a necessity. The computation of ��1 is very time-consuming,
especially if we want these matrices to be accurate enough, but
it needs only to be done once for a specific set of � distances
and phase speed filters. Moreover, the inversion procedure is
not slowed down when the noise covariance is included.

We emphasize that the phase speed filters greatly impact on
the travel-time noise correlations. With the filters we used, these
correlations are very low horizontally and low vertically. Hence,
their limited impact on the inversion results except for very sharp
sound speed perturbations. Using narrow phase speed filters
keeps the correlations low on the travel-time maps, while pro-
ducing temporal cross-covariance functions with an appropriate
noise level. However, there is a trade-off between noise level in
the travel-time measurements and filter broadness. A good com-
promise seems to be attained with filters comparable to the ones
listed in Table 1.

Finally, our inversion procedure appears to give satisfying
results, and in a next step we shall apply this procedure to real
quiet-Sun data. We shall also develop a similar inversion tool for
the retrieval of flow velocities.

This work was supported by NASA grants NAG5-12452
and NAG5-13261. A. C. B. is supported by NASA contract
NNH04CC05C.
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