

Imaging Detectors and UV Technology

Udo Schühle

IMPRS lecture on 27. October 2010

Brand new Book in our Library

SR-009

Observing Photons in Spac

VA

ISSI Scientific Report

SR-009

Observing Photons in Space

M.C.E. Huber, A. Pauluhn, J.L. Culhane, J.G. Timothy, K. Wilhelm & A. Zehnder (Eds.)

INTERNATIONAL SPACE INSTITUTE

Outline

Imaging Detectors:

- digital cameras: general remarks, terminology
- sensor arrays: materials
- general performance characteristics
- CCDs vs CMOS-APS sensors
- UV detectors for solar observations
 - hybrid sensors with wide bandgap materials
 - microchannel plate detectors
 - analog read-out MCP detectors
 - Intensified APS detectors
- UV Technology developments

Images and

 \bigcirc

SOHO/LASCO-C3 2002/04/12 21:18

Terminology

Focal plane assembly for space instrumentation

semiconductor array sensors

array of pixels

On-chip amplifier at end of the serial register. Transfer to electronic readout system for digitization.

To form a digital image, the charge collected by each pixel is associated with a pixel address by which it can be identified: px(x,y,value)

remark

Note that the pixel size of a sensor array is of the order of 10 to 20 um.

If you design an optical system (a telescope), the image scale must be such that the resolution element corresponds with the pixel size and the field of view corresponds with the array size.

The parameter to adjust is the Focal Length.

Photodetector materials

Material	E _{gap} (eV)	γ [uɯ]	band
Si	1,12	1100	Visible
GaAs	1,42	875	Visible
Ge	0,66	1800	NIR
InGaAs	0,73-0,47	1700-2600	NIR
InAs	0,36	3400	NIR
InSn	0,17	5700	IR
HgCd	0,7-0,1	1700-12500	NIR-FIR

- PtSi (3-5 um)
- HgCdTe (3-5 or 8-10 um)
- CdZnTe
- GaN (360 nm)
- AIGaN (360 to 260 nm)
- C (diamond) (220 nm)

infrared materials

X-ray materials

ultraviolet materials "wide band gap" materials

Photodetector materials

band gap energy of materials:

charge creation and photo-conduction

photo-emission in vacuum

Types of sensor arrays

Si-based sensors:

- charge coupled devices (CCDs)
- CMOS APS active pixel sensors
 - expanding the sensitivity range to the UV
 - thinned backside illumination
 - deep depletion

choice of materials
sensor architecture
hybrid devices

diode arrays

CCDs

CMOS active pixel arrays (APS)

Front-side Illuminated CCD

Udo Schühle IMPRS Oct. 2010

find more info about CCDs at http://www.ing.iac.es/%7Esmt/CCD_Primer/CCD_Primer.htm

MAX-PLANCK-GESELLSCHAF

Thinned Back-side Illuminated CCD

The silicon is chemically etched and polished down to a thickness of about 15microns. Light enters from the rear and so the electrodes do not obstruct the photons. The QE can approach 100% .

These are very expensive to produce since the thinning is a non-standard process that reduces the chip yield. These thinned CCDs become transparent to near infra-red light and the red response is poor. Response can be boosted by the application of an anti-reflective coating on the thinned rear-side.

Almost all astronomical CCDs are Thinned Backside Illuminated.

an X-ray CCD focal plane unit

Active pixel sensor CMOS-APS

functional principle

CCD versus CMOS sensors

	CCD Approach	CMOS Approach
Pixel	Photodiode	Photodiode Amplifier +
Array Readout	Charge transfer from pixel to pixel	Multiplexing of pixel voltages: Successively connect amplifiers to common bus
Sensor Output	Output amplifier performs charge-to-voltage conversion	Various options possible: - no further circuitry (analog out) - add. amplifiers (analog output) - A/D conversion (digital output)

generic architecture of a CMOS sensor

flexibility of read-out scheme (pixels can be adressed individually)
 Udo Schühle
 no shutter is needed
 IMPRS Oct. 2010

MAX-PLANCK-GESELLSCHAF

CMOS APS development

4k x 3k Pixel Sensor Development for ESA's Solar Orbiter

- \succ 5 μ m pixel size.
- > 12 bit dynamic range.
- > 4-transistor CDS pixel for low noise.
- > 0.25 μ m CMOS process.
- > EUV sensitivity by back-thinning or front-etch.

8-inch Wafer 0.25 μm CMOS

4kx3k pixel sensor die

Sensor mounted on an invar block and wire-bonded to a PCB

4K x 3K Pixel Array

CDS Sampling Capacitors

Multiplexer

Architecture

Bond-wire protectioncover fitted

CAD Simulation

CAD Layout

Drawbacks of current Si-based sensors

Udo Schühle IMPRS Oct. 2010

MAX-PLANCK-GESELLSCHAF

UV detectors for solar observations

TRACE-image of the Sun in the EUV

Emission spectra of the Sun in the VUV

The Sun on 24 September 1996

Fe IX/X 17.2 nm (SOHO/EIT)

H I Lyman-ε (SOHO/SUMER)

VUV spectrograph SUMER on SOHO

raster scan of sunspot:

vis 6330A

cont. ~1250A

N V 1238A

O V 629A

Fe XII 1242A

N V 1238A C 1 1249A

- no background noise
- no cosmic ray spikes

higher resolution and radiation hardness

0.5 Arcsec ~ 350 km at Sun

Solar spectral irradiance (and variability)

Udo Schühle IMPRS Oct. 2010 5.5 magnitudes!

MAX-PLANCK-GESELLSCHAF

quantum efficiency of Si CCD

increased QE by back-side thinning

Backside thinning of CCDs and APSs

UV to NIR

VUV to soft X-ray

The problem of silicon in the VUV

The efficiency of silicon at 121nm (the hydrogen Lyman-Alpha line) wavelength is minimal.

Measured QE for silicon device. Dotted curve: maximum theoretical QE for 100% CCE; solid curve, best-fit semi-empirical model.

Wide band gab material detectors

hybrid sensors

photosensitive substrate + silicon read-out circuit = hybrid sensor

substrate: array of photosensitive material, e.g., HgCdTe or AlGaN or CdZnTe IR UV X-ray

readout circuit array (ROIC): silicon based integrated circuit (CMOS array) with individually adressable pixels

to be mated by "flip-chip technique" via indium bump contacts

Photodetector types "pixel architecture"

IMPRS Oct. 2010

imaging arrays of Wide Band Gap material

build a micro-array of photoconductors

- 5 3.4 μm center-to-center mesa distance
- 🛑 44 μm x 44 μm etched mesas
- 🛑 35 μm x 35 μm p-metal bond pads
- 🛑 24 μm diameter indium bump pads
- 20 fully processed arrays at NCSU

100 10 E = 28 KV/cm0,1 electron/photon 0,01 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8 600 800 1000 200 400 Wavelength (nm)

Pau et al. 2003. Nitride

Diamond

Pace et al. 2000.

less filters are needed to suppress the visible-NIR continuum negligible dark signal at room temperature no cooling required

MAX-PLANCK-GESELLSCHAF

Multichannel plate detectors

(photoemission detectors, photon counting detectors)

each MCP operates at a gain of ~100 electrons

photocathodes on MCPs

- Multichannel plates are "wide band gap" detectors.
- Photocathode materials with different band gap energies may be applied.
- Alkali halide photocathodes increase the quantum efficiency in selected wavelength ranges: CsI, CsCI, LiF, KCI, KBr, RbI, multi-alkali, etc.

These are also wide band gap materials

Selective photocathode

Photocathode on front MCP

test image at 121.6 nm

 simple technology: deposition by vacuum evaporation even after final assembly!

photocathodes on MCPs

SUMER KBr photocathode

Readout of micr

Cross delay line anode + time to digital converter

Cross strip anode + charge ratio centroiding

Anode design options

32mm x 32mm cross delay line

Wedge and strip anode
Cross Delay line anode
Cross strip anode
CCD sensor
CMOS APS sensor

Flatfield pattern & resolution

- Pore structure limiting the resolution
- Multifiber bundle boundaries
- Moire pattern by superposition of MCPs

Example: flatfield of SUMER XDL detector

- Image geometric distortion
- ADC nonlinearity
- Multifiber bundles (hexagonal)
- Moire pattern (from 3 MCPs)
- Dead pores

Intensified CCD

MCP coupled to CCD via lens or fiber-optic taper

MAX-PLANCK-GESELLSCHAFT

Microchannel plate intensifiers

MCP based intensifiers

Phosphor screen anode

Solar-blind intensified imaging array detector

= MCP intensifier coupled with a pixel sensor

APS sensor array on PCB

AX-PLAHV power supply HAP

Intensified APS

MCP stack fiber optic blocks

Udo Schühle IMPRS Oct. 2010

FEE board

APS sensor board

Fiber optic coupling

Image intensifier can be coupled to any sensor (CCD or APS) on the market

Fiber optic tapers

Typical Taper Specifications

Glass Type	SCHOTT 24 Glass
Element Size (µm)	6, 10, 18, 25
Numerical Aperture – small end	1.0
Stray Light Control (EMA)	Available with or without EMA
Collimated Transmission White Light for Base Material: 3mm thick 10mm thick	85% 44%
Coefficient of Thermal Expansion (x10 –7 / °C)	68
Phosphor Compatible	Yes

Fused Fiber Optic Tapers by Schott Image Minification or Magnification

typical de-magnfication of 3:1 is standard (5:1 possible)

http://www.schott.com/lightingimaging/english/products/healthcare /imagingfiberoptics/fusedcomponents/tapers.html

IMPRS Oct. 2010

Uc

Performance of the sensor array with readout electronics (without intensifier)

Resolution limitations of intensifier

MPSR esolution of the optical system adapted to I-APS detector

Udo Schühle IMPRS Oct. 2010

optical transfer function match telescope with detector

test images with extreme UV lamp

20060907_047-056 grid at 123.6 nm

MAX-PLANCK-GESELLSCHAI

20090907_037-046 grid at 58.4 nm

Resolution test with I-APS Detector

Udo Schühle IMPRS Oct. 2010

MAX-PLANCK-GESELLSCHAF

20060831img007-030

RAISE-EM-013

\downarrow perfomance test with Lyman- α lamp and extreme UV lamp

(tests possible under vacuum only!)

The Sun on 24 September 1996

Fe IX/X 17.2 nm (SOHO/EIT)

H I Lyman-ε (SOHO/SUMER)

Who is doing what?

Industial company (e.g., Proxitronic):

- Intensifier
- Fiber optic block
- Coupling of intensifier with fiber optic block and image sensor

<u>MPS:</u>

- Coating of MCP photokathode
- Front-end readout electronics
- Mechanical housing
- Space qualification (vibration, thermal vac, thermal balance)
- Performance characterization
- Calibration

J_dSschühle Norvenobei22005

Array size (pixel size and # of pixels)
Frame rate (speed, determines image cadence)
Radiation hardness
Power requirements
Technology
Price (may be 0.5 million €)

Performance Parameters (2)

- Spectral range
- Radiometric response (QE)
- Flat field response (uniformity)
- Linearity of response
- Dark current / dark signal (need cold T)
- Noise (dark noise, read-out noise, photon noise)
- Dynamic range (full well capacity dark signal)
 CTE = Charge Transfer Efficiency (for CCDs)