

Die VUV-Instrumente der Solar Orbiter Mission

Udo Schühle

Max-Plank-Insitut für Sonnensystemforschung

Justus-von-Liebig-Weg 3 Göttingen

<u>Überblick</u>

- Einleitung: Die Solar Orbiter Mission
- Die Nutzlastinstrumente
- Der VUV Spektrograph "SPICE"
- SPICE Teleskopspiegel Design
- Test Programm der Spiegelproben
- Design und Fertigung des Spiegels

EUV-Emission der Sonne

- Erste "Medium-Class Mission in ESA's Cosmic Vision Programm 2015 - 2025 gemeinsam mit NASA
- Spezialisierte Nutzlast mit 10 Fernerkundungs- und In-situ Messinstrumenten

Die Raumfähre:

- Drei-Achsen-stabilisiert
- Gewicht: 1,8 t
- Sonnenzentriert mit Ausrichtungsmöglichkeit +- 2°
- Perihel: 0.28 AU
- Hitzeschild notwendig

Remote-sensing windows (10 days each)

> High-latitude Observations

Perihelion Observations

> High-latitude Observations

Mission Summary Launch Date: 2017 Cruise Phase: 3 years Nominal Mission: 3.5 years Extended Mission: 2.5 years Orbit: 0.28–0.91 AU (P=150-168 days) Out-of-Ecliptic View: Multiple gravity assists with Venus to increase inclination out of the ecliptic to >24° (nominal mission), >34° (extended mission)

Reduced relative rotation: Observations of evolving structures on solar surface & in heliosphere for almost a complete solar rotation

Missionsprofil

2017 Launch: Sun-Spacecraft Distance

SOLAR ORBITER

Distance to Sun [AU]

esa

NASA

2017 Launch: Orbit Inclination

esa

NASA

SOLAR ORBITER

Sonnenkorona, Sonnenwind und magnetische Aktivität → Dynamik der Heliosphäre

2017_case2_late.bsp

2020-03-21

Courtesy W. Thompson

Instrumente der Nutzlast

In-Situ Instruments					
EPD	Energetic Particle Detector	J. Rodríguez- Pacheco	Composition, timing and distribution functions of energetic particles		
MAG	Magnetometer	T. Horbury	High-precision measurements of the heliospheric magnetic field		
RPW	Radio & Plasma Waves	M. Maksimovic	Electromagnetic and electrostatic waves, magnetic and electric fields at high time resolution		
SWA	Solar Wind Analyser	C. Owen	Sampling protons, electrons and heavy ions in the solar wind		
Remote-Sensing Instruments					
EUI	Extreme Ultraviolet Imager	P. Rochus	High-resolution and full-disk EUV imaging of the on- disk corona		
METIS	Multi-Element Telescope for Imaging and Spectroscopy	E.Antonucci	Imaging of the off-disk corona		
PHI	Polarimetric & Helioseismic Imager	S. Solanki	High-resolution vector magnetic field, line-of-sight velocity in photosphere, visible imaging		
SoloHI	Heliospheric Imager	R. Howard	Wide-field visible imaging of the solar off-disk corona		
SPICE	Spectral Imaging Instrum Coronal Environe spectro	ent with high-res araphic capabilities	EUV spectroscopy of the solar disk and near-Sun corona		
STIX	Spectrometer/Telescope for Imaging X-rays	S. Krucker	Imaging spectroscopy of solar X-ray emission		

The Spacecraft

Missions-Charakeristik

- In-situ Instrumente für Sonnenwind und energetische Teilchenstrom von der Sonne
- Fernerkundungsinstrumente zur Beobachtung der Sonnenscheibe und der Korona
- Gleichzeitige hochaufgelöste Beobachtungen der Sonne mit Ausrichtung der Raumfähre auf Zielgebiete
- Autonome Messinstrumente, die gemeinsam nach Zeitplan operieren

SOLAR ORBITER

Nutzlastinstrumente

esa

Remote-sensing-Instrumente

Figure 5-1 External Overview of Payload Accommodation

In-situ-Instrumente

SOLAR ORBITER

RPW Radio and Plasma Waves

Remote Sensing Instruments

Suite of 6 Instruments

- Imagers / polarimeter / coronograph (EUI, SOLOHI, PHI, METIS)
 - Bandwidth: Visible, UV, EUV bands
- Spectral Imagers / Spectrometers (SPICE, STIX)
 - Bandwidth: EUV and x-ray

Assembly

(3)

nbly

SOLAR ORBITER

Remote-sensing instruments (I)

Remote-sensing instruments (II)

SOLAR ORBITER

esa

NASA

Polarimetric & Helioseismic Imager (PHI)

SOLAR ORBITER

SOLAR ORBITER

Einschub: Lithium-Niobat-Filter

3" LiNbO₃ wafer ("z-cut"): CSIRO (Commonwealth Scientific and Industrial Research Organisation, Australi Apertur: 70 mm Durchmesser Dicke: 0.250 mm Finesse: >20 Metallbeschichtet + kontaktiert → Voltage tuning !

Einschub: LiNbO₃ Etalon

- Thermalzyklus-Test unter Vakuum
- Vibrationstest
- Voltage tuning Tests

Einschub: LiNbO₃ Etalon

SOLAR ORBITER

Voltage tuning test

Wechselspannung 3 kV/ s

Extreme Ultraviolet Imager (EUI)

၂ မ မ မ စ န မ မ တစ် Courtesy W.Thompson

Dist: Lon: Lat:

Optische Anforderungen an die Instrumente

SOLAR ORBITER

- Gemeinsame Bildfeldgröße von mind. 200"²
- Auflösungsvermögen 1"
- Teleskope kleiner als 1 m
- Strahlungshartes Design
- Temperaturtoleranz
- Minimales Gewicht
- Autonomer Betrieb

Beispiel eines der Instrumente: SPICE

SPICE – Vakuum-Ultraviolett Spektrograph

für die Wellenlängenbereiche 70.2 nm bis 79.2 nm und von 97.0 nm bis 105.0 nm

(48.5 nm bis 52.5 nm in 2^{-} Ordnung).

Herkunft des SPICE Designs

- Erstmals vorgeschlagen von Roger Thomas (NASA-GSFC) (2004)
- Optisches Konzept eines Toroidal Variable Line Space Gitters von Kita and Harada (J) (1983)
- NASA-Raketennutzlast: EUNIS, RAISE (2006...)
- HINODE-Mission: Extreme Ultraviolet Imaging spectrograph EIS (2006)

SPICE Optische Design-Optimierung

Optisch ein Kompromiss aus vielen unterschiedlichen Anforderungen:

- 1. Große Apertur, Einzelspiegel,
- 2. großes Bildfeld & hohe Auflösung \rightarrow kleiner Achsenabstand
- 3. Großer Bildbereich \rightarrow großer Achsenabstand.
- 4. TVLS-Gitter in elliptischer Anordnung mit Vergrößerungsverhältnis
- 5. Temperaturstabilität ist die größte Herausforderung!

Teleskopspiegel Designanforderungen

==> Wärmestrahlung der Sonne wird durchgelassen!

Verteilung der Sonneneinstrahlung

Spiegelproben von FhG-IOF mit verschiedenen Schichtdicken Borkarbid (B_4C).

Messung von Reflexion, Transmission und Absorption.

Simulation Strahlungsverteilung

 → Energiebudget für eine 10 nm B₄C-Schicht:
T = 77 % R = 13 % A = 10 %

Weltraumqualifizierung

- Weltraumsimulation durch Bestrahlung mit 10 60 MeV Protonen
- Sonnenwindsimulation durch Bestrahlung mit 1 keV Protonen (Missionsäquivalente Dosis)
- Sonnen-UV-Simulation durch Bestrahlung mit hoch-intensiver UV-Quelle (möglichst mit 20-facher Solarkonstanten)

Qualifikationstestplan

Measurement	Samples Coated	Samples Uncoated	Note
AFM $(1\mu m^2 + 10\mu m^2)$	0	18	charaterization surface rouhgness
Coating B ₄ C 10 nm	10	1	surface coating with B_4C for 10 nm
Coating for B_4C 16 nm	6	1	surface coating with B_4C for 16 nm
AFM $(1\mu m^2 + 10\mu m^2)$	13	2	surface roughness after coating
X-ray diffraction	16	0	coating thickness calculation
Spectral photometry (T/R)	16	1	visible reflectance/transmittance
VUV-Reflectance Test	16	1	VUV measurements at PTB-MLS
Irradiation protons	6	1	protons at 10 MeV - 60 MeV (PSI)
Irradiation protons	6	1	solar wind protons at 1 keV (FZD)
AFM $(1\mu m^2 + 10\mu m^2)$	12	2	surface roughness after irradiations
X-ray diffraction	12	2	coating thickness verification
Spectral photometry (T/R)	12	2	visible reflectance/transmittance
VUV-Reflectance Test	12	2	VUV measurements at PTB-MLS

EUV-Reflektivität

Reflektivitätskurven aller Proben

Reflektivität der B₄C-Schichten

• High energy p⁺

	Sample #	proton energy	fluence [#/cm2]	Remarks
Position				
<i>P1</i>	12894	10 MeV	4 x 10 ¹¹	10 nm B4C
<i>P2</i>	12891	10 MeV	4 x 10 ¹¹	16 nm B4C
<i>P3</i>	12930	20 MeV	+8 x 10 ¹⁰	10 nm B4C
<i>P4</i>	12890	20 MeV	+8 x 10 ¹⁰	16 nm B4C
<i>P5</i>	12637	60 MeV	+2 x 10 ¹⁰	10 nm B4C
<i>P6</i>	12645	all	+2 x 10 ¹⁰	shielded
P 7	12931	60 MeV	+2 x 10 ¹⁰	no coating

• Low energy p⁺ (Sonnenwind-Äquivalent bei 1 keV)

С	Sample ID	Fluence	Remarks
D 2		[#/cm ²]	
P8	12644	1x10 ¹⁰	10 nm B4C
P9	12638	5x10 ¹⁰	10 nm B4C
P10	11863	10×10^{16}	10 nm B4C
P11	12935	30×10^{16}	16 nm B4C
P12	12834	60x10 ¹⁰	16 nm B4C
P13	12934	60x10 ¹⁰	no coating
P14	12893	shielded	~16nm B ₄ C

VUV-Bestrahlung im Vakuum

Hoch-intensive Krytonlampe für Bestrahlung bei 123 nm. Wasserstoff-Lyman-Alpha-Quelle zur Messung bei 122 nm.

Reflektivität & Transmission nach Bestrahlung mit Protonen > 10 MeV

Sample ID	128 94	129 30	126 37	126 45	128 90	128 91	129 31
Fluence x10 ¹¹ p/cm ²	4,00	4,80	5,00	shie lded	4,80	4,00	5,00
R _{before}	10,3	10,4	10,6	10,7	15,5	13,9	-
R after	10,2	10,3	10,4	10,6	14,3	13,7	6,4
T _{before}	82,7	82,6	82,2	81,8	76,6	77,8	-
T _{after}	83,1	83	82,5	82,1	76,8	77,9	91,8
R _{VUV before}	28,8 0	29,3 0	29,1 0	30,5 0	33,1 0	32,1 0	8,70
R _{VUV after}	28,0 0	28,0 0	29,2 0	29,9 0	32,1 0	31,3 0	9,50

Reflektivität & Transmission nach Bestrahlung mit Protonen @ 1 keV

VUV-Reflektivität gegenüber Bestrahlungsfluss

rms = 0.34 nm f13 12834_n81.100

rms = 0.59 nm fll 12834_n31.010

Mikro-Rauhigkeit vor (oben) und nach (unten) Bestrahlung mit Sonnenwindprotonen bei 1 keV. (measured by FhG-IOF)

Mikro-Rauhigkeit nach 1 keV Protonenimplantation

EUV-Reflektivität nach Protonenimplantation

Vergleich der Reflektivität bevor und nach Bestrahlung mit 6x10¹⁷ p+/cm²

Testergebnisse

- Bestrahlung mit Protonen zwischen 10 MeV und 60 MeV bis zu einem Fluss von 5 x 10¹¹ cm⁻² hat keinen Einfluss auf die Spiegelbeschichtung (keinen Einfluss auf die VUV-Reflektivität, die thermo-optischen Eigenschaften und die Mikro-Rauhigkeit.)
- Bestrahlung mit Protonen des Sonnenwinds bei 1 keV bis zu einem Fluss von 1 x 10¹⁶ cm⁻² hat einen zerstörenden Einfluss auf die Spiegelbeschichtung (auf die VUV-Reflektivität, die thermo-optischen Eigenschaften und die Mikro-Rauhigkeit.)
- Überraschenderweise wurden keine Effekte auf dem unbeschichteten Substrat gefunden.
- Die Bestrahlung mit der hochintensiven Lampe bei 123. nm hat keinen Effekt auf die Beschichtung.

SPICE Instrumentdesign

OFF-AXIS PARABOLOID GEOMETRY

Geometrische Größen

Spezifikationen des Spiegels

Substrate Material	UV-grade fused-silica (Heraeus Suprasil 300)
Substrate Size	103 x 103 mm
Substrate Thickness	18 mm at centre
Figure of Front Surface	concave, off-axis parabolic
Off-axis Distance	55.0 mm
Base Radius	1244.0 mm
Figure Error	λ /20 RMS at 632.8 nm over clear aperture
Front-side Coating	single layer B_4C , 10 nm thickness, at central 50 x 50 mm
Clear Aperture of thermal beam	≥ 95.0 mm x 95.0 mm
Back-side Coating	Anti-reflective MgF ₂ single layer

Spiegelaufhängung

- single parabola
- rectangular aperture area
- focal length of 622 mm
- mounted to a frame of the SFM
- substrate: square 103.0 mm
- 18 mm thickness at the centre.
- useful aperture is 95 mm x 95 mm
- square with rounded corners.

Aufhängung und Unterbringung

Fertigung des Spiegels

Zusammenarbeit zwischen MPS und Fraunhofer Institut für Angewandte Optik und Feinmechanik (FhG-IOF) und optiX fab GmbH

- Substratfertigung und Vermessung durch Jenoptik
- Optische Beschichtungen und Charackerisierung (XRD) optiXfab/FhG-IOF
- Rauhigkeitsmessungen (AFM) optiXfab/FhG-IOF
- Thermo-optische Eigenschaften (R,T,A) optiXfab/FhG-IOF
- Streulichtberechnungen optiXfab/FhG-IOF

Physikalisch-Technische Bundesanstalt (PTB)

- Metrology Light Source (MLS)
- VUV and EUV metrology

Spiegelfertigung und Verifikation

Zugabe:

VUV-Kameraentwicklung für Sonnenbeobachtung vom Weltraum

VUV-Detektoren für Sonnenobservation vom Weltraum

TRACE-image of the Sun in the EUV

Emissionsspektrum der Sonne im VUV

Backside thinning of CCDs and APSs

UV to NIR

VUV to soft X-ray

Sensoren aus Material mit großer Bandlücke (wide band gap semiconductor sensors)

keine Kühlung erforderlich

Sichtbar-blinde Kamera mit Bildverstäker

= MCP-Bildverstärker gekoppelt mit Bildsensor

APS sensor array on PCB

HV power supply

STAR 1000

Offene Bildverstärker-Kamera

MCP stack fiber optic blocks APS sensor board

Optische Kopplung

Bildverstärker kann an den Sensor angepasst werden

- \rightarrow Bildfeldgröße ist wählbar unabhängig von der Sensorgröße!
 - \rightarrow Dynamikbereich kann angepasst werden (durch HV)
 - \rightarrow Photokathodenmaterial wählbar (sichtbar blind)

Selektive Photokathodenbeschichtung

Photokathode auf MCP-Vorderseite

Testbild bei 121.6 nm

Beschichtung durch Verdampfen unter Vakuum

Die Sonne am 24. September 1996

Fe IX/X 17.2 nm (SOHO/EIT)

