

UV Technology Developments at MPS

Udo Schühle

Udo Schühle, MPS, 11 JAN 2010

SO Instruments with MPS H/W contributions

Investigation	Measurements
Solar Wind Analyzer (SWA)	Solar wind ion and electron bulk properties, ion composition (1eV- 5 keV electrons; 0.2 - 100 keV/q ions)
Energetic Particle Detector (EPD)	Composition, timing, and distribution functions of suprathermal and energetic particles (8 keV/n – 200 MeV/n ions; 20-700 keV electrons)
Magnetometer (MAG)	DC vector magnetic fields (0 – 64 Hz)
Radio & Plasma Waves (RPW)	AC electric and magnetic fields (~DC – 20 MHz)
Polarimetric and Helioseismic Imager (PHI)	Vector magnetic field and line-of-sight velocity in the photosphere
EUV Imager (EUI)	Full-disk EUV and high-resolution EUV and Lyman- α imaging of the solar atmosphere
Spectral Imaging of the Coronal Environment (SPICE)	EUV spectroscopy of the solar disk and corona
X-ray Spectrometer Telescope (STIX)	Solar thermal and non-thermal X-ray emission (4 – 150 keV)
Coronagraph (METIS/COR)	Visible, UV and EUV imaging of the solar corona
Heliospheric Imager (SolOHI)	White-light imaging of the extended corona

SO Remote-sensing instruments: PHI, METIS

3-D view of PHI

3-D View of METIS

SO Remote-sensing instruments: EUI, SPICE

3-D view of the **EUI** instrument configuration

3-D Schematic view of **SPICE**

VUV optical technology for Solar Orbiter

Heritage: VUV spectrograph SUMER on SOHO

Developments for Solar Orbiter:

- 1. Primary mirror for SPICE
- 2. Lyman- α telescope for EUI
- 3. Solar-blind UV detectors for EUI and METIS

VUV spectrograph SUMER on SOHO

Developements for Solar Orbiter EUS

Radiometric transfer standard source

SUMER test and calibration vacuum tank at MPS: 300 cm x 90 cm diameter

Udo Schühle, MPS, 11 JAN 2010

VUV spectrograph SUMER on SOHO

Raster scans of the solar Transition Region

VUV spectrograph SUMER on SOHO

raster scan of sunspot:

vis 633 nm cont. ~125 nm

N V 123.8 nm

O V 62.9 nm

Fe XII 124.2 nm

raster scan of polar region:

Developments for Solar Orbiter SPICE

design with two optical elements using off-axis parabola telescope and toroidal variable-line space grating

Developments for Solar Orbiter SPICE

heat management through the primary mirror

Developments for Solar Orbiter SPICE

Study of a dichroic telescope mirror

==> heat will be transmitted towards a radiator

SPICE primary mirror design with thin B₄C coating

VUV tests with mirror samples

VUV reflectometer

Space qualification of mirror coatings

- Space radiation simulation: irradiation with 10 60 MeV protons
- Solar wind simulation: irradiation with 1 keV protons (mission equivalent dose)
- Solar UV simulation: irradiation with UV (20 solar constants)

Degradation by solar wind protons

EUI telescope design

EUI: suite of 3 telescopes

HRI Lyman- α channel 121.6 nm

HRI EUV channel 17.4 nm

FSI dual EUV channel 17.4 and 30.4 nm nm

EUI Lyman- α telescope design

Ly- α channel components

- Telescope entrance baffle door mechanism
- Solar-blind Lyman- α detector
- Optics:
 - Lyman- α narrow band filter (121.6 nm) by Acton Research C. inc.
 - off-axis parabola mirror 30 mm diameter, Al/MgF₂ coating
 - off-axis parabola secondary mirror, Al/MgF₂ coating

EUI Door mechanism design

Figure 3-2: EUI preliminary internal door design

This door mechanism is based on a stepper motor drive moving two lids along two parallel translation bars.

EUI Lyman- α channel detector

The Lyman- α detector:

a solar-blind intensified CMOS/APS camera

Coupling MCP intensifier with APS image sensor

STAR 1000 visible CMOS-APS sensor

MCP stack fiber optic blocks APS sensor board

MCP housing

FEE board

Camera assembly and vibration test

Photocathode deposition chamber at MPS

made deposition of CsI and KBr up to thickness of 1000 nm with 1 nm resolution

Udo Schühle, MPS, 11 JAN 2010

KBr photocathode deposition

Development of I-APS detector

- intensifier based on microchannel plates with KBr photocathode coating
- coupling with active pixel sensor (APS)
- APS electronic readout circuitry
- space qualification: vibration, acoustic, thermal, radiation hard

Advantages of I-APS

PROS:

- most flexible in terms of focal plane size: may be adjusted by fiber optic taper
- most flexible dynamic range: may be adjusted from photon-counting to current-integration mode in several ways:
 - photocathode selection for spectral ranges
 - adjustable gain by HV
 - selectable attenuation of phosphor by ND-filter
- solar blindness (saves a filter!)
- operation at room temperature (less cooling needed, no contamination problem)
- high responsivity in full VUV and EUV range CONS:
- fragile multi-channel plates
- adjustable high voltage needed, up to 10 kV
- limited spatial resolution of MCPs: MTF of ~50 lines/mm

Milestones / Achievements at MPS

- first coupling of intensifier with fiber optic faceplate and APS sensor achieved in March 2007
- build-up of photocathode deposition system at MPS in 2007
- photocathode deposition with (CsI and KBr) in January 2008
- development of 14-bit electronic readout for 1kx1k APS sensor in 2007
- design of electronic readout with high-rel parts in July 2008
- built first radhard system in 2009

Space-qualifiable camera for the Star-1000 APS sensor

Design description

• The compact camera system is powered by external power system, supplying all voltages needed by the readout system

Performance characterization

Image of a target. The yellow line is the location of the profile shown below

Udo Schühle, MPS, 11 JAN 2010

Perfomance test with Lyman- α lamp and extreme UV lamp

