X-ray network emission and photospheric vortices: observations with Hinode and SoHO

Raphael Attie, Dr. Davina Innes

Raphael Attie, Ph.D student
attie@mps.mpg.de
Max Planck Institute for Solar System Research, Katlenburg-Lindau (Germany)
Office A2.94
Phone: (+49)(0)5556.979.478
Quiet Sun: How does the photospheric flows contribute to the x-ray emission in the low corona?

- Reminder: Balltacking from Potts et al. (2004), (2007) and (Attie et al. 2009)
- Hinode-SoHO’s observations and co-alignment
- Photospheric velocity fields, magnetic field (LOS), and x-ray emission
- Discussion on models, space weather and “all-clear forecasting”
Reminder : Balltracking
(Potts et al., 2004)
Balltracking the photospheric flows

$m \dot{v} = \sum_i f_i + mg - \alpha v$

f_i : Archimede-like force, function of the penetration distance

Balltracking (Potts et al., 2004)

Applied to SoHO/MDI:
High-Res continuum images

(Attie et al., 2009)

Applied to FG-SOT/Hinode:
Blue continuum, G-band.
Balltracking the photospheric flows

$m\dot{v} = \sum_i f_i + mg - \alpha v$

f_i: Archimede-like force, function of the penetration distance

Balltracking (Potts et al., 2004)

Applied to SoHO/MDI:
High-Res continuum images

(Attie et al., 2009)

Applied to FG-SOT/Hinode:
Blue continuum, G-band.
First application on Hinode observations (Attie et al., 2009)

10 April 2007

- Cadence: 2 minutes
- 1 hour of continuous observation

07 November 2007

- Cadence: 3 minutes
- 5 hours continuous observations
Distribution of the velocity field (calibrated)

Quiet Sun - 1 Hour dataset
- **Multiple cadences**
- **Average over 45 Minutes**
- **FWHM smoothing = 3 Mm - 3.8”** Above thresholds from Rieutord et al. (2001)

FG-FOV, over 45 minutes, at 3-min-cadence
- 200< Modal and Mean velocities < 300 m/s

Same as
- Krijger et al. (2002) LCT
- Potts et al. (2004) Balltracking
- Smoothing-dependent

Reminder: balltracking
10th April 2007, snapshot (over 30 min)

Reminder: balltracking

Attie et al. (2009)
07th November 2007, snapshot (over 45 min)

Attie et al. (2009)
Photospheric vortex flows at the supergranular junctions

Typical size: 15-20 Mm

07th November 2007, snapshot (over 45 min)

Attie et al. (2009)
Observations and Co-alignment
Observations on 09/26/2008

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Corona</td>
<td>XRT/Hinode (X-rays images)</td>
</tr>
<tr>
<td>Photosphere</td>
<td>FG/SOT-BFI (Hinode) : Granulation in blue continuum</td>
</tr>
<tr>
<td></td>
<td>FG/SOT-NFI : Na I stokes V/I : uncalibrated (bubble problem)</td>
</tr>
<tr>
<td></td>
<td>MDI : High Res (1”~0.7Mm) continuum images, magnetograms of LOS B.</td>
</tr>
</tbody>
</table>
Co-alignment using the photospheric network lanes of both MDI and FG/SOT (Hinode)

- Lanes of same width.
- Alignment on lanes and common junctions.
How “reliable” are these lanes?

Places where the LOS magnetic field is swept out (with MDI magnetograms, or Ca II in FG-SOT)
XRT

- Quiet Sun
- Disc center, over 4 hours
- FOV : ~384x384 arcsec2 (268x268 Mm2)
- pixel size : ~1 arcsec
Co-alignment between XRT and MDI

- Still under development.
- Need well visible loops and MDI footpoints.
- For now: +/- 3 arcsec alignment
- Probably will need TRACE + full disk MDI.

Initial misalignment

Attempt of co-alignment on footpoints of x-ray loops

Green-blue contours: MDI LOS B (+/- 180G)

Average over 4 hours
Co-alignment between XRT and MDI

Observations and Co-alignment

Average over 4 hours

Average over 4 hours (FG/SOT FOV)

Difficult to discriminate from bright broad footpoints or loops, either in average image or time series.

Green-blue contours: MDI LOS B
Photospheric vortices and X-ray network emission
Photopheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours
Photopheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours

![Graph showing XRT network emission intensity over 4 hours](image-url)
Photpheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours

Most “important” network emission at the supergranular junctions
Photpheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours

Most “important” network emission at the supergranular junctions
Photpheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours

- MDI contours (LOS B at +/- 140 G)

⇒ Most “important” network emission at the supergranular junctions
Photopheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours

⇒ Most “important” network emission at the supergranular junctions

MDI contours (LOS B at +/- 140 G)
Photpheric vortices and X-ray network emission

- XRT
- Network Lanes (FG/SOT)
- Average over 4 hours

• MDI contours (LOS B at +/- 140 G)

➡ Most “important” network emission at the supergranular junctions
Photpheric vortices and X-ray network emission

• XRT
• Network Lanes (FG/SOT)
• Average over 4 hours

Most “important” network emission at the supergranular junctions

Light curves over frame A and B

Circulation over SG. junction A and internetwork
Photopheric vortices and X-ray network emission

Frame A

Vortices

Frame B

Twisted flows
Photopheric vortices and X-ray network emission

Frame A

Background: XRT
Green-yellow contours: NFI stokes V/I

Frame B

Background: XRT
Green-yellow contours: NFI stokes V/I

Reconnection? (ask author for movie)
Photopheric vortices and X-ray network emission

Frame A
Background: XRT
Green-yellow contours: NFI stokes V/I

Frame B
Background: XRT
Green-yellow contours: NFI stokes V/I

Reconnection? (ask author for movie)
Photopheric vortices and X-ray network emission

Frame A
Background: XRT
Green-yellow contours: NFI stokes V/I

Reconnection? (ask author for movie)

Frame B
Background: XRT
Green-yellow contours: NFI stokes V/I

Reconnection? (ask author for movie)
Discussion about the Quiet Sun (1)
Discussion about the Quiet Sun (1)

- SG junctions:
 - Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening
Discussion about the Quiet Sun (1)

- SG junctions:
 - Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening
Discussion about the Quiet Sun (I)

• SG junctions:
 ‣ Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening
Discussion about the Quiet Sun (1)

• **SG junctions:**
 ‣ Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening

• **Magnetic field and SG junctions:**
 ‣ mixed polarities “encounters” in the vortices or in the twisted lanes during X-ray outburst
 ‣ Absence of clustered field in SG junctions or network: no significative X-ray emission
Discussion about the Quiet Sun (1)

- SG junctions:
 - Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening

- Magnetic field and SG junctions:
 - mixed polarities “encounters” in the vortices or in the twisted lanes during X-ray outburst
 - Absence of clustered field in SG, junctions or network: no significative X-ray emission
Discussion about the Quiet Sun (I)

- SG junctions:
 - Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening

- Magnetic field and SG junctions:
 - Mixed polarities “encounters” in the vortices or in the twisted lanes during X-ray outburst
 - Absence of clustered field in SG junctions or network: no significative X-ray emission
Discussion about the Quiet Sun (1)

• SG junctions :
 ‣ Sites of both transient “relatively” strong X-ray emission, and more permanent X-ray brightening

• Magnetic field and SG junctions :
 ‣ Mixed polarities “encounters” in the vortices or in the twisted lanes during X-ray outburst
 ‣ Absence of clustered field in SG junctions or network: no significative X-ray emission

• Open question about the vortices :
 ‣ Shearing of bipolar fields induced near the neutral line, by Amari et al. (2009)
 ‣ Induced magnetic stress, energy build up triggering the transient and permanent X-ray strong emissions, as in active regions (Machado et al., 1988, Moore et al., 1999)?
Discussion about the Quiet Sun (2)

- Quiet Sun regions are dominant during low solar cycle.
- Scaling law? Similitudes between Quiet Sun transient X-ray emission and flares in AR must be investigated.
- Photospheric motions are a new observable for real time monitoring of solar activity. Space weather forecasting could use it.
- Forecasting the “all clear” (Nasa workshop): Are the photospheric twisted motions a necessary condition (sufficient or not) to trigger eruptive events?
References

 “Quiet Sun mini-coronal mass ejections activated by supergranular flows”

 “Evidence of photospheric vortex flows at supergranular junctions observed by FG/SOT (Hinode)”

 “Automatic Recognition and Characterisation of Supergranular Cells from Photospheric Velocity Fields”

 “Balltracking : An highly efficient method for tracking flow fields”

 “Photospheric flows measured with Trace”

 “Are granules good tracers of solar surface velocity fields”

 “Are granules good tracers of solar surface velocity fields”

 “A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares”

 “On Heating the Sun’s Corona by Magnetic Explosions: Feasibility in Active Regions and Prospects for Quiet Regions and Coronal Holes”

 “Vortex flow in the solar photosphere”

 “The observed characteristics of flare energy release. I - Magnetic structure at the energy release site”