A mechanism for the dependence of sunspot group tilt angles on the strength of the solar cycle

Emre Işık
Department of Physics,
Istanbul Kultur University,
Turkey

The magnetically variable Sun

The 11-year solar cycle

Solar magnetic activity varies with a period of roughly 11 years. Long-term variations are superposed upon this cycle.

“Maunder Minimum”

Graph showing solar activity from 1600 to 2000.
Tilt angle: why important?

- Latitudinal separation of +/-
- Magnetic flux crossing the equator
- Polar fields (N) — toroidal field (N+1)

Jiang et al. (2010)
Tilt angles change with cycles.

- Anti-correlation observed
- Self-sustained mechanism?

Fig. 1. Corrected Fig. 4a of Dasi-Espuig et al. (2010). Cycle averaged tilt angle normalised by the mean latitude vs. the strength of the same cycle based on MW data ($r_c = -0.79$). The error bars represent 1σ error and the dashed line a linear fit to the points. Cycles 15 and 21 are shown as squares with dashed lines for the error bars because of their incompleteness.
Inflows towards active regions/belts

- Gizon et al. (2001)
- Gonzalez-Hernandez et al. (2008)
- Zhao et al. (2014)
- ...

Possibly related to enhanced cooling

Could it suppress the effective tilt angle?

Sun et al. 2015
Effect of the meridional component

- **BMR simulations**: limits on the generation of polar magnetic flux
 - Jiang, Işık, Cameron, Schmitt, Schüssler (2010)
- **Cycle simulations**: improved correlations in SFT models
 - Cameron & Schüssler (2012)
Indications to an alternative...

- Cycle-dependent changes in the internal structure?
- Theoretical: Radiative heating of a magnetised convective overshoot layer [Rempel 2003]
- Helioseismology: sound speed reduced [Baldner & Basu 2008]
Helioseismic evidence

SOLAR CYCLE RELATED CHANGES AT THE BASE OF THE CONVECTION ZONE

CHARLES S. BALDNER AND SARBANI BASU
Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT, 06520-8101; charles.baldner@yale.edu
Received 2008 April 4; accepted 2008 July 2

Sound speed is reduced near the base (Cyc 23 min to max)

Reduction pattern correlated with the butterfly diagram

\[\frac{\delta c^2}{c^2} = (7.23 \pm 2.08) \times 10^{-5} \]
Radiative heating of a magnetic layer

Thermal properties of magnetic flux tubes

II. Storage of flux in the solar overshoot region

M. Rempel*

Max-Planck-Institut für Aeronomie, Max-Planck-Str. 2, 37191 Katlenburg-Lindau, Germany

e-mail: rempel@linmpi.mpg.de

Rempel (2003)

- Convective heat flux quenched by B
- …cooling the overshoot region
- …stabilising the overshoot region
Perturbing the stratification

\[T_1 = T_m \exp \left[-\frac{(r - r_p)^2}{\sigma^2} \right], \]

... Perturbation in temperature...

\[\rho_1 = \rho_0 \left(\frac{p_1}{p_0} - \frac{T_1}{T_0} \right), \]

... density

\[\frac{dp_1}{dr} = -\frac{p_1}{H_p 0} + \rho_0 g \frac{T_1}{T_0}, \]

... pressure

\[s_1 = c_p \left(\frac{T_1}{T_0} - \nabla_{ad} \frac{p_1}{p_0} \right), \]

... specific entropy

\[\delta_1 = -\frac{H_p 0}{c_p} \frac{ds_1}{dr}. \]

... superadiabaticity

Non-local mixing length model of solar CZ

stabilised!
Overshoot region ‘stabilised’

Implications for magnetic flux tubes?
Magnetic flux tubes stabilised

- Magnetic flux tubes stabilised

\[
B_p \leq c \frac{QH}{E} \left(\frac{\delta}{\beta} \right) \approx 3.6 \times 10^5 \text{ G},
\]

using the sound speed perturbation from the helioseismic result, and the local gas pressure from the structure model used here.

- From another perspective, Rempel (2003) found that when a magnetic field of \(10^5\) G quenches the convective heat conductivity by a factor of 100, a local cooling

- Figure 3. Instability maps of a thin flux tube as a function of latitude and field strength in the middle of the overshoot region, for \(T_0\) and \(T_5\) (upper panels); \(T_{10}\) and \(T_{20}\) (lower panels). The contours show growth times from the linear stability analysis. The dots clustered along the densely packed contours (growth times 40–60 days with 5-day intervals) show the nonlinear simulations performed. The light (dark) shaded regions denote the wavenumber of the fastest-growing mode \(m = 1\) (\(m = 2\)). It is noticeable that the instability threshold field strength shifts to larger values as the thermal perturbation is increased. Note that the range of field strength is different on each plot.

- Figure 4. Latitude dependence of the tilt angle (Joy’s law) for simulations \(T_0\) to \(T_{50}\) with different amplitudes of local cooling. The tilt angles are averages over 5° bins (continuous lines). The dotted lines show the sinusoidal fits (Equation 10). The average tilt angle and the steepness of the dependence decrease with increasing temperature perturbation.

<table>
<thead>
<tr>
<th>(T_m) (K)</th>
<th>(\delta \times 10^{-5})</th>
<th>(B_\sim)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
<th>(\nu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-5)</td>
<td>5.34</td>
<td>0.21</td>
<td>0.23</td>
<td>13.7</td>
<td>1.22</td>
</tr>
<tr>
<td>(-10)</td>
<td>4.29</td>
<td>0.17</td>
<td>0.19</td>
<td>11.2</td>
<td>1.03</td>
</tr>
<tr>
<td>(-20)</td>
<td>3.63</td>
<td>0.14</td>
<td>0.15</td>
<td>9.0</td>
<td>0.86</td>
</tr>
<tr>
<td>(-50)</td>
<td>2.91</td>
<td>0.11</td>
<td>0.13</td>
<td>7.7</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Magnetic flux tubes stabilised

- Instability threshold shifts to stronger field strengths

Linear stability analysis for thin flux tubes

cf. Ferriz Mas & Schüssler (1995)
Joy’s law & the observed anti-correlation

- Stronger cycles, lower tilt angles
- 5-20 K of cooling sufficient
- Observed min-max variation: -140 K

<table>
<thead>
<tr>
<th>T_m (K)</th>
<th>$\delta \times 10^{-5}$</th>
<th>$\langle \alpha \rangle$</th>
<th>$\langle \alpha \rangle/\langle \lambda \rangle$</th>
<th>a</th>
<th>γ_0</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.098</td>
<td>6.69</td>
<td>0.23</td>
<td>0.25</td>
<td>15.2</td>
<td>1.39</td>
</tr>
<tr>
<td>-5</td>
<td>-0.636</td>
<td>5.34</td>
<td>0.21</td>
<td>0.23</td>
<td>13.7</td>
<td>1.22</td>
</tr>
<tr>
<td>-10</td>
<td>-1.16</td>
<td>4.29</td>
<td>0.17</td>
<td>0.19</td>
<td>11.2</td>
<td>1.03</td>
</tr>
<tr>
<td>-20</td>
<td>-2.24</td>
<td>3.63</td>
<td>0.14</td>
<td>0.15</td>
<td>9.0</td>
<td>0.86</td>
</tr>
<tr>
<td>-50</td>
<td>-54.9</td>
<td>2.91</td>
<td>0.11</td>
<td>0.13</td>
<td>7.7</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Mean Tilt Angles and Joy’s Law Parameters

![Graph showing Joy’s law and observed anti-correlation.](image)
Implications

Nonlinear Babcock-Leighton dynamo with stochastic sources
(Işık, Cameron, Schüssler 2016, ongoing work)

❖ A potential nonlinearity for the solar cycle.
❖ It can account for the observed range of cycle-averaged tilts.
❖ It will be used in BL dynamo models.