STRUCTURE AND DYNAMICS OF THE COOL CORONA

Hardi Peter

► Part I **Coronal models**
 – a small ejection driven by increased heat input
 (with Sven Bingert, Philippe Bourdin & Pia Zacharias @KIS)

► Part II **Hinode / EIS Observations**
 – asymmetric flows in active regions
 → consequences for coronal mass cycle (?)

► Part III **Brief outlook**
 combining coronal models with observations

The Pencil Code
Brandenburg & Dobler (2002)
Comp Phys Comm 147, 471

- high-order finite-difference modular code for compressible 3D MHD
- efficiently under MPI on distributed-memory clusters

- Box: up to 512^3 grid : $50 \times 50 \times 30$ Mm3
 horizontally periodic, open top
- non-uniform mesh
- horizontal motions in photosphere as driver
 \rightarrow field line braiding (Parker 1972)
- full energy equation (heat conduction, rad. losses) \rightarrow important for spectral diagnostics

formation height of 10^5 K emission
horizontally periodic, open top
non-uniform mesh
horizontal motions in photosphere as driver
\rightarrow field line braiding (Parker 1972)
full energy equation (heat conduction, rad. losses) \rightarrow important for spectral diagnostics
Synthetic spectra at each grid point of the 3D model:

- T, n: emissivity (CHIANTI atomic data base)
- ν: line-of-sight \rightarrow Doppler shift
- T: line width

integration along line of sight:

\rightarrow line profiles

\rightarrow maps of spectra
A recent experiment...

integration trough box (side view)
50 Mm x 30 Mm

small AR / two pores (50 Mm x 50 Mm):

B_{vert} @ lower boundary
...with a “gas blob”

integration trough box (side view)
50 Mm x 30 Mm
Ejection of gas driven by “low TR” heating event

or chromospheric

integration trough box (side view)
50 Mm x 30 Mm

\[\int_{\text{los}} \frac{j^2(x,y,z,t)}{\langle \int_{\text{los}} j^2 \, dy \rangle_{\text{time},x}} \, dy \]

\[\int_{\text{los}} \frac{j^2(x,y,z)}{\langle j^2(x,y,z) \rangle_{\text{time}}} \, dy \]
Strong heating before ejection

Heat conduction back to surface
→ leads to pressure increase in upper chromosphere
→ drives upward motion

\[j^2 \]
High-density blob deforming B

- comet-tail shaped current
 \rightarrow blob deforms B (not low beta)

- bright in TR emission
- dark in coronal emission $\quad \{ T \approx \text{some } 10^5 \text{ K} \}$

C IV (154.8 nm)
O VII (103.2 nm)
Ne VIII (77.0 nm)
Mg X (62.0 nm)
The blob: ballistic ejection

- Field lines and trajectory
- Constant acceleration: \(\approx 200 \text{ m/s}^2 < g_{\text{Sun}} \)
- Accumulated mass
- B vs. trajectory angle

\(x \text{ [Mm]} \)
\(y \text{ [Mm]} \)
High-resolution experiments (≥1024³):

- **higher spatial resolution:**
 → resolve smaller structures / current sheets

- **larger computational domain**
 → fit whole AR into box (→ SDO)

**vertical cut: \(j^2 \) – fine expanding current sheets

good scaling of Pencil code for coronal model
Part II
Origin of asymmetric coronal line profiles

high-velocity upflows in coronal plasma:

► signature of nanoflare heating
(Klimchuck & Patsourakos 200x)

► upflows in type-II spicules
(McIntosh, De Pontieu 2009)

is there real observational evidence for this?
Is there really a high-velocity component?

Single Gaussian fit:

clear indication of excess emission in blue wing

Double Gaussian fits:

broad component to account for line wing sound speed @ ≈ 2 MK: ≈ 200 km/s

blue component only when constraining fit

Single and double Gaussian fits

in general: narrow core and broad wing component

Fe XV
(284 Å)
Distribution of shifts and width for 2nd spectral component in general:

- **broad 2nd component** (median: FWHM \approx 140 km/s!)

 relation width \sim shift
 \rightarrow heating \sim acceleration (?)

- **there is a high-velocity component**
 - “normal” line width
 - shift \approx 130 km/s
 \rightarrow in restricted areas only!

high-velocity components

bad fits
Could high-velocity components be ubiquitous?

NO!
Could high-velocity components be ubiquitous?

NO!

$$R = \frac{\chi_{\text{forced}}}{\chi_{\text{free DGF}}}$$

- force the double Gaussian fit to have high-velocity component

result:

- free double Gaussian fit (with mostly broad 2nd component)
- is more significant than
- constrained double Gaussian fit (with high-velocity component)
Acceleration in coronal funnels

▶ TR emission lines are asymmetric, too

→ broad components

basically unshifted

width: \(\xi \propto T^{1/4} \)

could be (slow mode) wave?

▶ coronal line(s) fit into this picture!

→ broad components

show strong shifts \((20–60 \text{ km/s})\)

→ signature of mass supply to corona at about \(100,000\) K?

consistent with various studies of Tu, Marsch, et al.

▶ plus some areas with high velocity outflows

Part III
A brief outlook

- **SDO observations as test for model prediction of structure and dynamics**
 - HMI observation as lower boundary
 - Compute resulting coronal emission
 - Compare to actual AIA observation

- **Investigate feeding of coronal plasma in the transition region**
 - How is plasma fed into the corona?
 - How to model the mass cycle: chromosphere ↔ corona → solar wind

- Interaction of open and closed structures in 2D and 3D models

- Mass balance in 3D models