Local helioseismology

Observe deviations from “quiet” Sun cross-correlations, amplitude, ring shape, linewidths, frequency....

Infer properties of the solar interior

Fourier Transform
Theoretical tools for local helioseismology

Hannah Schunker
R. Cameron & L. Gizon
Outline

• **Introduction**
 Forward & inverse problem
 Assumptions of linear inversions
 Strong perturbations: an example
 Simple Models

• **The way forward: Numerical simulations**
 Background models
 Waves
 Sunspot models
 Simulation codes

• **Results from SLiM**
 Comparisons to observations
 Subsurface
 Wavepacket vs XC

• **Discussion**

H. Schunker
Introduction: forward & inverse

- **The forward problem**
 Solar model (+ heterogeneity)
 Calculate the wave field
 Extract desired quantity e.g. travel time, amplitude, phase shift

- **The inverse problem**
 Observe the wave field
 Calculate the desired quantity
 Compare to predictions of a model
Introduction: linear inversions

- **Linear Inversions**

\[\delta O_i = \sum_{\alpha} \int d^3r K^i_{\alpha}(r) \delta q_{\alpha}(r) \]

- **Assumptions**
 - background perturbation is constant in time
 - the background perturbation is small

- **Forward task** is to calculate the kernels for any type of measurement

H. Schunker
Introduction: an example

- **Sunspots: large perturbations**
 - absorb wave energy, cause phase shifts

- Serious differences in helioseismic results for sound speed inversions
Introduction: an example

- **Sunspots: large perturbations**
 - absorb wave energy, cause phase shifts

- Serious differences in helioseismic results for sound speed inversions
Introduction: an example

- **Sunspots: large perturbations**
 - absorb wave energy, cause phase shifts

- Serious differences in helioseismic results for sound speed inversions
Introduction: an example

- **Sunspots: large perturbations**
 - absorb wave energy, cause phase shifts

- Serious differences in helioseismic results for sound speed inversions
Introduction: an example

- **Sunspots: large perturbations**
 - absorb wave energy, cause phase shifts

- Serious differences in helioseismic results for sound speed inversions
Introduction: an example

- **Sunspots**: large perturbations
 - absorb wave energy, cause phase shifts
- Serious differences in helioseismic results for sound speed inversions

![Graph showing wave-speed perturbation vs height](image-url)

- Phenomenological model (Fan et al. 1995)
- Nested magnetic cylinders (Crouch et al. 2005)
- 1Dx Ring diagram inversion (Gizon et al. 2009)
- Time–distance inversion (Gizon et al. 2009)
- Semi-empirical model (Cameron et al. 2009)
- Radiative MHD simulation (Rempel et al. 2009)

Gizon et al (2010)
Introduction: simple models

- Magnetic field effects on the waves are significant and should be accounted for (Bogdan; Cally; Crouch; Hanasoge; Khomenko;...)

Useful physics, but not realistic.
Numerical simulations

- Realistic physical simulations: Rempel et al 2009
 - computationally expensive
 - include full physics

- Linearised simulations: Cameron; Hanasoge; Khomenko; Parchevsky; Shelyag
 - faster to compute
 - require stable background model
 - free to alter individual background quantities
Simulation Ingredients

- Solar background model
Simulation Ingredients

- **Solar background model**
 Must be *stable against convection*

\[
\frac{N^2}{g} > 0 \quad \frac{N^2}{g} = \frac{1}{c^2 \rho} \left(\frac{dp}{dz} - c^2 \frac{d\rho}{dz} \right)
\]

Parchevsky & Kosovichev 2007: when this condition is not met then the value is replaced with zero

Shelyag *et al* 2008: adjust both pressure and density using the equation of state for an ideal gas to maintain \(\Gamma_1 = 5/3 \), making sure sound speed doesn’t change too much

Cameron *et al* 2007: not in hydrostatic equilibrium

\[
\frac{dp}{dz} = \max \left[\frac{dp}{dz}, c^2 \frac{d\rho}{dz} \right]
\]

- **Solar-like eigenmodes**
 - Schunker *et al* 2010 modify the sound speed
Simulation Ingredients

- Solar background model
- Model of solar sources or an initial condition
- Wave attenuation

Gizon & Birch (2002)
- Solar background model
- Model of solar sources
- Sunspot model: axisymmetric

Khomenko & Collados (2008)
Hanasoge (2008)
Moradi & Cally (2008)
Cameron et al (2010)
Simulation ingredients: sunspot

- Our sunspot: semi-empirical umbra, penumbra, stable background model
- Designed to match observed sunspot AR9787
Simulation ingredients: sunspot

- Our sunspot: semi-empirical umbra, penumbra, stable background model
- Designed to match observed sunspot
Simulation Ingredients

- Solar background model
- Model of solar sources
- Sunspot model
- Simulation code:
 - IAC MHD Code (Khomenko)
 - SAC (Shelyag)
 - SLiM (Cameron)
 - SPARC (Hanasoge)
Simulations ingredients: SLiM

• **Semi-spectral Linear MHD**
 Cameron, Gizon & Daiffallah (2007)
 Cameron, Gizon & Duvall (2008)

\[
\rho (\partial_t + \gamma) \frac{2}{\partial_t} \xi = -\nabla p' + \rho' g \hat{z} + \frac{1}{4\pi} (J' \times B + J \times B')
\]

\[
\begin{align*}
\rho' &= -\nabla \cdot (\rho \xi) \\
p' &= c^2 (\rho' + \xi \cdot \nabla \rho) - \xi \cdot \nabla p \\
B' &= \nabla \times (\xi \times B) \\
J' &= \nabla \times B'
\end{align*}
\]

• **Sponge layers**
SLiM results: wavepacket vs XC

quiet Sun

sunspot
SLiM results: sunspot simulations

XC time lag

Observations

SLiM

Uz, time

f

p1

p2
SLiM results: sunspot simulations

H. Schunker
SLiM results: sunspot simulations

phase difference between
sunspot and quiet Sun
curves for Observations
(points) & SLiM (curve)
SLiM results: sunspot simulations

\[\sqrt{\rho U_x} \]

Different subsurface structure
Discussion

- Two ways: linear inversions and forward numerical modelling
- Linear inversions: mostly understood as long as the perturbations to the background are small
- Numerical simulations are a useful tool to study the interaction of solar waves in general background including magnetic models of sunspots
- This is currently the only practical way to get realistic/quantitative interpretation of seismic observations
- SDO/HMI will help: vector fields, higher res.