Manifestations of the magnetic field in the Sun's atmosphere

1-D stratification of the solar atmosphere

Sun's magnetic field correlates with brightness in most atmospheric layers

Photospheric influence of field: variations of total irradiance

Faculae

Area covered by faculae increases faster from Min. to Max. of solar activity than the area covered by sunspots

Magnetic Field & Brightness Changes

Model: based on assumption that brightness changes are caused by magnetic field at solar surface

Obs.: by various Instruments

Wenzler et al. 2006

Magnetic Field & Brightness Changes

Model: based on assumption that brightness changes are caused by magnetic field at solar surface

Obs.: by various Instruments

Wenzler et al. 2006

Chromospheric structure and magnetic field

Spots plages

1998/03/30 20:23:42

7000 K gas Ca II K

5 10⁴ K gas (EIT He 304 Å)

Call K as a magnetic field proxy

Ca II H and K lines, the strongest lines in the visible solar spectrum, become brighter with nonspot magnetic flux.

 $I_{\rm core}/I_{\rm wing} \sim < B > 0.6$

 Magnetic regions (except sunspots) appear bright in Ca II H+K → Ca plage and network regions

Schrijver et al. 1989, Rezaei et al. 2007 Important for tracing stellar activity

Why are magnetic elements bright in the chromosphere?

- Photosphere: energy enters flux tube through shaking by convection.
 Transported up by waves, or is stored as excess energy in field (tension forces)
- Chromosphere: release of excess energy channelled by field to higher layers (MHD wave dissipation)

Observed 14th August 2007 with SST

Ca II K

Magnetic canopies

- Observational evidence exists for the presence of horizontal fields in chromosphere
- Can be produced with FT model if interior of FT is hotter than surroundings

Pressure scale height $H_P \sim T$

- $T_i > T_e → H_{P,i} > H_{P,e} → above a$ critical height Z_c : $P_i > P_e$
- → above Z_c field is not confined & expands horizontally
- \rightarrow above Z_c field fills all corona

i > T

Chromospheric structure

Spicules Prominences and filaments

Cartoon of quiet Sun atmosphere

Prominence material supported by magnetic field

- Density of prominence material is ~2 orders of magnitude higher than of surrounding corona
- Prominence gas has to be supported against gravity
- Magnetic field curved upward can provide this support, since ionized gas can only flow along field lines

Prominence models

Kippenhahn-Schlüter (below), Kuperus-Raadu (below right) and flux tube (right; 3-D Kuperus-R.)

The Hot and Dynamic Corona

Corona during an Eclipse

Coronagraphic observations (LASCO C3 / SOHO, MPS)

The Hot and Dynamic Corona

2002/05/16 09:48

EUV Corona: Plasma at >1 Mio K (EIT 195 Å) Coronagraphic observations (LASCO C3 / SOHO, MPS)

2002/01/06 15:18

Coronal structures

Active region (loops) **Quiet Sun** X-ray bright point **Coronal hole** Arcades Fe XII 195 Å (1.500.000 K)

17 May - 8 June 1998

Coronal structure: active region loops

TRACE, 1999

Coronal temperature & density

- Different temperatures & densities co-exist in the corona
- Range of temps: <1 MK (Coronal hole) to 10 MK (act. region)
- e⁻ densities (inner corona):
 - Loop: 10¹⁰ particles cm⁻²
 - Coronal hole: 10⁷ particles cm⁻²

Hinode XRT: 2-5MK gas

Flux Tubes, Canopies, Loops and Funnels

Energy budget: Open & closed coronal field magnetically open magnetically closed $F_{\rm SW} = 0.9 F_{\rm H}$ $0.1 F_{\rm H}$ $F_{\rm rad} = F_{\rm q} = F_{\rm H}$ $F_{\rm rad} = F_{\rm q} = 0.1 F_{\rm H}$ radiation \approx 10 % of energy input radiation \approx 100 % of energy input

F_H = Energy flux heating the gas; F_q = Conductive energy flux. F_{sw} = Solar wind flux Assume the same energy input into open and closed regions:
 almost ALL emission we see on the disk outside coronal holes originates from magnetically closed structures (loops) !

kindly provided by Hardi Peter

Sources of solar wind: fast wind

Tu, Marsch et al., 2005

TRACE 171Å observations of flare and post flare arcade near limb

Coronal mass ejection (CME)

Plasma β vs. height in solar atmosphere

Plasma β: ratio of thermal to magnetic energy density:

$$\beta = \frac{8\pi P}{B^2}$$

Field

dominates

Gas

dominates

Energy input into corona

Random footpoint motions of a loop will lead to a braiding of the field (first proposed by Parker 1983)

Simple example

Starting from looplike potential field, i.e. lowest energy configuration, energy in field can be increased by moving the loop footpoints

Source of footpoint motion: magnetoconvection

Structure and dynamics at small spatial scales

Radiation-MHD Simulations of small-scale magnetic fields

Intensity

Vögler et al.

Magnetic field

Magnetic coupling & coronal heating

Gudiksen & Nordlund (2002)

Coronal loops maintained at MK temperatures by current dissipation Braiding of coronal magnetic field lines

Emergence of new flux and interaction with convection: Magnetic footpoint motions

Magnetic reconnection (2-D)

Petschek Model Gives Fast Reconnection

Electric Current Sheet at Coronal Base

He I 10830 Å reveals electric current sheet (tangential discontinuity of magnetic vector) at coronal base

Observed in emerging flux region

Surface: magnetic field strength (note the valley)

Colour: current density

Solanki et al. 2003, Animation: A. Lagg

Explosive events: evidence for reconnection

