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ABSTRACT

We present results from simulations of rotating magnetized turbulent convection in spherical wedge geometry
representing parts of the latitudinal and longitudinal extents of a star. Here we consider a set of runs for which the
density stratification is varied, keeping the Reynolds and Coriolis numbers at similar values. In the case of weak
stratification, we find quasi-steady dynamo solutions for moderate rotation and oscillatory ones with poleward
migration of activity belts for more rapid rotation. For stronger stratification, the growth rate tends to become
smaller. Furthermore, a transition from quasi-steady to oscillatory dynamos is found as the Coriolis number is
increased, but now there is an equatorward migrating branch near the equator. The breakpoint where this happens
corresponds to a rotation rate that is about three to seven times the solar value. The phase relation of the magnetic
field is such that the toroidal field lags behind the radial field by about π/2, which can be explained by an oscillatory
α2 dynamo caused by the sign change of the α-effect about the equator. We test the domain size dependence of our
results for a rapidly rotating run with equatorward migration by varying the longitudinal extent of our wedge. The
energy of the axisymmetric mean magnetic field decreases as the domain size increases and we find that an m = 1
mode is excited for a full 2π azimuthal extent, reminiscent of the field configurations deduced from observations
of rapidly rotating late-type stars.
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1. INTRODUCTION

The large-scale magnetic field of the Sun, manifested by the
11 yr sunspot cycle, is generally believed to be generated within
or just below the turbulent convection zone (e.g., Ossendrijver
2003 and references therein). The latter concept is based on the
idea that strong shear in the tachocline near the bottom of the
convection zone amplifies the toroidal magnetic field which
then becomes buoyantly unstable and erupts to the surface
(e.g., Parker 1955b). This process has been adopted in many
mean-field models of the solar cycle in the form of a non-local
α-effect (e.g., Kitchatinov & Olemskoy 2012), which is based
on early ideas of Babcock (1961) and Leighton (1969) that
the source term for poloidal field can be explained through the
tilt of active regions. Such models assume a reduced turbulent
diffusivity within the convection zone and a single cell anti-
clockwise meridional circulation which acts as a conveyor belt
for the magnetic field. These so-called flux transport models
(e.g., Dikpati & Charbonneau 1999) are now widely used to
study the solar cycle and to predict its future course (Dikpati &
Gilman 2006; Choudhuri et al. 2007).

The flux transport paradigm is, however, facing several
theoretical challenges: 105 gauss magnetic fields are expected to
reside in the tachocline (D’Silva & Choudhuri 1993), but such
fields are difficult to explain with dynamo theory (Guerrero &
Käpylä 2011) and may have become unstable at much lower field
strengths (Arlt et al. 2005). Furthermore, flux transport dynamos
require a rather low value of the turbulent diffusivity within
the convection zone (several 1011 cm2 s−1; see Bonanno et al.
2002), which is much less than the standard estimate of several
1012 cm2 s−1 based on mixing length theory, which, in turn,
is also verified numerically (e.g., Käpylä et al. 2009). Several
other issues have already been addressed within this paradigm,

for example, the parity of the dynamo (Bonanno et al. 2002;
Chatterjee et al. 2004; Dikpati et al. 2004) and the possibility of
a multicellular structure of the meridional circulation (Jouve &
Brun 2007), which may be more complicated than that required
in the flux transport models (Hathaway 2011; Miesch et al. 2012;
Zhao et al. 2013). These difficulties have led to a revival of the
distributed dynamo (e.g., Brandenburg 2005; Pipin 2013) in
which magnetic fields are generated throughout the convection
zone due to turbulent effects (e.g., Krause & Rädler 1980;
Käpylä et al. 2006b; Pipin & Seehafer 2009).

Early studies of self-consistent three-dimensional magneto-
hydrodynamic (MHD) simulations of convection in spherical
coordinates produced oscillatory large-scale dynamos (Gilman
1983; Glatzmaier 1985), but the dynamo wave was found to
propagate toward the poles rather than the equator—as in the
Sun. These models are referred to as direct numerical simu-
lations (DNS), i.e., all operators of viscous and diffusive terms
are just the original ones, but with vastly increased viscosity and
diffusivity coefficients. More recent anelastic large-eddy simu-
lations (LES) with rotation rates somewhat higher than that of
the Sun have produced non-oscillatory (Brown et al. 2010) and
oscillatory (Brown et al. 2011; Nelson et al. 2013) large-scale
magnetic fields, depending essentially on the rotation rate and
the vigor of the turbulence. However, similar models with the
solar rotation rate have either failed to produce an appreciable
large-scale component (Brun et al. 2004) or, more recently, os-
cillatory solutions with almost no latitudinal propagation of the
activity belts (Ghizaru et al. 2010; Racine et al. 2011). These
simulations covered a full spherical shell and used realistic val-
ues for solar luminosity and rotation rate, necessitating the use
of anelastic solvers and spherical harmonics (e.g., Brun et al.
2004) or implicit methods (e.g., Ghizaru et al. 2010). Here we
exploit an alternative approach by modeling fully compressible
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convection in wedge geometry (see also Robinson & Chan
2001) with a finite-difference method. We omit the polar re-
gions and usually cover only a part of the longitudinal extent,
e.g., 90◦ instead of the full 360◦. At the cost of omitting connect-
ing flows across the poles and introducing artificial boundaries
there, the gain is that higher spatial resolution can be achieved.
Furthermore, retaining the sound waves can be beneficial when
considering possible helio- or asteroseismic applications. Our
model is a hybrid between DNS and LES in that we supplement
the thermal energy flux by an additional subgrid scale (SGS)
term to stabilize the scheme and to further reduce the radiative
background flux. Recent hydrodynamic (Käpylä et al. 2011a,
2011b) and MHD (Käpylä et al. 2010b) studies have shown that
this approach produces results that are in accordance with fully
spherical models. Moreover, the first turbulent dynamo solution
with solar-like migration properties of the magnetic field was
recently obtained using this type of setup (Käpylä et al. 2012).
Extended setups that include a coronal layer as a more real-
istic upper radial boundary have been successful in producing
dynamo-driven coronal ejections (Warnecke et al. 2012). As we
show in a companion paper (Warnecke et al. 2013), a solar-like
differential rotation pattern might be another consequence of
including an outer coronal layer.

Here we concentrate on exploring further the recent discov-
ery of equatorward migration in spherical wedge simulations
(Käpylä et al. 2012). In particular, we examine a set of runs for
which the rotational influence on the fluid, measured by the Cori-
olis number, which is also called the inverse Rossby number, is
kept approximately constant while the density stratification of
the simulations is gradually increased.

2. THE MODEL

Our model is the same as that in Käpylä et al. (2012). We
consider a wedge in spherical polar coordinates, where (r, θ, φ)
denote radius, colatitude, and longitude. The radial, latitudinal,
and longitudinal extents of the wedge are r0 � r � R,
θ0 � θ � π − θ0, and 0 � φ � φ0, respectively, where R
is the radius of the star and r0 = 0.7 R denotes the position of
the bottom of the convection zone. Here we take θ0 = π/12 and
in most of our models we use φ0 = π/2, so we cover a quarter
of the azimuthal extent between ±75◦ latitude. We solve the
compressible hydromagnetic equations,5

∂ A
∂t

= u × B − μ0η J, (1)

D ln ρ

Dt
= −∇ · u, (2)

Du
Dt

= g − 2�0 × u +
1

ρ
( J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds

Dt
= 1

ρ

[ − ∇ · (Frad + FSGS) + μ0η J2
]

+ 2νS2, (4)

where A is the magnetic vector potential, u is the velocity,
B = ∇× A is the magnetic field, J = μ−1

0 ∇× B is the current
density, μ0 is the vacuum permeability, D/Dt = ∂/∂t + u ·∇ is

5 Note that in Equation (4) of Käpylä et al. (2012) the Ohmic heating term
μ0η J2 and a factor ρ in the viscous dissipation term 2νS2 were missing, but
they were actually included in the calculations.

the advective time derivative, ρ is the density, ν is the kinematic
viscosity, η is the magnetic diffusivity, both assumed constant,

Frad = −K∇T and FSGS = −χSGSρT ∇s (5)

are radiative and SGS heat fluxes, where K is the radiative heat
conductivity and χSGS is the turbulent heat conductivity, which
represents the unresolved convective transport of heat and was
referred to as χt in Käpylä et al. (2012), s is the specific entropy,
T is the temperature, and p is the pressure. The fluid obeys the
ideal gas law with p = (γ − 1)ρe, where γ = cP/cV = 5/3
is the ratio of specific heats at constant pressure and volume,
respectively, and e = cVT is the specific internal energy. The
rate of strain tensor S is given by

Sij = 1

2
(ui;j + uj ;i) − 1

3
δij∇ · u, (6)

where the semicolons denote covariant differentiation (Mitra
et al. 2009).

The gravitational acceleration is given by g = −GM r̂/r2,
where G is the gravitational constant, M is the mass of the star
(without the convection zone), and r̂ is the unit vector in the
radial direction. Furthermore, the rotation vector �0 is given by
�0 = (cos θ,− sin θ, 0)Ω0.

2.1. Initial and Boundary Conditions

The initial state is isentropic and the hydrostatic temperature
gradient is given by

∂T

∂r
= − GM/r2

cV(γ − 1)(nad + 1)
, (7)

where nad = 1.5 is the polytropic index for an adiabatic
stratification. We fix the value of ∂T /∂r on the lower boundary.
The density profile follows from hydrostatic equilibrium. The
heat conduction profile is chosen so that radiative diffusion is
responsible for supplying the energy flux in the system, with K
decreasing more than two orders of magnitude from bottom to
top (Käpylä et al. 2011a). We do this by choosing a variable
polytropic index n = 2.5 (r/r0)−15 − 1, which equals 1.5 at
the bottom of the convection zone and approaches −1 closer
to the surface. This means that K = (n+ 1)K0 decreases toward
the surface like r−15 such that most of the flux is carried by
convection (Brandenburg et al. 2005). Here, K0 is a constant
that will be defined below.

Our simulations are defined by the energy flux imposed at the
bottom boundary, Fb = −(K∂T/∂r)|r=r0 as well as the values
of Ω0, ν, η, and χSGS = χSGS(rm = 0.85 R). Furthermore, the
radial profile of χSGS is piecewise constant above r > 0.75R
with χSGS = χSGS at 0.75 < r < 0.98, and χSGS = 12.5χSGS
above r = 0.98R. Below r = 0.75R, χSGS tends smoothly to
zero; see Figure 1 of Käpylä et al. (2011a).

The radial and latitudinal boundaries are assumed to be
impenetrable and stress-free, i.e.,

ur = 0,
∂uθ

∂r
= uθ

r
,

∂uφ

∂r
= uφ

r
(r = r0, R), (8)

∂ur

∂θ
= uθ = 0,

∂uφ

∂θ
= uφ cot θ (θ = θ0, π − θ0). (9)

For the magnetic field we assume perfect conductors on the
latitudinal and lower radial boundaries, and radial field on the
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outer radial boundary. In terms of the magnetic vector potential
these translate to

∂Ar

∂r
= Aθ = Aφ = 0 (r = r0), (10)

Ar = 0,
∂Aθ

∂r
= −Aθ

r
,

∂Aφ

∂r
= −Aφ

r
(r = R), (11)

Ar = ∂Aθ

∂θ
= Aφ = 0 (θ = θ0, π − θ0). (12)

We use small-scale low amplitude Gaussian noise as initial con-
dition for velocity and magnetic field. On the latitudinal bound-
aries we assume that the density and entropy have vanishing first
derivatives, thus suppressing heat fluxes through the boundaries.

On the upper radial boundary we apply a black body condition

σT 4 = −K∇rT − χSGSρT ∇r s, (13)

where σ is the Stefan–Boltzmann constant. We use a modified
value for σ that takes into account that both surface temperature
and energy flux through the domain are larger than in the Sun.
The value of σ can be chosen so that the flux at the surface
carries the total luminosity through the boundary in the initial
non-convecting state. However, in many cases we have changed
the value of σ during runtime to speed up thermal relaxation.

2.2. Dimensionless Parameters

To facilitate comparison with other work using different
normalizations, we present our results by normalizing with
physically meaningful quantities. We note, however, that in the
code we used non-dimensional quantities by choosing

R = GM = ρ0 = cP = μ0 = 1, (14)

where ρ0 is the initial density at r = r0. The units of length,
time, velocity, density, entropy, and magnetic field are therefore

[x] = R, [t] =
√

R3/GM, [u] =
√

GM/R,

[ρ] = ρ0, [s] = cP, [B] =
√

ρ0μ0GM/R. (15)

The radiative conductivity is proportional to K0 =
(L/4π )cV(γ − 1)(nad + 1)ρ0

√
GMR, where L is the non-

dimensional luminosity, given below. The corresponding nondi-
mensional input parameters are the luminosity parameter

L = L0

ρ0(GM)3/2R1/2
, (16)

the normalized pressure scale height at the surface,

ξ = (γ − 1)cVT1

GM/R
, (17)

with T1 being the temperature at the surface, the Taylor number

Ta = (2Ω0R
2/ν)2, (18)

the fluid and magnetic Prandtl numbers

Pr = ν

χm
, PrSGS = ν

χSGS
, Pm = ν

η
, (19)

where χm = K/cPρm and ρm are the thermal diffusivity and
density at r = rm, respectively. Finally, we have the non-
dimensional viscosity

ν̃ = ν√
GMR

. (20)

Instead of ξ , we often quote the initial density contrast, Γ(0)
ρ ≡

ρ(r0)/ρ(R). The density contrast can change during the run. We
list the final values of Γρ from the thermally saturated stage in
Table 1.

Other useful diagnostic parameters are the fluid and magnetic
Reynolds numbers

Re = urms

νkf
, Rm = urms

ηkf
, (21)

where kf = 2π/Δr ≈ 21R−1 is an estimate of the wavenumber
of the largest eddies and Δr = R − r0 = 0.3 R is the thickness
of the layer. The Coriolis number is defined as

Co = 2Ω0

urmskf
, (22)

where urms =
√

(3/2)〈u2
r + u2

θ 〉rθφt is the rms velocity and the
subscripts indicate averaging over r, θ , φ, and a time interval
during which the run is thermally relaxed and which covers
several magnetic diffusion times. The averaging procedures
employ the correct volume or surface elements of spherical
polar coordinates. Note that for urms we omit the contribution
from the azimuthal velocity because its value is dominated by
effects from the differential rotation (Käpylä et al. 2011b) and
compensate for this with the 3/2 factor. The Taylor number
can also be written as Ta = Co2Re2(kfR)4. Due to the fact
that the initial stratification is isentropic, we quote the turbulent
Rayleigh number Rat from the thermally relaxed state of the
run,

Rat = GM(Δr)4

νχSGSR
2

(
− 1

cP

d〈s〉θφt

dr

)
rm

. (23)

We also quote the value of kω = ωrms/urms, where ω = ∇ × u,
and ωrms is the volume averaged rms value of ω. The magnetic
field is expressed in equipartition field strengths, Beq(r) =
〈μ0ρu2〉1/2

θφt , where all three components of u are included. We
define mean quantities as averages over the φ-coordinate and
denote them by overbars. However, as we will see, there can also
be significant power in non-axisymmetric spherical harmonic
modes with low azimuthal degree m = 1 and 2, which will be
discussed at the end of the paper.

The simulations were performed with the Pencil Code,6

which uses a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

2.3. Relation to Reality

In simulations, the maximum possible Rayleigh number is
much smaller than in real stars due to the higher diffusivities.
This implies higher energy fluxes and thus larger Mach numbers
(Brandenburg et al. 2005). To have realistic Coriolis numbers,
the angular velocity in the Coriolis force has to be increased in
proportion to one third power of the increase of the energy flux,
but the centrifugal acceleration is omitted, as it would otherwise

6 http://pencil-code.googlecode.com/
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Table 1
Summary of the Runs

Run Grid Pr PrSGS Pm Ta[1010] ξ Γ(0)
ρ Γρ ν̃[10−5] L[10−5] σ̃ Rat[106] Re Rm Co

A1 128 × 256 × 128 71 1.5 1.0 1.0 0.29 2.0 2.1 1.7 3.8 0.92 0.83 26 26 8.6
A2 128 × 256 × 128 71 1.5 1.0 1.8 0.29 2.0 2.1 1.7 3.8 0.92 0.11 24 24 12.8

B1 128 × 256 × 128 82 2.5 1.0 0.64 0.09 5.0 5.3 2.9 3.8 10.9 1.1 22 22 8.1
B2 128 × 256 × 128 82 2.5 1.0 1.4 0.09 5.0 5.2 2.9 3.8 10.9 1.1 20 20 13.7

C1 128 × 256 × 128 56 2.5 1.0 1.4 0.02 30 22 2.9 3.8 1.4 × 103 2.1 35 35 7.8
C2 128 × 256 × 128 56 2.5 1.0 4.0 0.02 30 21 2.9 3.8 1.4 × 103 2.7 31 31 14.8

D1 128 × 256 × 128 503 7.5 3.0 0.16 0.008 100 85 4.7 0.63 3.9 × 104 1.2 11 34 8.0
D2 256 × 512 × 256 269 4.0 2.0 1.0 0.008 100 74 2.5 0.63 3.9 × 104 2.4 25 50 9.1

E1 128 × 256 × 64 56 2.5 1.0 1.4 0.02 30 22 2.9 3.8 1.4 × 103 2.1 34 34 7.9
E2 128 × 256 × 128 56 2.5 1.0 1.4 0.02 30 22 2.9 3.8 1.4 × 103 2.1 35 35 7.8
E3 128 × 256 × 256 56 2.5 1.0 1.4 0.02 30 22 2.9 3.8 1.4 × 103 2.4 35 35 7.9
E4 128 × 256 × 512 67 3.0 1.0 1.0 0.02 30 23 3.5 3.8 1.4 × 103 2.2 28 28 8.1

Notes. Columns 2–7 and 9–11 show quantities that are input parameters to the models whereas the quantities in the Column 8 and the last four
columns are results of the simulations computed from the saturated state. Here we use φ0 = π/2 in Sets A–D. In Set E we use φ0 = π/4 (Run E1),
φ0 = π/2 (E2), φ0 = π (E3), and φ0 = 2π (E4). Runs C1 and E2 are the same model, which is also the same as Run B4m of Käpylä et al. (2012).
Here Γρ is the density stratification in the final saturated state and σ̃ = σR2T 4

0 /L0, where T0 is the temperature at the base of the convection zone.

be unrealistically large (cf. Käpylä et al. 2011b). In the present
models this would mean that the centrifugal acceleration is of the
same order of magnitude as gravity, thus significantly altering
the hydrostatic balance.

We note that we intend to use low values ofL so that the Mach
number is sufficiently below unity. This is particularly important
when the stratification is strong. In our current formulation the
unresolved turbulent heat conductivity, χSGS, acts on the total
entropy and thus contributes to the radial heat flux. In the current
models with PrSGS greater than unity, the SGS-flux accounts for
a few per cent of the total flux within the convection zone. Using
smaller values of PrSGS at the same Reynolds number would lead
to a greater contribution due to the SGS-flux. To minimize the
effects of the SGS-flux within the convection zone, we use the
smallest possible value of χSGS that is still compatible with
numerical stability.

The span of time scales in our model is strongly compressed
so as to comprise the full range all the way to the viscous,
thermal, and resistive time scales. In the following we define
acoustic, convective, thermal, resistive, and viscous timescales
as follows:

τac =
√

R3/GM, τconv = HP0/u
(ref)
rms , (24)

τth = H 2
P0/χ0, τres = H 2

P0/η, τvisc = H 2
P0/ν, (25)

where HP0 is the pressure scale height at r0, u(ref)
rms = (F0/ρ0)1/3

is a convective reference velocity based on the luminosity of the
model, L = 4πr2

0 F0, and F0 is the total flux at r0.
A visual comparison of these different time scales for the

Sun and Run C1 is given in Figure 1. In order to allow for
slow thermal and resistive relaxation processes, we require that
their respective timescales are shorter than the run time T of the
simulation. As stated in Section 2.2, the acoustic timescale of
our model is equal to that of the Sun. This implies that all the
other timescales must be significantly reduced: τconv by a factor
70–100, τth and τres by a factor 107, and τvisc by a factor 1014.
This is accomplished by taking values of L that are not as small
as in the Sun (where L ≈ 5×10−11), but typically 3.8×10−5 for
Run C1. This just corresponds to taking values of the Rayleigh
number that are on the order of 106 rather than solar values (in

Figure 1. Visual comparison of acoustic, convective, thermal, resistive, and
viscous timescales both in the Sun (upper part, in red) and in Run C1 (lower
part). In our models, resistive and viscous timescales are often equal, and the
thermal timescale is 1.5–7.5 times longer; see Columns 4 and 5 of Table 1. The
simulation timescales are confined between the length of the time step, δt , and
the maximum run time, T.

(A color version of this figure is available in the online journal.)

excess of 1024). Likewise, shorter thermal, resistive, and viscous
timescales are obtained by choosing values of the magnetic and
fluid Reynolds number that are not as large as in the Sun and
by choosing magnetic and fluid Prandtl numbers that are not as
small as in the Sun.

For the purpose of comparing dynamo timescales of the model
with the Sun, it is useful to rescale them such that τconv coincides
with that of the Sun. We can then compare the rotation rates of
our models in Table 1 with that of the Sun: Runs A1 and A2
are 2 and 3 times solar, B1 and B2 are 3 and 4.4 times solar, C1
(including all of Set E) and C2 are 4.4 and 7 times solar, and D1
and D2 are 4.3 and 6 times solar.

3. RESULTS

We perform runs for four values of ξ , corresponding to
initial density contrasts Γ(0)

ρ = 2, 5, 30, and 100. These runs
are referred to as Sets A–D. In Set E we use Γ(0)

ρ = 30 and
vary φ0 with all other parameters being kept the same as in Run
C1, except in Run E4 where we use 20% higher viscosity and
magnetic diffusivity than in the other runs in Set E. For each
series, we consider different values of Ta and, as a consequence,
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Figure 2. Luminosity of the energy fluxes from Run E4: radiative conduction
(thin solid line), enthalpy (dashed), kinetic energy (dot-dashed), and unresolved
subgrid scale (dotted) fluxes. The thick solid line is the sum of all contributions.
The two dashed red lines indicate the zero and unity lines.

(A color version of this figure is available in the online journal.)

of Co and Re. The hydrodynamic progenitors of the Runs B1,
C1, and D1 correspond to Runs A4, B4, and C4, respectively,
from Käpylä et al. (2011a). The rest of the simulations were run
from the initial conditions described in Section 2.1.

Earlier studies applying fully spherical simulations have
shown that organized large-scale magnetic fields appear pro-
vided the rotation of the star is rapid enough (Brown et al. 2010)
and that at even higher rotation rates, cyclic solutions with pole-
ward migration of the activity belts are obtained (Brown et al.
2011). A similar transition has been observed in the spherical
wedge models of Käpylä et al. (2010b, 2012). However, in the
former case the oscillatory mode showed poleward migration,
whereas in the latter an equatorward branch appears near the
equator. Furthermore, in these runs the dynamo mode changes
from one showing a high frequency cycle with poleward mi-
gration near the equator to another mode with lower frequency
and equatorward migration when the magnetic field becomes
dynamically important.

There are several differences between the models of Käpylä
et al. (2010b) and Käpylä et al. (2012): the amount of density
stratification (a density contrast of 3 in comparison to 30), the
efficiency of convective energy transport (20% versus close to
100% in the majority of the domain achieved by the use of χSGS;
see also Figure 2), and the top boundary condition for entropy
(constant temperature versus black body radiation). Here we
concentrate on studying the influence of the density stratification
on models similar to those presented in Käpylä et al. (2012).

3.1. Thermal Boundary Effects and Energy Balance

In Käpylä et al. (2011a) we started to apply the blackbody
boundary condition, Equation (13), that has previously been
used in mean-field models with thermodynamics (Rüdiger
1989; Brandenburg et al. 1992; Kitchatinov & Mazur 2000).
Instead of using the physical value for the Stefan–Boltzmann
constant, we estimate the value of σ so that the flux at the
upper boundary is approximately that needed to transport the
total luminosity of the star through the surface; see Table 1.
However, the final thermally relaxed state of the simulation
can significantly deviate from the initial state. In combination
with the nonlinearity of Equation (13), the final stratification is
usually somewhat different from the initial one; see Figure 3
for an illustrative example from Run C1. The final density

Figure 3. Initial (solid lines) and saturated (dashed) radial profiles of temperature
T, density ρ, and pressure p, normalized by their respective values at the bottom
of the domain (indicated by the subscript zero) from Run C1. The inset shows
the specific entropy s/cP from the same run.

stratification in this case is around 22, down from 30 in the
initial state.

The main advantage of the blackbody condition is that it
allows the temperature at the surface more freedom than in our
previous models where a constant temperature was imposed
(Käpylä et al. 2010b, 2011b). In particular, as the temperature
is allowed to vary at the surface, this can be used as a diagnostic
for possible irradiance variations. These issues are discussed
further in Section 3.8.

Considering the energy balance, we show the averaged radial
energy fluxes for Run E4 in Figure 2. We find that the simulation
is thermally relaxed and that the total luminosity is close to the
input luminosity, i.e., Ltot − L0 ≈ 0. The fluxes are defined as:

Frad = −K〈∇rT 〉, (26)

Fconv = cP〈(ρur )′T ′〉, (27)

Fkin = 1

2
〈ρur u2〉, (28)

Fvisc = −2ν 〈ρuiSir〉 , (29)

Fturb = −χSGS〈ρT ∇r s〉, (30)

FPoyn = 〈EθBφ − EφBθ 〉/μ0, (31)

where E = ημ0 J − u × B, the primes denote fluctuations,
and angle brackets abbreviate 〈·〉θ,φ,t . The radiative flux carries
energy into the convection zone and drops steeply as a function
of radius so that it contributes only a few percent in the
middle of the convection zone. The resolved convection is
responsible for transporting the energy through the majority
of the layer, whereas the unresolved turbulent transport carries
energy through the outer surface. The viscous and Poynting
fluxes are much smaller and are thus omitted in this figure. The
flux of kinetic energy is also very small in the rapid rotation
regime considered here (see also Augustson et al. 2012).
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Table 2
Summary of Diagnostic Variables

Run λ̃ ũrms Emer/Ekin Erot/Ekin Emag/Ekin Epol/Emag Etor/Emag Δ(r)
Ω Δ(θ)

Ω kω

A1 0.084 0.010 0.000 0.580 0.418 0.045 0.396 0.013 0.089 62
A2 0.095 0.009 0.000 0.490 0.553 0.068 0.338 0.009 0.050 62

B1 0.028 0.013 0.000 0.705 0.345 0.038 0.487 0.034 0.142 68
B2 0.098 0.012 0.000 0.757 0.222 0.056 0.427 0.023 0.072 72

C1 0.006 0.021 0.001 0.440 0.346 0.138 0.203 0.047 0.068 93
C2 0.105 0.019 0.001 0.326 0.706 0.198 0.238 0.016 0.030 94

D1 0.003 0.011 0.002 0.222 0.472 0.166 0.135 0.011 -0.000 89
D2 0.003 0.013 0.000 0.617 0.222 0.133 0.190 0.045 0.058 116

E1 0.007 0.021 0.001 0.478 0.393 0.133 0.328 0.048 0.069 92
E2 0.006 0.021 0.001 0.440 0.346 0.138 0.203 0.047 0.068 93
E3 0.005 0.021 0.001 0.375 0.380 0.120 0.172 0.037 0.055 92
E4 0.024 0.020 0.001 0.410 0.477 0.016 0.080 0.028 0.054 89

Notes. Here λ̃ = λ/(urmskf ) is the normalized growth rate of the magnetic field and ũrms = urms/
√

GM/R is the
non-dimensional rms velocity. Ekin = (1/2)〈ρu2〉 is the volume averaged kinetic energy. Emer = (1/2)〈ρ(u2

r + u2
θ )〉

and Erot = (1/2)〈ρu2
φ〉 denote the volume averaged energies of the azimuthally averaged meridional circulation

and differential rotation. Analogously, Emag = (1/2)〈B2〉 is the total volume averaged magnetic energy while

Epol = (1/2)〈(B2
r + B

2
θ )〉 and Etor = (1/2)〈B2

φ〉 are the energies in the axisymmetric part of the poloidal and toroidal
magnetic fields.

Figure 4. Bφ near the surface of the star at r = 0.98 R as a function of latitude
(= 90◦ − θ ) and time for Runs A1 (top) and A2 (bottom). The white dotted line
denotes the equator 90◦ − θ = 0.

(A color version of this figure is available in the online journal.)

3.2. Dynamo Excitation and Large-scale Magnetic Fields

The azimuthally averaged toroidal magnetic fields from Sets
A–D listed in Tables 1 and 2 are shown in Figures 4–7. The
full time evolution from the introduction of the seed magnetic
field to the final saturated state is shown for each run. Note that
the magnitude of the seed field in terms of the equipartition
strength is different in each set so direct comparisons between
different sets are not possible. We measure the average growth

Figure 5. Same as Figure 4, but for Runs B1 (top) and B2 (bottom).

(A color version of this figure is available in the online journal.)

rates during the kinematic stage,

λ = 〈d ln Brms/dt〉t , (32)

and find that λ is greater for smaller stratification; see Column 2
of Table 2 for λ̃ = λ/(urmskf). Comparing Runs A1, B1, C1, and
D2 with roughly comparable Reynolds and Coriolis numbers
shows that the normalized growth rate decreases monotonically
from 0.084 in Run A1 to just 0.003 in Run D2. Another striking
feature is that λ̃ increases by a factor of nearly 20 from Run C1
to C2 whose only difference is that the latter has a roughly two
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Figure 6. Same as Figure 4, but for Runs C1 (top) and C2 (bottom). Note the
difference in cycle frequency between the early times when the frequency is
similar to that of Run B2 (Figure 5) and late times.

(A color version of this figure is available in the online journal.)

times higher Coriolis number. It turns out that, in all of the cases
(Runs A1, A2, B1, B2, C2, and E4) with the highest growth
rates, a dynamo mode with poleward migration at low latitudes
is excited first. In some of the runs this mode is later overcome
by another one that can be quasi-stationary (Runs A1 and B1)
or oscillatory with equatorward migration and a much longer
cycle period (Runs C2 and E4).

Table 2 shows that, even though the growth rates decrease
dramatically with increasing stratification, many properties of
the saturated stages are similar. In particular, the ratio of
magnetic to kinetic energies does not seem to systematically
depend on stratification, but rather on the Coriolis number,
which varies only little between different runs.

In Figure 4 we show the azimuthally averaged toroidal
magnetic field Bφ near the surface of the computational domain
(r = 0.98 R) for two runs (A1 and A2; see Table 1) with Γ(0)

ρ =
2. We find that in Run A1 with Co ≈ 8.7 the mean magnetic
field is initially oscillatory with poleward propagation of the
activity belts. At turmskf ≈ 400 the dynamo mode changes to a
quasi-steady configuration. In Run A2 a poleward mode persists
throughout the simulation, although the oscillation period is
irregular and significant hemispherical asymmetry exists. This
behavior is similar to Run A4 presented in Käpylä et al. (2010b)
with comparable stratification (Γ ≈ 3) and Reynolds (≈20)
numbers, but a somewhat lower Coriolis number7 (≈4.7). The
transition to oscillatory solutions thus occurs at a lower Co in
the models of Käpylä et al. (2010b). A possible explanation is
that in the present models we lack a lower overshoot layer which
could affect the dominant dynamo mode.

7 Note that the values of Re and Co have been recalculated with the same
definition of urms as in the current paper.

Figure 7. Same as Figure 4, but for Runs D1 (top) and D2 (bottom).

(A color version of this figure is available in the online journal.)

In Set B with Γ(0)
ρ = 5 the situation is similar: in Run B1 with

Co ≈ 8.1 there is a poleward mode near the equator with a short
cycle period which is visible from early times; see Figure 5.
However, after around turmskf = 1200 there is a dominating
non-oscillatory mode that is especially clear at high latitudes.
There are still hints of the poleward mode near the equator. In
Run B2 with Co ≈ 13.7, however, the poleward mode also
prevails at late times. As in Run A2, the cycles show significant
variability and hemispheric asymmetry. The runs in Sets A and
B also show signs of non-axisymmetric “nests” of convection
(cf. Busse 2002; Brown et al. 2008) in the hydrodynamical and
kinematic stages. Once the magnetic field becomes dynamically
important, these modes either vanish or they are significantly
damped.

Increasing the stratification further to Γ(0)
ρ = 30 (Set C),

the dynamo solutions at lower rotation rates, Co � 5, are still
quasi-steady; see Figure 2 of Käpylä et al. (2012). However, a
watershed regarding the oscillatory modes at higher Co seems
to have been reached so that the irregular poleward migration
seen in Sets A and B is replaced by more regular equatorward
patterns. In Run C1 with Co ≈ 8.7 the poleward migration
near the equator is also visible in the kinematic stage where the
equatorward mode is not yet excited; see Figure 6. The poleward
mode near the equator is more prominent in the early stages of
Run C2 with Co ≈ 14.7, but subdominant at late times.

For Γ(0)
ρ = 100 (Set D) the general picture is similar to that in

Set C. Quasi-steady configurations at lower rotation rates change
into equatorward migrating solutions at sufficiently high values
of Co. We find that this transition occurs between Co = 5 and
8, similar to Set C; see Figure 2 of Käpylä et al. (2012). For
Set D the equatorward mode is visible for both of its runs; see
Figure 7. In Run D1 no poleward migration at low latitudes
is seen in the kinematic stage. Also, the poleward migrating
branch at high latitudes is missing in the non-linear stage. Both
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of these features are present in Run D2. The apparently slower
growth of the magnetic field in Run D1 is due to a two orders
of magnitude lower seed magnetic field than in Run D2.

3.3. Diagnostic Stellar Activity Diagrams

To identify the possibility of different types of dynamos, it is
useful to classify them in diagrams relating their characteristic
properties. In the geodynamo literature it has become customary
to consider the Elsasser number as a measure of the magnetic
energy. It correlates well with Rm (Christensen & Aubert 2006),
but this is partially explained by the fact that Rm itself enters
in the definition of the Elsasser number. Geodynamo models
are mostly dominated by a strong dipolar component. Gastine
et al. (2012) have shown that such solutions fall on a branch
that is distinct from the cyclic solutions studied here, and that
the latter solutions become favored once density stratification is
large and rotation is sufficiently rapid so that large-scale non-
axisymmetric fields become dominant (see also Nelson et al.
2013). However, this type of analysis is not well suited for the
present work, where Rm and Co vary only little. Furthermore,
these tools do not characterize the nature of magnetic cycles,
which is the focus of this section.

To connect our results with observations of magnetically ac-
tive stars, we compute the ratio of cycle to rotation frequency,
ωcyc/Ω0, where ωcyc = 2π/Tcyc is the cycle frequency of mag-
netic energy of the mean field. Plotting this ratio as a function
of the Coriolis number for stars exhibiting chromospheric ac-
tivity has shown that stars tend to group along inactive and
active branches (Brandenburg et al. 1998), and for higher Cori-
olis numbers along a super-active branch (Saar & Brandenburg
1999). Six of our simulations (Runs A2, B2, C1, C2, D1, and
D2), excluding the runs in Set E (which are very similar to each
other and to Run C1), show cycles and can thus be used in
this analysis. We compute the cycle frequency from the highest
peak of a temporal Fourier transformation of the time series for
Bφ averaged over a latitudinal strip of ±10◦ . . . 30◦ near the
surface. The results are shown in Figure 8(a).

Three of the models, Runs C1, D1, and D2, fall on a branch
labeled “A?” for active stars, while Run C2 might be suggestive
of the superactive stars of Saar & Brandenburg (1999), labeled
here “S??.” Runs A2 and B2 show irregular cycles and group
along the branch labeled “I?” for inactive stars. The question
marks on these labels in Figure 8(a) indicate that the association
with real branches is quite uncertain and somewhat premature
because there are too few models. We cannot be sure that there
are no models connecting the group of Runs C1, D1, D2 with
that of A2 and B2 through a single line with a steeper slope.
Nevertheless, this plot allows us to see that, while the separation
in the ratio ωcyc/Ω0 is slightly less for the two groups of runs
compared with active and inactive stars, their relative ordering
in the value of Co is actually the other way around. One would
therefore not have referred to Runs A2 and B2 as inactive just
because their ωcyc/Ω0 ratio agrees with that of inactive stars.
In fact, their Emag/Ekin ratios (a measure of stellar activity) in
Table 2 are typically larger than for Runs C1, D1, and D2.

As is visible from Figure 8(c), there is no clear relation
between Co and Emag/Ekin, which is different from stars
for which there is a clear relation between Co (referred to
as the inverse Rossby number in that context) and stellar
activity; see Brandenburg et al. (1998) for details and references.
Furthermore, there are also no indications of branches in the
graph of ωcyc/Ω0 versus Emag/Ekin; see Figure 8(b). Instead,
there might just be one group in it, possibly with a positive

Figure 8. Diagnostic diagrams from six runs that show cyclic activity. (a) Ratio
of cycle and rotation frequencies vs. log Co. The dotted and dashed lines are
given by ciCoσi , where σi correspond to those in Brandenburg et al. (1998)
for active (labeled “A?”) and inactive (“I?”) stars, while ci are used as fit
parameters. The label “S??” indicates the possibility of the superactive branch
in Saar & Brandenburg (1999). (b) Ratio of cycle and rotation frequencies vs.
magnetic to kinetic energy Emag/Ekin. (c) Time averaged Emag/Ekin vs. log Co.

correlation, i.e., ωcyc/Ω0 might increase with Emag/Ekin. Such
a possibility does indeed arise when considering the frequency
ratio versus the dimensional rotation rate (Oláh et al. 2000).
However, as discussed by Brandenburg et al. (1998), a positive
slope is not easily explained in the framework of standard mean-
field dynamo theory, where the frequency ratio is usually a
decreasing function of normalized rotation rate and activity
parameter (Tobias 1998; Saar & Brandenburg 1999).

In conclusion, we reiterate that the quantity ωcyc/Ω0 is an
important and robust property of cyclic dynamo models and its
dependence on other properties of the model should therefore be
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a useful characteristics that can be compared with other models
and ultimately with actual stars. Here we have made a first
attempt in classifying model results in this way.

3.4. Differential Rotation and Meridional Circulation

Non-uniform rotation of the convection zone of the Sun is
an important ingredient in maintaining the large-scale magnetic
field. Furthermore, the sign of the radial gradient of the mean
angular velocity plays a crucial role in deciding whether the
dynamo wave propagates toward the pole or the equator in
α–Ω mean-field models (e.g., Parker 1955a, 1987b). In the
following, we use the local angular velocity defined as Ω =
Ω0 + uφ/r sin θ . Azimuthally averaged rotation profiles from
the runs in Sets A to D are shown in Figure 9. The rotation
profiles of Runs E1, E3, and E4 are very similar to that of Run
C1. We quantify the radial and latitudinal differential rotation by

Δ(r)
Ω = Ωeq − Ωbot

Ωeq

, (33)

Δ(θ)
Ω = Ωeq − Ωpole

Ωeq

, (34)

where Ωeq = Ω(R,π/2) and Ωbot = Ω(r0, π/2) are the angular
velocities at the top and bottom at the equator, respectively, and
Ωpole = [Ω(R, θ0) + Ω(R,π − θ0)]/2. It has long been recog-
nized that dynamo-generated magnetic fields can have an im-
portant effect on the angular velocity (Gilman 1983; Glatzmaier
1985, 1987). Indeed, magnetic fields affect the turbulence that
gives rise to Reynolds stress and turbulent convective heat flux
(e.g., Kitchatinov et al. 1994; Käpylä et al. 2004). Furthermore,
the large-scale flows are directly influenced by the Lorentz force
when the magnetic field is strong enough (e.g., Malkus & Proc-
tor 1975). A magnetically caused decrease of Δ(θ)

Ω has also been
observed in LES models (e.g., Brun et al. 2004). Comparing the
latitudinal differential rotation in Run B1 with that of the other-
wise identical hydrodynamic Run A4 of Käpylä et al. (2011a),
we find that Δ(θ)

Ω decreases only slightly from 0.15 to 0.14. For
Δ(r)

Ω the change is more dramatic—from 0.079 to 0.034. The
fraction of kinetic energy contained in the differential rotation,
Erot/Ekin, drops from 0.91 to 0.71. A similar decrease is ob-
served in Run C1 in comparison to its hydrodynamical parent
Run B4 of Käpylä et al. (2011a) with Δ(θ)

Ω changing from 0.08 to
0.07, Δ(r)

Ω from 0.066 to 0.047, and Erot/Ekin dropping from 0.58
to 0.44. Similar changes have also been seen in dynamos from
forced turbulence in Cartesian domains (Brandenburg 2001), in
addition to those from convective turbulence in spherical shells
(Brun et al. 2004).

In all cases in Figure 9, we see a rapidly spinning equator
with a positive radial gradient of Ω. The latitudinal variation of
angular velocity is, however, not always monotonic and there
can be local minima at mid-latitudes, as is seen, for example,
in Run C1. Similar features have previously been seen (see,
e.g., Miesch et al. 2000; Käpylä et al. 2011b) and might be
related to the lack of small-scale turbulence. Especially at larger
stratification one would expect smaller-scale turbulent structures
to emerge, but this means large Reynolds numbers and thus
requires sufficient resolution, which is not currently possible.

The amount of latitudinal differential rotation (here 0–0.09;
see Table 2) is clearly less than in the Sun where Δ(θ)

Ω ≈ 0.2
between the equator and latitude 60◦ (e.g., Schou et al. 1998).

Figure 9. Time averaged mean rotation profiles Ω/Ω0 (gray/color scale and
line contours) from Sets A, B, C, and D.

(A color version of this figure is available in the online journal.)
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Figure 10. Meridional circulation in the northern hemisphere of the convection zone of Run C1 (left panel) and Run D1 (right) shown as vectors of the mass flux
ρ(ur , uθ , 0), which is also averaged over a time span of around 250 turnover times in the saturated state. The black solid lines indicate the surface (r = R) and the
bottom of the convection zone (r = 0.7 R), and the red solid line indicates the position of the inner tangent cylinder. Note that for Run D1 (right), the mass flux have
been multiplied by a factor of five to emphasize the structure.

(A color version of this figure is available in the online journal.)

Furthermore, Δ(θ)
Ω generally decreases within each set of runs

as Co increases, except for Runs D1 and D2 where the value
increases; see Table 2. However, in Run D1 the lower Reynolds
number possibly contributes to the weak differential rotation
in comparison to Run D2 with comparable Co. The rotation
profiles appear to be dominated by the Taylor–Proudman bal-
ance, except at very low latitudes where the baroclinic term
is significant; see Figure 9 of Warnecke et al. (2013). In this
companion paper, we show that an outer coronal layer seems
to favor a solar-like rotation, which shows even radially orien-
tated contours of constant rotation. Such “spoke-like” rotation
profiles have thus far only been obtained in mean-field mod-
els involving anisotropic heat transport (e.g., Brandenburg et al.
1992; Kitchatinov & Rüdiger 1995) or a subadiabatic tachocline
(Rempel 2005), and in purely hydrodynamic LES models where
a latitudinal entropy gradient is enforced at the lower boundary
(Miesch et al. 2006) or where a stably stratified layer is included
below the convection zone (Brun et al. 2011).

The meridional circulation is weak in all cases and typically
shows multiple cells in the radial direction. In Figure 10, we plot
the mean mass flux, ρ(ur, uθ , 0), of the meridional circulation
for Runs C1 and D1. In Run C1 the circulation pattern is mostly
concentrated in the equatorial region outside the inner tangent
cylinder, where we find a solar-like anti-clockwise cell at low
latitudes (<30◦) in the upper third of the convection zone. There
are additional cells deeper down and also at higher latitudes.
Only the cell near the surface seems to have the same curvature
as the surface, while the others, in particular the strong one above
the inner tangent cylinder, seem to be parallel to the rotation
axis. This is similar to earlier results by Käpylä et al. (2012)
where the meridional circulation pattern was shown in terms of
the velocity. The circulation pattern in Run D1 is qualitatively

quite similar, but the velocity is smaller by roughly a factor
of five. Similar patterns of multi-cellular meridional circulation
have also been seen in anelastic simulations using spherical
harmonics (see, e.g., Nelson et al. 2013) and in models with
an outer coronal layer (Warnecke et al. 2013). In addition, as
we will show in the next section, the importance of meridional
circulation relative to the turbulent magnetic diffusivity is rather
low, which is another reason why it cannot play an important
role in our models.

3.5. Estimates of Local Dynamo Parameters

To estimate the dynamo parameters related to α-effect, radial
differential rotation, and meridional circulation, we consider
local (r- and θ -dependent) versions of dynamo numbers, referred
to as local dynamo parameters that are defined by

cα = αΔr

ηt0
, cΩ = ∂Ω/∂r(Δr)3

ηt0
, cU = urms

merΔr

ηt0
, (35)

where ∂Ω/∂r is the r- and θ -dependent radial gradient of Ω,
Δr = R − r0 is the thickness of the layer, and α is a proxy of
the α-effect (Pouquet et al. 1976),

α = −1

3
τ (ω · u − j · b/ρ), (36)

with τ = αMLTHP/urms(r, θ ) being the local convective turnover
time and αMLT the mixing length parameter. We use αMLT = 5/3
in this work. We estimate the turbulent diffusivity by ηt0 =
τu2

rms(r, θ )/3. Furthermore, urms
mer =

√
u2

r + u2
θ is the rms value

of the meridional circulation.
The results for the local dynamo parameters are shown in

Figures 11–13. Generally, the values of cα are fairly large, and
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Figure 11. Local dynamo parameter cα from Sets A, B, C, and D.

(A color version of this figure is available in the online journal.)

Figure 12. Local dynamo parameter cΩ from Sets A, B, C, and D. We omit
regions closer to 2.◦5 from the latitudinal boundaries.

(A color version of this figure is available in the online journal.)
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Figure 13. Local dynamo parameter cU from Sets A, B, C, and D.

(A color version of this figure is available in the online journal.)

those of cΩ surprisingly small, suggesting that the dynamos
might mainly be of α2 type. In the following, however, we focus
on relative changes between different runs. It turns out that there
is a weak tendency for cα to increase as a function of Γρ (from
Sets A to D) and Co (from subsets 1 to 2). In Set B, however, cα

decreases by a third from Run B1 to B2. The spatial distribution
of cα becomes more concentrated near the radial boundaries as
Γρ increases.

We find that differential rotation is strongest near the equator
in all cases. Sets A and B have extended regions outside the inner
tangent cylinder and at low latitudes where cΩ is large, but in all
cases cΩ is clearly smaller than cα . This is surprising given the
fact that the energy of the mean toroidal field is greater than that
of the mean poloidal field by a significant factor (see Epol and
Etor in Table 2), which would be expected if differential rotation
dominates over the α-effect in maintaining the field. In Runs C1,
C2, and D1, cα , and cΩ have comparable magnitudes whereas
in Run D2 the maximum of cΩ is roughly twice that of cα .
However, in these cases the toroidal and poloidal field energies
are roughly comparable (see Table 2). For Set C (and especially
for Run C2) there are broad regions where cΩ is negative. In this
connection we recall that in the diagnostic diagrams (Figure 8),
C2 appears as an outlier and far away from the A? and I?
branches. Furthermore, in the more strongly stratified models,
cα shows enhanced values at low latitudes. However, for the most
strongly stratified models this is only true of Run D2, which is
rotating slightly faster than Run D1. This is interesting in view of
the fact that many mean-field dynamos produce too strong fields
at high latitudes, which is then “artificially” reduced by an ad-
hoc factor proportional to sin2 θ (Rüdiger & Brandenburg 1995)
or other such variants (Dikpati et al. 2004; Pipin & Kosovichev
2011) for α. We note that in local convection simulations, the
α-effect has been found to peak at mid-latitudes for rapid
rotation (Käpylä et al. 2006a).

We find that cU is always small in comparison to both cα

and cΩ. Note, however, that the range of cU does increase as we
go from Set A to Set D. Figure 13 also shows the concentration
of coherent meridional circulation cells in the equatorial regions
with a multi-cell structure.

In flux transport dynamos, cU has values of several hundreds
(Küker et al. 2001). This is a consequence of choosing a small
value of the turbulent magnetic diffusivity. In our simulations,
on the other hand, cU is much smaller. This is a consequence of
faster turbulent motions, making the turbulent diffusivity large
and therefore cU small. Whether or not this also applies to more
realistic models remains to be seen.

3.6. Phase Relation and Nature of the Dynamo

The relative magnitudes of the estimated values of cα and
cΩ, and also the comparable amplitudes of Br and Bφ , shown
in Figure 4(a) of Käpylä et al. (2012), strongly suggest that
the dynamos of this study are not of α2Ω type, as is usually
expected for the Sun. This can be motivated further through
direct inspection of the Ω term in the equation for the mean
toroidal field. Following Schrinner et al. (2012), we compare
the Ω-effect, r sin θ Bpol ·∇Ω, with the mean toroidal field. The
results for Runs C1 and D1 are shown in Figure 14, where we
have scaled the Ω term by the magnetic cycle period, Tcyc. A
fraction of this would be responsible for the production of mean
toroidal field for the next cycle. For Run C1, the magnitude of
this term is actually large compared with Bφ , and the two are
clearly correlated at latitudes below ±35◦, which is also where
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Figure 14. Ω-effect, as quantified by Tcycr sin θ Bpol · ∇Ω, where Bpol =
(Br , Bθ ) (left panels) and the mean toroidal magnetic field Bφ (right panels)
normalized by Beq from the saturated states of Runs C1 (upper panels) and D1
(lower panel). The data is averaged over the longitude and approximately 60
convective turnover times in both cases.

(A color version of this figure is available in the online journal.)

equatorward migration is seen. For Run D1, however, no clear
correlation is seen even at low latitudes. The possibility of α2Ω
type dynamo action therefore remains unclear, and especially
for Run D1 it may not be the dominant mechanism. To explore
the possibility that our dynamo is of α2 type, we now consider
the phase relation between Br and Bφ ; see Figure 15.

For α2Ω dynamos, the phase relation between Br and Bφ is
commonly used to determine the sign of the radial differential
rotation (Stix 1976; Yoshimura 1976). By contrast, the sign
of α is determined by the sense of migration of the dynamo
wave. For negative radial shear, Br and Bφ are approximately in

Figure 15. Phase relations of Br (thick red lines) and Bφ (black dashed lines)
for Run C1 at (a) 70◦ and (b) 30◦ latitude, compared with results of mean-field
dynamos of (c) α2 type and (d), (e) α2Ω type, with positive and negative shear,
respectively. The amplitudes have been rescaled to unity. Note that only the α2

dynamo has approximately the phase relation seen in the simulations.

(A color version of this figure is available in the online journal.)

antiphase with Bφ preceding Br by ≈3π/4. For positive radial
shear, Br and Bφ are approximately in phase with Bφ lagging
Br by ≈π/4. In our simulations, radial shear is indeed positive,
but Bφ precedes Br by a certain amount; see Figures 15(a) and
(b). This cannot be explained by an α2Ω dynamo where (for
positive radial shear) Bφ lags Br by π/4.

Another possibility are oscillatory α2 dynamos of the type
recently found by Mitra et al. (2010) using direct numerical
simulations of forced turbulence in a spherical wedge. Those
models have also been used to study the effects of an outer
coronal layer to shed magnetic helicity (Warnecke et al. 2011).
Oscillatory α2 dynamos were first studied by Baryshnikova &
Shukurov (1987) and Rädler & Bräuer (1987); see also the
monograph of Rüdiger & Hollerbach (2004). Such solutions
have also been studied in connection with the geodynamo,
where the α-effect might change sign in the middle of the outer
liquid iron core (Stefani & Gerbeth 2003). By contrast, in the
simulations of Mitra et al. (2010) and Warnecke et al. (2011),
α changes sign about the equator. They used a perfect conductor
boundary condition at high latitudes and found equatorward
migrating dynamo waves. With a vacuum condition, on the
other hand, mean-field simulations have predicted poleward
migration (Brandenburg et al. 2009). Those simulations were
done in Cartesian geometry, where (x, y, z) can be identified
with (r, φ,−θ ). Looking at their Figure 2, it is clear that By lags
Bx by π/2.

We have verified the phase relations of the Cartesian model
of Brandenburg et al. (2009) with a one-dimensional spherical
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Figure 16. Radial velocity ur (top row) and azimuthal magnetic field Bφ (bottom) near the surface of the star r = 0.98 R in Mollweide projection from Runs E1 (left),
E2, E3, and E4 (right). See http://youtu.be/u55sAtN2Fqs for an animation of the magnetic field in Run E4.

(An animation and color version of this figure are available in the online journal.)

model,8 where α = α0 cos θ has been assumed, which changes
sign about the equator at θ = π/2. The dynamo number
for the marginally excited case is α0R/ηt0 ≈ 23.63 and, as
expected, Bφ lags Br by π/2; see Figure 15(c). The amplitudes
have been rescaled to unity. The corresponding behavior for
an α2Ω dynamo is shown in Figures 15(d) and (e), where Bφ

either precedes Br by π/4 or lags Br by 3π/4. In this case,
we have used a Cartesian model with constant α, constant
shear, S = duy/dx = const, and periodic boundaries in a
domain 0 < z < L, where the critical dynamo number is
αSL3/η2

t0 ≈ 8π2. In this model, the Cartesian coordinates
(x, y, z) correspond to (−r, φ, θ ), so positive (negative) values
of S correspond to negative (positive) radial angular velocity
gradients. Neither of the phase relations of these two models
agrees with those of the DNS.

Another hint pointing toward an α2 dynamo in Run C1 is
that the magnetic field is particularly strong in the middle of
the convection zone (0.8 R < r < 0.9 R), from where dynamo
waves seem to propagate toward the surface and the bottom of
the convection zone; see Figure 3(a) of Käpylä et al. (2012).
Even though there exists no tachocline at the bottom or a
near-surface shear layer at the top of our convection zone, the
Ω-effect appears to be larger toward the bottom and top of the
convection zone; see Figure 12. Therefore, an Ω-effect would
produce the magnetic field mainly at the bottom and the top of
the convection zone, which is not the case in our simulation.
The case of Run D1 is more clear because the Ω-effect is
weak except near the boundaries (Figure 12) and the toroidal
field shows no correlation with it; see Figure 14. We therefore
suggest that oscillatory α2 dynamos of the type found by Mitra

8 http://www.nordita.org/∼brandenb/PencilCode/MeanFieldSpherical.html

et al. (2010) might explain the origin of equatorward migrating
dynamo waves in the spherical wedge simulations of Käpylä
et al. (2012). It is also possible that this mechanism explains the
poleward migration at high latitudes, but detailed comparisons
must await a proper determination of α-effect and turbulent
diffusivity tensors. A first step toward this has recently been
attempted by Racine et al. (2011), who estimated the tensor
components of α by correlating the electromotive force with the
mean magnetic field using singular value decomposition. These
results were applied in mean-field models of Simard et al. (2013)
in an effort to explain the dynamos seen by Ghizaru et al. (2010).
However, this analysis is flawed in the sense that the diffusive
part of the electromotive force cannot be separated from the one
related to the α-effect. This has been shown to lead to erroneous
estimates of α (Käpylä et al. 2010a). The only reliable way to
compute the turbulent diffusion tensor is currently possible with
the test-field method (Schrinner et al. 2005, 2007). We postpone
such analysis to a future publication.

3.7. Effect of Domain Size

We recently reported equatorward migration of activity belts
in a spherical wedge simulation (Käpylä et al. 2012). There
we gave results from simulations with a φ-extent of π/2.
However, at large values of the Coriolis number, the α-effect
becomes sufficiently anisotropic and differential rotation weak
so that non-axisymmetric solutions become possible; see Moss
& Brandenburg (1995) for corresponding mean-field models
with dominant m = 1 modes in the limit of rapid rotation. To
allow for such modes, we now choose a φ-extent of up to 2π for
the same model as in Käpylä et al. (2012). In the present case,
we find that for Co ≈ 7.8 it is possible that non-axisymmetric
dynamo modes of low azimuthal order (m = 1 or 2) can be
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Figure 17. Same as Figure 4 but for Run E4.

(A color version of this figure is available in the online journal.)

dominant. This was not possible in the simulations of Käpylä
et al. (2012). The same applies to non-axisymmetric modes
excited in hydrodynamic convection (e.g., Busse 2002; Brown
et al. 2008; Käpylä et al. 2011b; Augustson et al. 2012).

We test the robustness of the equatorward migration by
performing runs with φ0 = π/4, π/2, π , and 2π with otherwise
similar parameters; see Table 1. We find that the same dynamo
mode producing equatorward migration is ultimately excited in
all of these runs. The only qualitatively different run is that with
φ0 = 2π where the poleward mode near the equator grows much
faster than in the other cases. However, after turmskf ≈ 1500
the equatorward mode takes over similarly as in the runs with a
smaller φ0.

The velocity field shows no marked evidence of low-degree
non-axisymmetric constituents, but there are indications of

m = 1 structures in the instantaneous magnetic field (Figure 16);
see also http://youtu.be/u55sAtN2Fqs for an animation of the
toroidal magnetic field. This is also reflected by the fraction of
the axisymmetric part of the total magnetic energy; Columns 5
and 6 of Table 2. We find that the energy of the mean toroidal
field decreases monotonically when φ0 is increased so that there
is a factor of three in Etor/Emag between the extreme cases
of Runs E1 and E4. The axisymmetric part still exhibits an
oscillatory mode with equatorward migration in all runs in Set
E. The most prominent exception is visible in Figure 17, where
we show the butterfly diagram of the m = 0 contribution for
Run E4. Clearly, equatorward migratory events are now rare and
superimposed on a background of small-scale, high-frequency
poleward migratory field.

We compute power spectra of the azimuthal component of
the magnetic field from the Run E4 over three 10◦ latitude
strips from each hemisphere, centered around latitudes of ±25◦,
±45◦, and ±65◦. The results for the three lowest degrees
m = 0, 1, 2 are shown in Figure 18. We find that at low
(±25◦) and high (±65◦) latitudes the axisymmetric (m = 0)
mode begins to dominate after around 1000 turnover times
and shows a cyclic pattern consistent with that seen in the
time-latitude diagram of the azimuthally averaged field. After
turmskf ≈ 1600, however, the m = 1 mode becomes stronger
in the southern hemisphere, coinciding with the growth of the
m = 1 mode at mid-latitudes (±45◦) where it dominates earlier
in both hemispheres. This is in rough agreement with some
observational results of rapid rotators, which show the most
prominent non-axisymmetric temperature (e.g., Hackman et al.
2001; Korhonen et al. 2007; Lindborg et al. 2011) and magnetic
structures (Kochukhov et al. 2013) at the latitudinal range
around 60◦–80◦, while the equatorial and polar regions are more

Figure 18. Energies of the m = 0 (black lines), 1 (red), and 2 (blue) modes of the azimuthal magnetic field as functions of time near the surface of the star (r = 0.98 R)
in Run E4. The data is averaged over 10◦ latitude strips centered at latitudes 90◦ − θ = ±25◦ (left panels), ±45◦ (middle), and ±65◦ (right) and normalized by the
total energy within each strip. The top and bottom rows refer to negative and positive latitudes, respectively.

(A color version of this figure is available in the online journal.)
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Figure 19. Top panel: azimuthally averaged temperature fluctuations, normal-
ized with their temporal average, ΔT /T , at the surface as a function of time.
Second panel: azimuthally averaged radial field at the surface, Br/Beq, as a
function of time. Lower panels: scatter plots of ΔT /T vs. Br/Beq at ±70◦ and
±30◦ latitude. Here, solid (dashed) red lines and filled (open) symbols refer to
northern (southern) latitudes. The slopes are QT ≈ 0.14 and 0.33 at ±70 and
±30 latitude. All plots show quantities from the saturated stage of Run C1.

(A color version of this figure is available in the online journal.)

axisymmetric; some temperature inversions even show almost
completely axisymmetric distributions in the polar regions and
rings of azimuthal field at low latitudes (e.g., Donati et al. 2003).
The strength of the axisymmetric versus the non-axisymmetric
part in such objects has also been reported to vary over time
with a timescale of a few years (Kochukhov et al. 2013).

3.8. Irradiance Variations

In contrast to the constant temperature condition used earlier,
the blackbody boundary condition (13) allows the temperature
to vary at the surface of the star and thus enables the study of
irradiance variations due to the magnetic cycle (Spruit 2000).
Such variations might even be responsible for driving torsional
oscillations in the Sun (Spruit 2003; Rempel 2006). In Figure 19
we compare time–latitude surface representations (r = R)
of azimuthally averaged temperature variations relative to its
temporal average, ΔT (θ, t) = T (θ, t) − 〈T 〉t (θ ), with those
of the azimuthally averaged radial magnetic field, Br (θ, t), for
Run C1 in the saturated state of the dynamo. We also show
scatter plots of ΔT /T versus Br/Beq at ±70◦ and ±30◦ latitude
to demonstrate that there are many instances where enhanced
surface magnetic activity leads to a local decrease in surface

temperature. We see that

ΔT /T ≈ −QT B
2
r /B

2
eq (37)

with “quenching” coefficients QT of ≈0.14 at high latitudes
and ≈0.33 at low latitudes. However, there is also consider-
able scatter, even though our data are already longitudinally
averaged. Without such averaging, the correlation between in-
dividual structures on the surface would be rather poor. The tem-
perature modulation is best seen near the poles; see Figure 19.
This could be a consequence of a strong radial magnetic field
that builds up some 50–100 turnover times earlier and thus pre-
cedes the temperature signal. A weaker modulation is also seen
near the equator. The peak values of ΔT /T at high latitudes are
15%–20% of the surface temperature; see the last two panels of
Figure 19. This is relatively large compared with earlier work us-
ing mean-field models (Brandenburg et al. 1992), which showed
remarkably little relative variation of the order of 10−3 in the
bulk of the convection zone and even less at the surface. This
difference in the modulation amplitude is probably related to
the importance of latitudinal variations that were also present in
the mean-field model of Brandenburg et al. (1992) and referred
to as thermal shadows (Parker 1987a).

4. CONCLUSIONS

We have studied the effects of density stratification on the
dynamo solutions found in simulations of rotating turbulent
convection in spherical wedge geometry for four values of Γρ ,
which is the ratio of the densities at the bottom and at the surface
of the convection zone. In addition, we vary the rotation rate for
each value of Γρ . For all stratifications we find quasi-steady
large-scale dynamos for lower rotation and oscillatory solutions
when rotation is rapid enough. The transition from quasi-steady
to oscillatory modes seems to occur at a lower Co for higher
stratification. Furthermore, for low values of Γρ the oscillatory
solutions show only poleward propagation of the activity belts
whereas at higher Γρ an equatorward branch appears at low
latitudes.

The equatorward branch was first noted by Käpylä et al.
(2012) using a wedge with φ0 = 90◦ longitude extent. Here we
test the robustness of this result by varying φ0 from 45◦ to full
360◦. We find a very similar pattern of the axisymmetric part of
the field in all cases. However, the energy of the axisymmetric
magnetic field decreases with increasing φ0. In the simulation
with the full φ-extent of 2π we observe an m = 1 mode which
is visible even by visual inspection (see Figure 16). Such field
configurations have been observed in rapidly rotating late-type
stars (see, e.g., Kochukhov et al. 2013) and our simulation is
one of the first to reproduce such features (see also Goudard &
Dormy 2008; Gastine et al. 2012). We are currently investigating
the rapid rotation regime with more targeted runs which will be
reported in a separate publication (Cole et al. 2013).

The ratio between cycle to rotation frequency, ωcyc/Ω0, is
argued to be an important non-dimensional output parameter
of a cyclic dynamo. For the Sun and other relatively inactive
stars, this ratio is around 0.01, while for the more active stars
it is around 0.002. For our models we find values in the range
0.002–0.01, but for most of the runs it is around 0.004. Although
it is premature to make detailed comparisons with other stars
and even the Sun, it is important to emphasize that kinematic
mean-field dynamos produce the correct cycle frequency only
for values of the turbulent magnetic diffusivity that are at least
10 times smaller than what is suggested by standard estimates
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(Choudhuri 1990). In our case, these longer cycle periods (or
smaller cycle frequencies) might be a result of nonlinearity as
they are only obtained in the saturated regime of the dynamo.
The detailed reason for this is unclear, but it has been speculated
that it is connected with a slow magnetic helicity evolution
(Brandenburg 2005). On the other hand, magnetic helicity
effects are expected to become important only at values of Rm
between 100 and 1000 (Del Sordo et al. 2013), which is much
larger than what has been reached in the present work. Equally
unclear is the reason for equatorward migration, which, as we
have seen, might be a consequence of nonlinearity, as well. It will
therefore be important to provide an accurate determination of
all the relevant turbulent transport coefficients. The explanation
favored in the present paper is that the dynamo wave is that
expected for an oscillatory α2 dynamo caused by the change of
sign of α about the equator. This is evidenced by our finding
that Bφ lags Br by about π/2, which cannot be explained by an
α2Ω dynamo.
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