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Governing Parameters

Re = urms/⌫kf

ReM = urms/⌘kf

Reynolds number

magnetic Reynolds number

In the Sun:

1012 ... 1013

108 ... 109
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2,3 , MAARIT J. KÄPYLÄ
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near

Electronic address: warnecke@mps.mpg.de (Revision: 1.66 )

the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-

Pouquet et al. 1976
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How to solves the problem I
1. Observational constrains

a) Surface observations + solar cycle evolution

b) Helioseismology

c) Other stars

	 	 	 	 	 	 Tail of  the dog? 

	 	 	 Not everything, but more than we think!
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How to solves the problem II
2.  Mean-field modeling

• Put physics in as you want.

• Control experiments.

• Tunable parameters.

• Good parameters come from observations or 

fundamental theories.

	 	 	 Reproducing the Sun’s magnetic field is possible 

	 	 	 with many different approaches.
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Dikpati & Charbonneau (1999) 
Choudhuri, Schüssler & Dikpati (1995) 

Nandy & Choudhuri (2002)

Babcock-Leighton  
Flux-Transport-Dynamo

1. Meridional circulation 
2. Low magnetic diffusivities 
3. Sunspot formation critical
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Rising flux tubes?

• Can flux tubes be generated?  
• Do flux tubes survive? 
• No detection by helioseismology yet. 
• Is the dynamo at the tachocline?

Arlt et al. (2007)
Guerrero & Käpylä (2011) 

Brandenburg (2005) 
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How to solves the problem III
3.  Global convective dynamo simulations

• Numerical experiments.

• Parameters far from realistic.

• Testing mean-field theories.

•	 Testing observational contraints.

	 	 	 Interpreting this simulations helps us to

 	 	 	 understand the solar dynamo!
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Global convective dynamo simulations

• high-order finite-difference code 
• scales up efficiently to over 60.000 cores 
• compressible MHD

http://pencil-code.google.com/

http://pencil-code.google.com/
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Global convective dynamo simulations

Wedge geometry

We model a spherical sector (`wedge’) where only parts of the latitudinal 
and longitudinal extents are taken into account.

Normal field condition for B at the outer radial boundary and perfect 
conductor at all other boundaries. Impenetrable stress-free boundaries on 
all boundaries. 

Käpylä et al. (2010b), Astron. Nachr., 331, 73

Differential rotation and magnetism across the HR diagram, Stockholm, 11th Apr 2013

Mitra et al. (2009), Astrophys. J., 697, 923
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Jörn Warnecke: Magnetic field generation in the Sun

To reach this goal, the research project is divided into three main tasks that provide a step-by-step approach to
clarify, the role of large-scale convective velocities for magnetic field generation in the Sun:

A Investigate the effect of different velocity scales and distributions on magnetic field generation.

B Quantify the magnetic field generation in terms of turbulent transport coefficients.

C Alter the velocity spectrum in global simulations to produce solar-like magnetic field generation.

As a first step (Task A) it is important to understand how different velocity scales affect the magnetic field genera-
tion. Therefore, I will investigate this connection isolated in a detailed study. As a second step (Task B), I will relate
this study to global magnetic field generation in the Sun. An obvious approach is to quantify it in terms of transport
coefficients, which provide a simple and intuitive way to describe the global magnetic generation and evolution. As
a third step (Task C), I will modify the global convection simulation in such a way, that they reproduce a solar-like
velocity spectrum. In this study I will also focus on the global magnetic field generation and evolution, however in
contrast to Task B these simulations solve for turbulent convection directly; no contributions of turbulent effects are
parameterized. This is a more self-consistent approach and will reveal in particular non-linear effects influencing
the magnetic field generation.

Figure 2: Global convection simulations in a spherical shell
with differential rotation. The radial velocities at the surface
and at the bottom of the convection zone are shown in shades
of red on two spherical shells. The meridional cut shows the
mean differential rotation profile. The magnetic field genera-
tion in this simulation is driven by self-consistent convection
[14]. The background illustrates the appearance of the solar
corona (NASA/SDO/AIA).

Task A: Velocity scales and magnetic field generation
The aim of this task is to investigate, how the magnetic field
generation dependents on velocity scales. To isolate the effect
of the different velocity scales, I will conduct a series of sim-
plified simulations of stratified turbulence. The turbulent con-
vective motions are mimicked by inducing turbulence through
transverse helical waves around a certain wavenumber. This
allows me to control precisely the scale on which the turbu-
lence is excited. I have used this technique in a similar setup
before to generate magnetic fields [15]. In this study, I will
be able to relate the scale and structure of the generated mag-
netic field to the scale of turbulence. As a next step, I will
modify the scale on which the turbulence is excited to height-
and scale-dependent velocity spectra. So, the turbulence is
excited not only at one scale in the entire simulation domain,
it is excited at different scales at various depths, mimicking
the complex velocity spectrum of convection. As a last step,
I will use this technique to compare magnetic field generation
driven by a velocity spectrum inferred from mixing-length the-
ory with one driven by a velocity spectrum inferred from solar
observations. This will lead to a better understanding of what
magnetic field structures and scales are excited due to the solar
velocity spectrum.

Task B: Turbulent transport coefficients
The aim of this task is to quantify the results of the simulations conducted in Task B in terms of turbulent transport
coefficients. These transport coefficients belong to a successful theory to describe the magnetic field generation
[16]. They contain properties of turbulent velocity field, i.e. the kinetic helicity, which is the dot product of the
velocity with its curl, the vorticity. Each of these transport coefficients express a physical process in the evolution
of the magnetic field and is therefore important. Only with deduction of transport coefficients a fundamental un-
derstanding of the magnetic field generation can be achieved. I will use the test-field method to calculated these
coefficients [17]. In this method the numerical simulations solve for extra magnetic test fields, which passively
interact with the other quantities in the simulations. Then from the structure and values of these test fields I can
obtain transport coefficients in a system of linear equations. This method has been used for various numerical sim-
ulations and is well established [18]. With the deduced transport coefficients I will run simplified two-dimensional
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FIG. 3.— Same as Fig. 1 but for Runs C1 (top panel) and C2 (bottom). Note
the difference in cycle frequency between early times when the frequency is
similar to that of Run B2 (Fig. 2) and late times.

FIG. 4.— Same as Fig. 1 but for Runs D1 (top panel) and D2 (bottom).
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Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee,
P. 2011b, A&A, 531, A162

Kitchatinov, L. L., & Olemskoy, S. V. 2012, Sol. Phys., 276, 3
Kitchatinov, L. L., Pipin, V. V., & Rüdiger, G. 1994, Astronomische
Nachrichten, 315, 157
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Dynamo cycles from simulations VI

Differential rotation and magnetism across the HR diagram, Stockholm, 11th Apr 2013

Multi-cell circulation, cycles appear in the nonlinear regime, magnetic fields 
appear to be generated in the whole convection zone.
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FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)

Pr=ν/χ=2.5  
Pm=ν/η=1

Pr=0.5 
Pm=0.5
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Differential rotation

The Astrophysical Journal Letters, 796:L12 (6pp), 2014 November 20 Warnecke et al.

Figure 3. Top row: color coded B
rms
φ during the saturated stage for Runs I–IV (left to right). White arrows show the direction of migration ξmig(r, θ ) = −α êφ × ∇Ω;

see Equation (3). The black solid lines indicate isocontours of Bφ at 2.5 kG. Bottom row: Ω(r, θ )/Ω0 for the same runs. The dashed lines indicate the surface (r = R).
(A color version of this figure is available in the online journal.)

of the convection zone, although at higher latitudes it occupies
nearly the entire convection zone.

Next, we compare the differential rotation profiles of the runs;
see the bottom row of Figure 3. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I, III, and IV possess a local minimum of angular velocity,
implying the existence of a negative ∇rΩ, between ±15◦ and
±40◦ latitude, which is the same latitude range where EM was
found in Runs I and IV. In Run II, the contours of constant
angular velocity are nearly cylindrical, but with a slight radial
inclination, which is more than in Run I. This is expected due
to the enhanced diffusive heat transport and is also seen in other
global simulations (e.g., Brun & Toomre 2002; Brown et al.
2008), where PrSGS is closer to or below unity. Unlike in Runs I,
III, and IV, there is no local minimum of Ω. This can be attributed
to the higher value of the SGS heat diffusivity in Run II, which
smoothes out entropy variations, leading to a smoother rotation
profile via the baroclinic term in the thermal wind balance (see
corresponding plots and discussion in Warnecke et al. 2013b).

Furthermore, we calculate the local dynamo numbers

Cα = α ∆R

ηt0
, CΩ = ∇rΩ ∆R3

ηt0
, (2)

where ηt0 = αMLTHpurms(r, θ )/3 is the estimated turbulent
diffusivity with the mixing length parameter αMLT = 5/3, the
pressure scale height Hp, the turbulent rms velocity urms(r, θ ),
and α(r, θ ) is estimated using Equation (1); see also Käpylä
et al. (2013). In Figure 4, we plot Cα and CΩ as functions of
radius for 25◦ latitude for Runs I–IV. The Cα profiles in all the
runs are similar: the quantity is almost always positive, except
for a narrow and weak dip to negative values at the very bottom
of the simulation domain. The only two exceptions are Runs III
and IV, where the cooling layer causes Cα to decrease already
below (Run III) or just above (Run IV) the surface, becoming

even weakly negative there. The reason is a sign change of the
kinetic helicity caused by the sign change of entropy gradient.
The CΩ profiles are similar for Runs I, III, and IV. There
are two regions of negative values in the lower and middle part
of the convection zone, with positive values near the surface.
In the middle of the convection zone, these profiles coincide
with clearly positive values of Cα , as required for EM. For
Run II, the profiles of CΩ are markedly different: despite the
negative dip at the bottom of the convection zone, the values
of CΩ are generally positive and larger in magnitude than for
Runs I, III, and IV. This suggests PM throughout most of the
convection zone.

To investigate this in more detail, we calculate the migration
direction ξmig as (Yoshimura 1975)

ξmig(r, θ ) = −α êφ × ∇Ω, (3)

where êφ is the unit vector in the φ-direction. Note that
this and our estimated α(r, θ ) using Equation (1) is a strong
amplification, in general, of the tensorial properties. In all of
our runs, α is on average positive (negative) in the northern
(southern) hemisphere.

The migration direction ξmig is plotted in the top row of
Figure 3 for the northern hemispheres of Runs I–IV. The white
arrows show the calculated normalized migration direction on
top of the color coded B

rms
φ with black contours indicating

B
rms
φ = 2.5 kG. In Runs I and IV, Equation (3) predicts EM

in the region where the mean toroidal field is the strongest. This
is exactly how the toroidal field is observed to behave in the
simulation at these latitudes and depths, as seen from Figure 2.
The predicted EM in this region is due to α > 0 and ∇rΩ < 0.
Additionally, in a smaller region of strong field closer to the
surface and at lower latitudes, the calculated migration direction
is poleward. This coincides with the high-frequency poleward
migrating field shown in Figure 2. In Run II, due to the absence

4
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FIG. 3.— Top row: color coded B
rms
φ during the saturated stage for Runs I–IV (left to right). White arrows show the direction of migration ξmig(r, θ) =

−αêφ × ∇Ω; see Equation (3). The black solid lines indicate isocontours of Bφ at 2.5 kG. Bottom row: Ω(r, θ)/Ω0 for the same runs. The dashed lines
indicate the surface (r = R).

FIG. 4.— Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as
a function of r.

between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM was found in Runs I and IV. In Run II, the
contours of constant angular velocity are nearly cylindrical,
but with a slight radial inclination, which is more than in
Run I. This is expected due to the enhanced diffusive heat
transport and is also seen in other global simulations (e.g.

Brun & Toomre 2002; Brown et al. 2008), where PrSGS is
closer to or below unity. Unlike in Runs I, III, and IV, there is
no local minimum of Ω. This can be attributed to the higher
value of the SGS heat diffusivity in Run II, which smoothes
out entropy variations, leading to a smoother rotation profile
via the baroclinic term in the thermal wind balance (see cor-
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FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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FIG. 3.— Top row: color coded B
rms
φ during the saturated stage for Runs I–IV (left to right). White arrows show the direction of migration ξmig(r, θ) =

−αêφ × ∇Ω; see Equation (3). The black solid lines indicate isocontours of Bφ at 2.5 kG. Bottom row: Ω(r, θ)/Ω0 for the same runs. The dashed lines
indicate the surface (r = R).

FIG. 4.— Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as
a function of r.

between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM was found in Runs I and IV. In Run II, the
contours of constant angular velocity are nearly cylindrical,
but with a slight radial inclination, which is more than in
Run I. This is expected due to the enhanced diffusive heat
transport and is also seen in other global simulations (e.g.

Brun & Toomre 2002; Brown et al. 2008), where PrSGS is
closer to or below unity. Unlike in Runs I, III, and IV, there is
no local minimum of Ω. This can be attributed to the higher
value of the SGS heat diffusivity in Run II, which smoothes
out entropy variations, leading to a smoother rotation profile
via the baroclinic term in the thermal wind balance (see cor-
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FIG. 2.— Time evolution of the mean toroidal magnetic field Bφ in the convection zone for Runs I, II, III and IV from left to right. In the top row the radial cut
is shown at r = 0.98R and in the bottom row the latitudinal cut at 90− θ = 25◦. Dark blue shades represent negative values and light yellow shades positive
values. The dashed horizontal lines show the location of the equator at θ = π/2 (top) and the radius r = 0.98R and r = 0.84R (bottom).

FIG. 3.— Local dynamo parameters Cα and CΩ for Runs I (top), II (mid-
dle) and III (bottom). Cα (solid line) and CΩ (dashed line) for two latitudes
in the northern hemisphere as a function of radius r: θ = 25◦ (black) and
θ = 65◦ (red line).

there is some near-surface field enhancement similar to Run I,
but closer to the equator. However, the maximum of the mean
toroidal field is near the bottom of the convection zone, al-
though at higher latitudes it occupies nearly the entire con-
vection zone.

Next, we compare the differential rotation profiles of the
runs, see middle row of Figure 4, where we also skip Run IV
because of its similarity to Run I. All runs develop cylindrical
contours of constant rotation as a dominant pattern. However,
Runs I and III possess a local minimum of angular velocity
between ±15◦ and ±40◦ latitude, which is the same latitude
range where EM of Run I is found. A local minimum im-
plies the existence of a negative gradient of Ω. As described
in Sect. 1, a negative gradient can lead to EM, if α is positive
in the northern hemisphere. In Run II, the contours of con-

stant rotation are nearly cylindrical with a slightly stronger ra-
dial inclination than in Run I. This is expected and also seen
in other global simulations (e.g. Nelson et al. 2013), where
PrSGS is closer or below unity. Besides a narrow layer at the
bottom of the convection zone, ∇rΩ is always positive and
there is no local minimum as in Runs I and IV.

Furthermore, we calculate the local dynamo numbers

Cα =
α∆R

ηt0
, CΩ =

dΩ/dr∆R3

ηt0
, (2)

where ∆R=0.3R is the thickness of the convection zone and
ηt0 = αHpurms(r, θ)/3 is the estimated turbulent diffusivity
with the mixing length parameter αMLT = 5/3, the pressure
scale height Hp and the turbulent rms velocity urms(r, θ). In
Figure 3 we plot Cα and CΩ as functions of radius for two
different latitudes. Run I develops a strong negative CΩ and
a positive Cα at mid-depth at a latitude of 25◦ and positive
CΩ and Cα near the surface. In Run II, CΩ is, except at the
bottom of the domain, positive together with positive Cα. The
cooling layer in Run III causes Cα to decrease near the sur-
face, and at low latitudes it becomes even weakly negative.
As in Run I, CΩ obtains negative values in the mid-region of
the convection zone, but the magnitude of the minimum is
roughly two times weaker, the region is narrower, and occurs
at somewhat larger depth compared to Run I.

To investigate this in more detail we calculate the migra-
tion direction smig using the expression derived by Yoshimura
(1975)

smig(r, θ) = −αêφ ×∇Ω, (3)

where êφ is the unit vector in the φ-direction. Yoshimura
(1975) extended the Cartesian αΩ dynamo model by Parker
(1955) to spherical coordinates and solved the resulting dy-
namo wave equation. Note, that the used α is scalar instead
of a tensor, which is in general a strong simplification. For our
calculation, we use α as given by Eq. (1), where it depends on
r and θ. In all of our runs, α is on average positive (negative)
in the northern (southern) hemisphere.

The migration direction smig in the northern hemisphere for
Runs I to III is plotted in the bottom row of Figure 4. The ar-
rows show the calculated normalized migration direction and
the red contours indicate ⟨|Bφ|⟩t above 2 kG. In Run I, in the
region where the mean toroidal field is the strongest, Eq. (3)
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2

AND AXEL BRANDENBURG
4,5

1Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany; warnecke@mps.mpg.de
2ReSoLVE Centre of Excellence, Department of Information and Computer Science, Aalto University, PO Box 15400, FI-00 076 Aalto, Finland
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ABSTRACT

We present results from four convectively-driven dynamo simulations in spherical wedge geometry. All of
these simulations produce cyclic and migrating mean magnetic fields. The migration direction can be explained
by an αΩ dynamo wave following the Parker–Yoshimura rule. We conclude, that the equatorward migration
in this and previous work is due to a positive (negative) α-effect in the northern (southern) hemisphere and
a negative radial gradient of Ω outside the inner tangent cylinder of these models. This idea is supported
by a strong correlation between negative radial shear and toroidal field strength in the region of equatorward
propagation.

Subject headings: convection – dynamo – magnetohydrodynamics (MHD) – Sun: activity – Sun: rotation –
turbulence

1. INTRODUCTION

Just over 50 years after the paper by Maunder (1904), in
which he showed for the first time the equatorward migra-
tion (EM) of sunspot activity in a time-latitude (or butterfly)
diagram, Parker (1955) proposed a possible solution: migra-
tion of dynamo waves along lines of constant angular veloc-
ity Ω (Yoshimura 1975). Here, α is related to kinetic helic-
ity and is positive (negative) in the northern (southern) hemi-
sphere (Steenbeck et al. 1966). It also has contributions from
the magnetic field through the current helicity (Pouquet et al.
1976). To explain EM, ∇Ω must point in the negative radial
direction. However, application to the Sun became problem-
atic with the advent of helioseismology showing that ∇rΩ is
actually positive at low latitudes where sunspots occur (Schou
et al. 1998), implying poleward migration; with the excep-
tion of the near-surface region, where ∇rΩ is indeed negative
(Thompson et al. 1996). An alternative solution was offered
by Choudhuri et al. (1995), who found that in αΩ dynamo
models with spatially separated induction layers the direc-
tion of migration can also be controlled by the direction of
meridional circulation at the bottom of the convection zone,
where the observed poleward flow at the surface must lead
to an equatorward return flow. Finally, even with just uni-
form rotation, i.e., in an α2 dynamo as opposed to the afore-
mentioned αΩ dynamos, it may be possible to obtain EM due
to the fact that α changes sign at the equator (Baryshnikova
& Shukurov 1987; Rädler & Bräuer 1987; Mitra et al. 2010;
Warnecke et al. 2011).

Meanwhile, global dynamo simulations driven by rotating
convection in spherical shells have demonstrated not only the
production of large-scale magnetic fields, but in some cases
also EM (Käpylä et al. 2012, 2013; Warnecke et al. 2013b;
Augustson et al. 2013). Although this seemed to be a suc-
cess in reproducing Maunder’s observation of EM, the reason
remained unclear. Noting the agreement between their sim-
ulation and the α2 dynamo of Mitra et al. (2010) in terms of
the π/2 phase shift between poloidal and toroidal fields near
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the surface, as well as their similar amplitudes, Käpylä et al.
(2013) suggested such an α2 dynamo as a possible underlying
mechanism. Yet another possibility is that α can change sign
if the second term in the estimate for α (Pouquet et al. 1976),

α =
τc
3

(

−ω · u+
j · b

ρ

)

, (1)

becomes dominant near the surface, where the mean density
ρ becomes small. Here, ω = ∇ × u is the vorticity, u is the
small-scale velocity, j = ∇×b is the current density, b is the
small-scale magnetic field, µ0 is the vacuum permeability, τc
is the correlation time of the turbulence, and overbars denote
suitable averaging. However, an earlier examination by War-
necke et al. (2013a) showed that the data do not support this
idea, i.e., the contribution from the second term is not large
enough. This was surprising, because it was always clear that
the EM in their models occurred only later in the nonlinear
regime when the magnetic field had reached saturation.

Another potentially important difference between the mod-
els of Käpylä et al. (2012, 2013) and those of other groups
(Ghizaru et al. 2010; Racine et al. 2011; Brown et al. 2011;
Augustson et al. 2012, 2013; Nelson et al. 2013) is the use
of a black-body condition for the entropy and a radial mag-
netic field at the outer radial boundary. The latter seems to be
realistic compared to the solar surface (ref:Robert).

It should be noted that the near-surface negative shear layer
of the Sun was either not resolved in the simulations of Käpylä
et al. (2012, 2013), or, in the case of Warnecke et al. (2013b),
such a layer did not coincide with the location of EM. Instead,
most of these simulations show a strong tendency for the con-
tours of angular velocity to be constant on cylinders. Some
of them even show a local minimum of angular velocity at
mid-latitudes. In this Letter, we argue that it is this local min-
imum, where ∇rΩ < 0 and α > 0, which explains the EM
as a Parker dynamo wave traveling from mid-latitudes equa-
torward. While we do not expect this to apply to Maunder’s
observed EM in the Sun, it does clarify the outstanding ques-
tion regarding the origin of EM in the simulations. A clear
understanding of these numerical experiments is a prerequi-
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 17. Equatorward migration for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c,

B3 and B3t (bottom row). Color coded Brms
φ is plotted during the saturated stage together with white arrows show the direction of migration

ξmig(r, θ) = −αêφ ×∇Ω of an αΩ dynamo wave (Parker 1955; Yoshimura 1975), see Equation (31), where we suppress the arrows above r = 1.05.

The black solid lines indicate isocontours of Bφ at 2.0 kG. The dashed lines indicate the surface (r = R).

(2014) with Figure 17. At around 45◦ latitude, there exist a con-
centration of mean toroidal magnetic field, which coincide with
a predicted poleward propagation, which is seen at high latitudes
in Figure 15. As described by Warnecke et al. (2014), the prop-

agation direction corresponding to location of strong Brms
φ is in

Run A1c inclusive. However, there exist a field concentration at
low latitudes close to the surface, which show poleward migra-
tion, similar to Run A1. This correspond most probably to the
fast poleward migrating dynamo mode seen in Figure 15. The
inclusive predicted migration direction at mid-latitudes and also
high latitudes seems to result in the in time constant magnetic
fields of Run A1c. Run A1c2, which is essential the same run as
Run IV of Warnecke et al. (2014), has a similar field distribution
than Run A1. The exist a strong concentration with predicted
equatorward migration field, a bit weaker concentration closer to
the surface with poleward migration and at higher latitudes (45◦)
a weak poleward migrating branch. These three features all agree

with the actual migration direction of toroidal fields at these lo-

cations, see Figure 15. Brms
φ of Run A1pc is mostly concentrated

near the surface, where the predicted migration direction points
poleward. This agrees with the actual migration direction in Fig-

ure 15. Also it exists a smaller and weaker concentration on Brms
φ

in the middle of the convection zone, where the predicted migra-
tion is equatorward. This coincides with the varying oscillating
magnetic field in the middle of the convection zone, which is
actually migrating equatorward.

Runs with a coronal envelope have a different field distri-

bution, as discussed above. In Run A2, Brms
φ is concentrated at

the surface at low latitudes together with a predicted poleward
migration. This agrees with the magnetic field evolution as seen
from Figures 15 and 16. In Run A3, the magnetic field distribu-
tion and the corresponding predicted migration is similar. The

in the middle of the convection zone exiting Brms
φ concentration,
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Fig. 16. Mean toroidal magnetic field Bφ evolution as time-radius diagram, plotted in kG at a 25◦ latitude during a 20yr interval in the saturated
stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom row). The
dashed horizontal lines show the radii r = R, r = 0.98 R and r = 0.85 R. Note, that the time range in Run B1 is twice as long and the color table
cut earlier than in the other runs.

show also a similar magnetic field evolution. At high latitudes
the mean toroidal field migrates equatorward but in contrast to
Run A3t of this work, near the equator the field seems to con-
tinue to propagate equatorward with some poleward interrup-
tions, see top left panel of Figure 12 in Warnecke et al. (2013a).
Also the radial distribution is similar. The field is mostly concen-
trated near the surface, see last panel of Figure 13 in Warnecke
et al. (2013a). For the slower rotating case, the setup of Run B in
Warnecke et al. (2013a) is similar to the setup of Run B3t, except
the higher the Prandtl number and lower stratification. However,
the magnetic field evolution seems to be more similar to Run B3,
than Run B3t in the sense, that the field becomes constant in time
in the saturated stage. Also Run B does not develop a equator-
ward migrating field at high latitudes.

To investigate the cause of the propagating direction of the
magnetic field, we apply the same technique of Warnecke et al.
(2014). We calculate the propagation direction using the so-
called Parker–Yoshimura Rule (Parker 1955; Yoshimura 1975).
There the magnetic field migration is described as a propagating
αΩ dynamo wave, whose direction is given by

ξmig(r, θ) = −αêφ × ∇Ω, (31)

where êφ is the unit vector in the φ-direction. We calculate α
using the formula (Pouquet et al. 1976)

α =
τc

3

⎛

⎜

⎜

⎜

⎜

⎝

−ω′ · u′ +
j · b

ρ

⎞

⎟

⎟

⎟

⎟

⎠

, (32)

where τc is the turbulent correlation time, which we chose to be
the turbulent turnover time τ = Hp/u

′
rms. The first term is the ki-

netic helicity of the fluctuating velocity field, where ω′ = ∇× u′

is the fluctuating vorticity, and the second term is related to the
magnetic helicity of the fluctuating fields, with j = ∇ × b being
the fluctuating current density related the fluctuating magnetic

field b = B − B. Following this rule, α is mostly positive (nega-
tive) in the northern (southern) hemisphere, an equatorward mi-
grating toroidal field has to be generated by a negative radial gra-
dient of Ω. ξmig gives a predicted direction of migration, which
we can now compare with the actually migration of the field.

In Figure 17 we plot the rms of the mean toroidal magnetic

field, time-averaged over the saturated stage, Brms
φ ≡ ⟨B

2

φ⟩
1/2
t to-

gether with the direction of migration ξmig. In Run A1, the large

concentration of Brms
φ in the middle of the convection zone co-

incide with a predicted equatorward migration direction, this is
most likely responsible for the equatorward migration at mid and
lower latitudes, see Figure 15. At this location, the radial gradi-
ent of Ω is negative, generating strong toroidal magnetic field.
The smaller concentration coincide with predicted poleward mi-
gration. It lies closer to the surface and therefore seems to be
responsible for the fast poleward migrating dynamo mode seen
in Figures 15 and 16. At this location, the radial gradient of Ω
is positive. This have been already described with a similar run
in the work by Warnecke et al. (2014). However, in the work
by Warnecke et al. (2014), the corresponding analysis did not
include the high latitudes, compare Figure 3 of Warnecke et al.

Article number, page 16 of 19page.19

The Astrophysical Journal Letters, 796:L12 (6pp), 2014 November 20 Warnecke et al.

Figure 4. Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as a
function of r.
(A color version of this figure is available in the online journal.)

of a negative ∇rΩ (see the bottom row of Figure 3), ξmig points
toward the poles in most of the convection zone, in particular
in the region where the field is strongest; see the top row of
Figure 3. Here the calculated migration direction agrees with the
actual migration in the simulation; see Figure 2. In Run III, there
exists a negative ∇rΩ, but in the region where the toroidal field
is strongest, the calculated migration direction is inconclusive.
There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field seen in Figure 2. However, in the smaller field concentration
closer to the surface and at lower latitudes, the calculated
migration direction is also poleward, which seems to explain
the rapidly poleward migrating Bφ of Run III (Figure 2). This
agreement between calculated and actual migration directions
of the toroidal field implies that the EM in the runs of Käpylä
et al. (2012, 2013) and in Runs I and IV can be ascribed to an
αΩ dynamo wave traveling equatorward due to a local minimum
of Ω.

To support our case, we compute a two-dimensional his-
togram of |Bφ| and ∇rΩ in a band from ±15◦ to ±40◦ latitude
for Runs I and II; see Figures 5(a)–(b). For Run I, the strong
(>5 kG) fields correlate markedly with negative ∇rΩ < 0. For
Run II, the strong fields are clearly correlated with positive
∇rΩ < 0. These correlations have two implications: first, strong
fields in these latitudes are related to and most likely gener-
ated by radial shear rather than an α effect. Second, the negative
shear in Run I is related to and probably the cause of the toroidal
field migrating equatorward and the positive shear in Run II is
responsible for PM.

These indications resulting from the comparison of four dif-
ferent simulation models lead us to conclude that the dominant
dynamo mode of all models is of αΩ type, and not, as suggested
by Käpylä et al. (2013), an oscillatory α2 dynamo. They based
their conclusion on the following three indications. (1) The two
local dynamo numbers, Cα and CΩ, had similar values; see

Figure 5. Panels (a) and (b): correlation of |Bφ | from the latitudinal band
±15◦ − ±40◦ and the logarithmic gradient of Ω for Runs I (a) and II (b).
Overplotted are the mean (white) and the zero lines (white-black dashed). (c)
and (d): phase relation between Bφ (black) and Br (red) at 25◦ latitude and
r = 0.98 R (c) and at r = 0.84 R (d) for Run I. (e): Time-averaged radial
dependence of B

rms
φ (black) and B

rms
r (red) at 25◦ latitude for Run I.

(A color version of this figure is available in the online journal.)

Figures 11 and 12 of Käpylä et al. (2013). However, due to an
error, a one-third factor was missing in the calculation of Cα ,
so our values are now three times smaller; see Figure 4. (2) The
phase difference of ≈ π/2 between Bφ and Br was observed,
which agrees with that of an α2 dynamo, as demonstrated in
Figure 15 of Käpylä et al. (2013). As shown in Figures 5(c)
and (d), this is only true close to the surface (r = 0.98 R). At
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 17. Equatorward migration for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c,

B3 and B3t (bottom row). Color coded Brms
φ is plotted during the saturated stage together with white arrows show the direction of migration

ξmig(r, θ) = −αêφ ×∇Ω of an αΩ dynamo wave (Parker 1955; Yoshimura 1975), see Equation (31), where we suppress the arrows above r = 1.05.

The black solid lines indicate isocontours of Bφ at 2.0 kG. The dashed lines indicate the surface (r = R).

(2014) with Figure 17. At around 45◦ latitude, there exist a con-
centration of mean toroidal magnetic field, which coincide with
a predicted poleward propagation, which is seen at high latitudes
in Figure 15. As described by Warnecke et al. (2014), the prop-

agation direction corresponding to location of strong Brms
φ is in

Run A1c inclusive. However, there exist a field concentration at
low latitudes close to the surface, which show poleward migra-
tion, similar to Run A1. This correspond most probably to the
fast poleward migrating dynamo mode seen in Figure 15. The
inclusive predicted migration direction at mid-latitudes and also
high latitudes seems to result in the in time constant magnetic
fields of Run A1c. Run A1c2, which is essential the same run as
Run IV of Warnecke et al. (2014), has a similar field distribution
than Run A1. The exist a strong concentration with predicted
equatorward migration field, a bit weaker concentration closer to
the surface with poleward migration and at higher latitudes (45◦)
a weak poleward migrating branch. These three features all agree

with the actual migration direction of toroidal fields at these lo-

cations, see Figure 15. Brms
φ of Run A1pc is mostly concentrated

near the surface, where the predicted migration direction points
poleward. This agrees with the actual migration direction in Fig-

ure 15. Also it exists a smaller and weaker concentration on Brms
φ

in the middle of the convection zone, where the predicted migra-
tion is equatorward. This coincides with the varying oscillating
magnetic field in the middle of the convection zone, which is
actually migrating equatorward.

Runs with a coronal envelope have a different field distri-

bution, as discussed above. In Run A2, Brms
φ is concentrated at

the surface at low latitudes together with a predicted poleward
migration. This agrees with the magnetic field evolution as seen
from Figures 15 and 16. In Run A3, the magnetic field distribu-
tion and the corresponding predicted migration is similar. The

in the middle of the convection zone exiting Brms
φ concentration,
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Fig. 16. Mean toroidal magnetic field Bφ evolution as time-radius diagram, plotted in kG at a 25◦ latitude during a 20yr interval in the saturated
stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom row). The
dashed horizontal lines show the radii r = R, r = 0.98 R and r = 0.85 R. Note, that the time range in Run B1 is twice as long and the color table
cut earlier than in the other runs.

show also a similar magnetic field evolution. At high latitudes
the mean toroidal field migrates equatorward but in contrast to
Run A3t of this work, near the equator the field seems to con-
tinue to propagate equatorward with some poleward interrup-
tions, see top left panel of Figure 12 in Warnecke et al. (2013a).
Also the radial distribution is similar. The field is mostly concen-
trated near the surface, see last panel of Figure 13 in Warnecke
et al. (2013a). For the slower rotating case, the setup of Run B in
Warnecke et al. (2013a) is similar to the setup of Run B3t, except
the higher the Prandtl number and lower stratification. However,
the magnetic field evolution seems to be more similar to Run B3,
than Run B3t in the sense, that the field becomes constant in time
in the saturated stage. Also Run B does not develop a equator-
ward migrating field at high latitudes.

To investigate the cause of the propagating direction of the
magnetic field, we apply the same technique of Warnecke et al.
(2014). We calculate the propagation direction using the so-
called Parker–Yoshimura Rule (Parker 1955; Yoshimura 1975).
There the magnetic field migration is described as a propagating
αΩ dynamo wave, whose direction is given by

ξmig(r, θ) = −αêφ × ∇Ω, (31)

where êφ is the unit vector in the φ-direction. We calculate α
using the formula (Pouquet et al. 1976)

α =
τc
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where τc is the turbulent correlation time, which we chose to be
the turbulent turnover time τ = Hp/u

′
rms. The first term is the ki-

netic helicity of the fluctuating velocity field, where ω′ = ∇× u′

is the fluctuating vorticity, and the second term is related to the
magnetic helicity of the fluctuating fields, with j = ∇ × b being
the fluctuating current density related the fluctuating magnetic

field b = B − B. Following this rule, α is mostly positive (nega-
tive) in the northern (southern) hemisphere, an equatorward mi-
grating toroidal field has to be generated by a negative radial gra-
dient of Ω. ξmig gives a predicted direction of migration, which
we can now compare with the actually migration of the field.

In Figure 17 we plot the rms of the mean toroidal magnetic

field, time-averaged over the saturated stage, Brms
φ ≡ ⟨B

2

φ⟩
1/2
t to-

gether with the direction of migration ξmig. In Run A1, the large

concentration of Brms
φ in the middle of the convection zone co-

incide with a predicted equatorward migration direction, this is
most likely responsible for the equatorward migration at mid and
lower latitudes, see Figure 15. At this location, the radial gradi-
ent of Ω is negative, generating strong toroidal magnetic field.
The smaller concentration coincide with predicted poleward mi-
gration. It lies closer to the surface and therefore seems to be
responsible for the fast poleward migrating dynamo mode seen
in Figures 15 and 16. At this location, the radial gradient of Ω
is positive. This have been already described with a similar run
in the work by Warnecke et al. (2014). However, in the work
by Warnecke et al. (2014), the corresponding analysis did not
include the high latitudes, compare Figure 3 of Warnecke et al.
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Figure 4. Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as a
function of r.
(A color version of this figure is available in the online journal.)

of a negative ∇rΩ (see the bottom row of Figure 3), ξmig points
toward the poles in most of the convection zone, in particular
in the region where the field is strongest; see the top row of
Figure 3. Here the calculated migration direction agrees with the
actual migration in the simulation; see Figure 2. In Run III, there
exists a negative ∇rΩ, but in the region where the toroidal field
is strongest, the calculated migration direction is inconclusive.
There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field seen in Figure 2. However, in the smaller field concentration
closer to the surface and at lower latitudes, the calculated
migration direction is also poleward, which seems to explain
the rapidly poleward migrating Bφ of Run III (Figure 2). This
agreement between calculated and actual migration directions
of the toroidal field implies that the EM in the runs of Käpylä
et al. (2012, 2013) and in Runs I and IV can be ascribed to an
αΩ dynamo wave traveling equatorward due to a local minimum
of Ω.

To support our case, we compute a two-dimensional his-
togram of |Bφ| and ∇rΩ in a band from ±15◦ to ±40◦ latitude
for Runs I and II; see Figures 5(a)–(b). For Run I, the strong
(>5 kG) fields correlate markedly with negative ∇rΩ < 0. For
Run II, the strong fields are clearly correlated with positive
∇rΩ < 0. These correlations have two implications: first, strong
fields in these latitudes are related to and most likely gener-
ated by radial shear rather than an α effect. Second, the negative
shear in Run I is related to and probably the cause of the toroidal
field migrating equatorward and the positive shear in Run II is
responsible for PM.

These indications resulting from the comparison of four dif-
ferent simulation models lead us to conclude that the dominant
dynamo mode of all models is of αΩ type, and not, as suggested
by Käpylä et al. (2013), an oscillatory α2 dynamo. They based
their conclusion on the following three indications. (1) The two
local dynamo numbers, Cα and CΩ, had similar values; see

Figure 5. Panels (a) and (b): correlation of |Bφ | from the latitudinal band
±15◦ − ±40◦ and the logarithmic gradient of Ω for Runs I (a) and II (b).
Overplotted are the mean (white) and the zero lines (white-black dashed). (c)
and (d): phase relation between Bφ (black) and Br (red) at 25◦ latitude and
r = 0.98 R (c) and at r = 0.84 R (d) for Run I. (e): Time-averaged radial
dependence of B

rms
φ (black) and B

rms
r (red) at 25◦ latitude for Run I.

(A color version of this figure is available in the online journal.)

Figures 11 and 12 of Käpylä et al. (2013). However, due to an
error, a one-third factor was missing in the calculation of Cα ,
so our values are now three times smaller; see Figure 4. (2) The
phase difference of ≈ π/2 between Bφ and Br was observed,
which agrees with that of an α2 dynamo, as demonstrated in
Figure 15 of Käpylä et al. (2013). As shown in Figures 5(c)
and (d), this is only true close to the surface (r = 0.98 R). At
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 17. Equatorward migration for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c,

B3 and B3t (bottom row). Color coded Brms
φ is plotted during the saturated stage together with white arrows show the direction of migration

ξmig(r, θ) = −αêφ ×∇Ω of an αΩ dynamo wave (Parker 1955; Yoshimura 1975), see Equation (31), where we suppress the arrows above r = 1.05.

The black solid lines indicate isocontours of Bφ at 2.0 kG. The dashed lines indicate the surface (r = R).

(2014) with Figure 17. At around 45◦ latitude, there exist a con-
centration of mean toroidal magnetic field, which coincide with
a predicted poleward propagation, which is seen at high latitudes
in Figure 15. As described by Warnecke et al. (2014), the prop-

agation direction corresponding to location of strong Brms
φ is in

Run A1c inclusive. However, there exist a field concentration at
low latitudes close to the surface, which show poleward migra-
tion, similar to Run A1. This correspond most probably to the
fast poleward migrating dynamo mode seen in Figure 15. The
inclusive predicted migration direction at mid-latitudes and also
high latitudes seems to result in the in time constant magnetic
fields of Run A1c. Run A1c2, which is essential the same run as
Run IV of Warnecke et al. (2014), has a similar field distribution
than Run A1. The exist a strong concentration with predicted
equatorward migration field, a bit weaker concentration closer to
the surface with poleward migration and at higher latitudes (45◦)
a weak poleward migrating branch. These three features all agree

with the actual migration direction of toroidal fields at these lo-

cations, see Figure 15. Brms
φ of Run A1pc is mostly concentrated

near the surface, where the predicted migration direction points
poleward. This agrees with the actual migration direction in Fig-

ure 15. Also it exists a smaller and weaker concentration on Brms
φ

in the middle of the convection zone, where the predicted migra-
tion is equatorward. This coincides with the varying oscillating
magnetic field in the middle of the convection zone, which is
actually migrating equatorward.

Runs with a coronal envelope have a different field distri-

bution, as discussed above. In Run A2, Brms
φ is concentrated at

the surface at low latitudes together with a predicted poleward
migration. This agrees with the magnetic field evolution as seen
from Figures 15 and 16. In Run A3, the magnetic field distribu-
tion and the corresponding predicted migration is similar. The

in the middle of the convection zone exiting Brms
φ concentration,
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Fig. 16. Mean toroidal magnetic field Bφ evolution as time-radius diagram, plotted in kG at a 25◦ latitude during a 20yr interval in the saturated
stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom row). The
dashed horizontal lines show the radii r = R, r = 0.98 R and r = 0.85 R. Note, that the time range in Run B1 is twice as long and the color table
cut earlier than in the other runs.

show also a similar magnetic field evolution. At high latitudes
the mean toroidal field migrates equatorward but in contrast to
Run A3t of this work, near the equator the field seems to con-
tinue to propagate equatorward with some poleward interrup-
tions, see top left panel of Figure 12 in Warnecke et al. (2013a).
Also the radial distribution is similar. The field is mostly concen-
trated near the surface, see last panel of Figure 13 in Warnecke
et al. (2013a). For the slower rotating case, the setup of Run B in
Warnecke et al. (2013a) is similar to the setup of Run B3t, except
the higher the Prandtl number and lower stratification. However,
the magnetic field evolution seems to be more similar to Run B3,
than Run B3t in the sense, that the field becomes constant in time
in the saturated stage. Also Run B does not develop a equator-
ward migrating field at high latitudes.

To investigate the cause of the propagating direction of the
magnetic field, we apply the same technique of Warnecke et al.
(2014). We calculate the propagation direction using the so-
called Parker–Yoshimura Rule (Parker 1955; Yoshimura 1975).
There the magnetic field migration is described as a propagating
αΩ dynamo wave, whose direction is given by

ξmig(r, θ) = −αêφ × ∇Ω, (31)

where êφ is the unit vector in the φ-direction. We calculate α
using the formula (Pouquet et al. 1976)

α =
τc
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where τc is the turbulent correlation time, which we chose to be
the turbulent turnover time τ = Hp/u

′
rms. The first term is the ki-

netic helicity of the fluctuating velocity field, where ω′ = ∇× u′

is the fluctuating vorticity, and the second term is related to the
magnetic helicity of the fluctuating fields, with j = ∇ × b being
the fluctuating current density related the fluctuating magnetic

field b = B − B. Following this rule, α is mostly positive (nega-
tive) in the northern (southern) hemisphere, an equatorward mi-
grating toroidal field has to be generated by a negative radial gra-
dient of Ω. ξmig gives a predicted direction of migration, which
we can now compare with the actually migration of the field.

In Figure 17 we plot the rms of the mean toroidal magnetic

field, time-averaged over the saturated stage, Brms
φ ≡ ⟨B

2

φ⟩
1/2
t to-

gether with the direction of migration ξmig. In Run A1, the large

concentration of Brms
φ in the middle of the convection zone co-

incide with a predicted equatorward migration direction, this is
most likely responsible for the equatorward migration at mid and
lower latitudes, see Figure 15. At this location, the radial gradi-
ent of Ω is negative, generating strong toroidal magnetic field.
The smaller concentration coincide with predicted poleward mi-
gration. It lies closer to the surface and therefore seems to be
responsible for the fast poleward migrating dynamo mode seen
in Figures 15 and 16. At this location, the radial gradient of Ω
is positive. This have been already described with a similar run
in the work by Warnecke et al. (2014). However, in the work
by Warnecke et al. (2014), the corresponding analysis did not
include the high latitudes, compare Figure 3 of Warnecke et al.
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Figure 4. Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as a
function of r.
(A color version of this figure is available in the online journal.)

of a negative ∇rΩ (see the bottom row of Figure 3), ξmig points
toward the poles in most of the convection zone, in particular
in the region where the field is strongest; see the top row of
Figure 3. Here the calculated migration direction agrees with the
actual migration in the simulation; see Figure 2. In Run III, there
exists a negative ∇rΩ, but in the region where the toroidal field
is strongest, the calculated migration direction is inconclusive.
There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field seen in Figure 2. However, in the smaller field concentration
closer to the surface and at lower latitudes, the calculated
migration direction is also poleward, which seems to explain
the rapidly poleward migrating Bφ of Run III (Figure 2). This
agreement between calculated and actual migration directions
of the toroidal field implies that the EM in the runs of Käpylä
et al. (2012, 2013) and in Runs I and IV can be ascribed to an
αΩ dynamo wave traveling equatorward due to a local minimum
of Ω.

To support our case, we compute a two-dimensional his-
togram of |Bφ| and ∇rΩ in a band from ±15◦ to ±40◦ latitude
for Runs I and II; see Figures 5(a)–(b). For Run I, the strong
(>5 kG) fields correlate markedly with negative ∇rΩ < 0. For
Run II, the strong fields are clearly correlated with positive
∇rΩ < 0. These correlations have two implications: first, strong
fields in these latitudes are related to and most likely gener-
ated by radial shear rather than an α effect. Second, the negative
shear in Run I is related to and probably the cause of the toroidal
field migrating equatorward and the positive shear in Run II is
responsible for PM.

These indications resulting from the comparison of four dif-
ferent simulation models lead us to conclude that the dominant
dynamo mode of all models is of αΩ type, and not, as suggested
by Käpylä et al. (2013), an oscillatory α2 dynamo. They based
their conclusion on the following three indications. (1) The two
local dynamo numbers, Cα and CΩ, had similar values; see

Figure 5. Panels (a) and (b): correlation of |Bφ | from the latitudinal band
±15◦ − ±40◦ and the logarithmic gradient of Ω for Runs I (a) and II (b).
Overplotted are the mean (white) and the zero lines (white-black dashed). (c)
and (d): phase relation between Bφ (black) and Br (red) at 25◦ latitude and
r = 0.98 R (c) and at r = 0.84 R (d) for Run I. (e): Time-averaged radial
dependence of B

rms
φ (black) and B

rms
r (red) at 25◦ latitude for Run I.

(A color version of this figure is available in the online journal.)

Figures 11 and 12 of Käpylä et al. (2013). However, due to an
error, a one-third factor was missing in the calculation of Cα ,
so our values are now three times smaller; see Figure 4. (2) The
phase difference of ≈ π/2 between Bφ and Br was observed,
which agrees with that of an α2 dynamo, as demonstrated in
Figure 15 of Käpylä et al. (2013). As shown in Figures 5(c)
and (d), this is only true close to the surface (r = 0.98 R). At
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Fig. 15. Mean toroidal magnetic field Bφ evolution as time-latitude (butterfly) diagram, plotted in kG at a radius r = 0.98 R during a 20yr interval
in the saturated stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom
row). The dashed horizontal lines indicate the equator (θ = π/2). Note, that the time interval in Run B1 is 40 yr and the color table is cut at lower
values than in the other runs.

dence on the cooling profile and the coronal envelope, see the
last rows of Figures 15 and 16. In Run B1 the magnetic field
shows also indications, that it migrates equatorward, in particu-
lar in the southern hemisphere, see Figure 15. The field evolution
is similar to the one in Run A1, but due to the slower rotation,
the cycle period is extended to around 10 years. Beside the indi-
cation of the equatorward migration, there exist also a poleward
branch at high latitudes, which is in phase with the equatorward
branch. A cooling layer, which causes the temperature minimum
to be below the surface as in Run A1c, also effects the evolution
of magnetic field for slower rotation, see Run B1c in Figures 15
and 16. Similar as in Run A1c, the field becomes constant in time
leading to band of the same polarity in the saturated stage. On the
top of this dynamo mode, there is a fast oscillating dynamo mode
near the equator, similar to Run A1c. Using this cooling layer
with a coronal envelope, Run B3, the poleward branch near the
equator becomes more pronounced and the period longer. The
period is comparable with the poleward branch in Runs A2, A3
and A4, even though their rotation is 5/3 higher. In contrast to
the these runs, there exist no indication of equatorward migra-
tion at high latitudes and the magnetic field develop in time con-
stant band of fields, similar to Runs A1c and B1. If we apply the
same cooling profile as in Run A1c2 and Run A3t, the magnetic
field evolution change, see Run B3t in Figure 15. The dynamo
generates a weak equatorward branch near high latitudes, simi-
lar to Run A3t, but with less field strength. Near the equator re-
gion, the magnetic field is constant over time and concentrates in
band at around ± 30 latitude, negative (positive) in the northern

(southern) hemisphere. In the time-radius diagrams of Figure 16,
we find that radial structure of the mean toroidal magnetic field
of Run B1 is very similar to Run A1. The field is strongest in
the middle of the convection zone and then propagates up and
downwards to the surface and bottom of the convection zone.
However, the field is not as strong as in Run A1 and the pole-
ward fast migrating dynamo mode is more pronounced than in
Run A1. The magnetic field dependence on radius of Run B1c
is similar to Run A1c, where in most of the convection zone,
there exist one magnetic field polarity and the is strongest in the
lower half of the convection zone. However, the fast oscillating
dynamo mode is affecting the magnetic field near the surface.
The toroidal magnetic field of Run B3 is mostly concentrated
near the surface, but show also field concentration in the middle
of the convection zone, which has the opposite polarity than at
the surface. In the case of Run B3t, the mean toroidal magnetic
field is mostly concentrated in the upper half of the convection
zone, where it has a constant polarity. However, this constant
polarity gets interrupted by a weaker oscillating dynamo mode,
which has the same period as the equatorward migrating branch
at high latitudes.

If one compare the runs of this work with the runs of the
work by Warnecke et al. (2013a), there are some similarities
in the magnetic field evolution. The runs of Warnecke et al.
(2013a) have more than twice the value in Prandtl number and
a lower stratification (ρ/ρsurf = 14), but the other parameters
(Re, PrM , Co) are comparable with the runs of this work. Run A
of Warnecke et al. (2013a), whose setup is similar to Run A3t,
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Fig. 17. Equatorward migration for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c,

B3 and B3t (bottom row). Color coded Brms
φ is plotted during the saturated stage together with white arrows show the direction of migration

ξmig(r, θ) = −αêφ ×∇Ω of an αΩ dynamo wave (Parker 1955; Yoshimura 1975), see Equation (31), where we suppress the arrows above r = 1.05.

The black solid lines indicate isocontours of Bφ at 2.0 kG. The dashed lines indicate the surface (r = R).

(2014) with Figure 17. At around 45◦ latitude, there exist a con-
centration of mean toroidal magnetic field, which coincide with
a predicted poleward propagation, which is seen at high latitudes
in Figure 15. As described by Warnecke et al. (2014), the prop-

agation direction corresponding to location of strong Brms
φ is in

Run A1c inclusive. However, there exist a field concentration at
low latitudes close to the surface, which show poleward migra-
tion, similar to Run A1. This correspond most probably to the
fast poleward migrating dynamo mode seen in Figure 15. The
inclusive predicted migration direction at mid-latitudes and also
high latitudes seems to result in the in time constant magnetic
fields of Run A1c. Run A1c2, which is essential the same run as
Run IV of Warnecke et al. (2014), has a similar field distribution
than Run A1. The exist a strong concentration with predicted
equatorward migration field, a bit weaker concentration closer to
the surface with poleward migration and at higher latitudes (45◦)
a weak poleward migrating branch. These three features all agree

with the actual migration direction of toroidal fields at these lo-

cations, see Figure 15. Brms
φ of Run A1pc is mostly concentrated

near the surface, where the predicted migration direction points
poleward. This agrees with the actual migration direction in Fig-

ure 15. Also it exists a smaller and weaker concentration on Brms
φ

in the middle of the convection zone, where the predicted migra-
tion is equatorward. This coincides with the varying oscillating
magnetic field in the middle of the convection zone, which is
actually migrating equatorward.

Runs with a coronal envelope have a different field distri-

bution, as discussed above. In Run A2, Brms
φ is concentrated at

the surface at low latitudes together with a predicted poleward
migration. This agrees with the magnetic field evolution as seen
from Figures 15 and 16. In Run A3, the magnetic field distribu-
tion and the corresponding predicted migration is similar. The

in the middle of the convection zone exiting Brms
φ concentration,
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Fig. 16. Mean toroidal magnetic field Bφ evolution as time-radius diagram, plotted in kG at a 25◦ latitude during a 20yr interval in the saturated
stage for Runs A1, A1c, A1c2 and A1pc (top row), Runs A2, A3, A3t and A4 (middle row) and Runs B1, B1c, B3 and B3t (bottom row). The
dashed horizontal lines show the radii r = R, r = 0.98 R and r = 0.85 R. Note, that the time range in Run B1 is twice as long and the color table
cut earlier than in the other runs.

show also a similar magnetic field evolution. At high latitudes
the mean toroidal field migrates equatorward but in contrast to
Run A3t of this work, near the equator the field seems to con-
tinue to propagate equatorward with some poleward interrup-
tions, see top left panel of Figure 12 in Warnecke et al. (2013a).
Also the radial distribution is similar. The field is mostly concen-
trated near the surface, see last panel of Figure 13 in Warnecke
et al. (2013a). For the slower rotating case, the setup of Run B in
Warnecke et al. (2013a) is similar to the setup of Run B3t, except
the higher the Prandtl number and lower stratification. However,
the magnetic field evolution seems to be more similar to Run B3,
than Run B3t in the sense, that the field becomes constant in time
in the saturated stage. Also Run B does not develop a equator-
ward migrating field at high latitudes.

To investigate the cause of the propagating direction of the
magnetic field, we apply the same technique of Warnecke et al.
(2014). We calculate the propagation direction using the so-
called Parker–Yoshimura Rule (Parker 1955; Yoshimura 1975).
There the magnetic field migration is described as a propagating
αΩ dynamo wave, whose direction is given by

ξmig(r, θ) = −αêφ × ∇Ω, (31)

where êφ is the unit vector in the φ-direction. We calculate α
using the formula (Pouquet et al. 1976)

α =
τc
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, (32)

where τc is the turbulent correlation time, which we chose to be
the turbulent turnover time τ = Hp/u

′
rms. The first term is the ki-

netic helicity of the fluctuating velocity field, where ω′ = ∇× u′

is the fluctuating vorticity, and the second term is related to the
magnetic helicity of the fluctuating fields, with j = ∇ × b being
the fluctuating current density related the fluctuating magnetic

field b = B − B. Following this rule, α is mostly positive (nega-
tive) in the northern (southern) hemisphere, an equatorward mi-
grating toroidal field has to be generated by a negative radial gra-
dient of Ω. ξmig gives a predicted direction of migration, which
we can now compare with the actually migration of the field.

In Figure 17 we plot the rms of the mean toroidal magnetic

field, time-averaged over the saturated stage, Brms
φ ≡ ⟨B

2

φ⟩
1/2
t to-

gether with the direction of migration ξmig. In Run A1, the large

concentration of Brms
φ in the middle of the convection zone co-

incide with a predicted equatorward migration direction, this is
most likely responsible for the equatorward migration at mid and
lower latitudes, see Figure 15. At this location, the radial gradi-
ent of Ω is negative, generating strong toroidal magnetic field.
The smaller concentration coincide with predicted poleward mi-
gration. It lies closer to the surface and therefore seems to be
responsible for the fast poleward migrating dynamo mode seen
in Figures 15 and 16. At this location, the radial gradient of Ω
is positive. This have been already described with a similar run
in the work by Warnecke et al. (2014). However, in the work
by Warnecke et al. (2014), the corresponding analysis did not
include the high latitudes, compare Figure 3 of Warnecke et al.
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Figure 4. Local dynamo parameters Cα and CΩ for Runs I–IV. Cα (solid black line) and CΩ (dashed red line) for 25◦ latitude in the northern hemisphere as a
function of r.
(A color version of this figure is available in the online journal.)

of a negative ∇rΩ (see the bottom row of Figure 3), ξmig points
toward the poles in most of the convection zone, in particular
in the region where the field is strongest; see the top row of
Figure 3. Here the calculated migration direction agrees with the
actual migration in the simulation; see Figure 2. In Run III, there
exists a negative ∇rΩ, but in the region where the toroidal field
is strongest, the calculated migration direction is inconclusive.
There are parts with equatorward, poleward, and even radial
migration. This can be related to the quasi-stationary toroidal
field seen in Figure 2. However, in the smaller field concentration
closer to the surface and at lower latitudes, the calculated
migration direction is also poleward, which seems to explain
the rapidly poleward migrating Bφ of Run III (Figure 2). This
agreement between calculated and actual migration directions
of the toroidal field implies that the EM in the runs of Käpylä
et al. (2012, 2013) and in Runs I and IV can be ascribed to an
αΩ dynamo wave traveling equatorward due to a local minimum
of Ω.

To support our case, we compute a two-dimensional his-
togram of |Bφ| and ∇rΩ in a band from ±15◦ to ±40◦ latitude
for Runs I and II; see Figures 5(a)–(b). For Run I, the strong
(>5 kG) fields correlate markedly with negative ∇rΩ < 0. For
Run II, the strong fields are clearly correlated with positive
∇rΩ < 0. These correlations have two implications: first, strong
fields in these latitudes are related to and most likely gener-
ated by radial shear rather than an α effect. Second, the negative
shear in Run I is related to and probably the cause of the toroidal
field migrating equatorward and the positive shear in Run II is
responsible for PM.

These indications resulting from the comparison of four dif-
ferent simulation models lead us to conclude that the dominant
dynamo mode of all models is of αΩ type, and not, as suggested
by Käpylä et al. (2013), an oscillatory α2 dynamo. They based
their conclusion on the following three indications. (1) The two
local dynamo numbers, Cα and CΩ, had similar values; see

Figure 5. Panels (a) and (b): correlation of |Bφ | from the latitudinal band
±15◦ − ±40◦ and the logarithmic gradient of Ω for Runs I (a) and II (b).
Overplotted are the mean (white) and the zero lines (white-black dashed). (c)
and (d): phase relation between Bφ (black) and Br (red) at 25◦ latitude and
r = 0.98 R (c) and at r = 0.84 R (d) for Run I. (e): Time-averaged radial
dependence of B

rms
φ (black) and B

rms
r (red) at 25◦ latitude for Run I.

(A color version of this figure is available in the online journal.)

Figures 11 and 12 of Käpylä et al. (2013). However, due to an
error, a one-third factor was missing in the calculation of Cα ,
so our values are now three times smaller; see Figure 4. (2) The
phase difference of ≈ π/2 between Bφ and Br was observed,
which agrees with that of an α2 dynamo, as demonstrated in
Figure 15 of Käpylä et al. (2013). As shown in Figures 5(c)
and (d), this is only true close to the surface (r = 0.98 R). At
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by Käpylä et al. (2013), an oscillatory α2 dynamo. They based
their conclusion on the following three indications. (1) The two
local dynamo numbers, Cα and CΩ, had similar values; see

Figure 5. Panels (a) and (b): correlation of |Bφ | from the latitudinal band
±15◦ − ±40◦ and the logarithmic gradient of Ω for Runs I (a) and II (b).
Overplotted are the mean (white) and the zero lines (white-black dashed). (c)
and (d): phase relation between Bφ (black) and Br (red) at 25◦ latitude and
r = 0.98 R (c) and at r = 0.84 R (d) for Run I. (e): Time-averaged radial
dependence of B

rms
φ (black) and B

rms
r (red) at 25◦ latitude for Run I.

(A color version of this figure is available in the online journal.)
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Figure 1. Nature of the convection and longitudinal magnetic field in K3S.
(a) Snapshot of the convective patterns arising in the radial velocity vr at
0.95R⊙shown in Mollweide projection. This reveals the larger-scale convec-
tion at low latitudes and the smaller-scales at higher latitudes, with downflows
dark and upflows in lighter tones. (b) Time and longitudinally-averaged an-
gular velocity Ω/Ω0, showing a fast equator in red and slower high-latitudes
in blue. (c) Snapshot of the horizontal structure of the longitudinal magnetic
field Bϕ at 0.95R⊙, illustrating the longitudinal connectivity of the magnetic
wreaths, with red (blue) tones indicating positive (negative) polarity longitu-
dinal field. (d) Longitudinally-averaged Bϕ also time-averaged over a single
energy cycle, depicting the structure of the longitudinal field in the meridional
plane.

in K3S has twice the density contrast across the domain, be-
ing 45 rather than 26. The simulation K3S has a resolution
of Nr×Nθ ×Nϕ = 200×256×512, corresponding to a hori-
zontal resolution with a maximum spherical harmonic degree
of ℓmax = 170. Here both time and longitudinal averages are
indicated with an overline such as Ω. Similarly, the notation
⟨⟩ is used to denote that a quantity has been averaged only in
longitude as ⟨Ω⟩.

4. OVERVIEW OF THE DYNAMICS
Figures 1 and 2 illustrate the morphology of the convec-

tion, differential rotation, and the longitudinal magnetic fields
in space and time. Figure 1(a) shows a typical convective pat-
tern during a cycle, with elongated and north-south aligned
flows at low latitudes and smaller scales at higher latitudes.
In aggregate, the spatial structure and flow directions along
these cells produce strong Reynolds stresses acting to accel-
erate the equator and slow the poles. In concert with a thermal
wind, such stresses serve to rebuild and maintain the differen-
tial rotation during each cycle. While the variable nature of
the convective patterns over a cycle is not shown, it is an im-
portant piece of the story. Indeed, the magnetic fields disrupt
the alignment and correlations of these cells through Lorentz
forces.
As the field gathers strength during a cycle, the strong

longitudinally-connected toroidal fields also create a thermal
shadow, weakening the thermal driving of the equatorial cells.
Thus the angular momentum transport of the flows is dimin-
ished as the magnetic fields become stronger. Such impacts

Figure 2. Evolution of angular velocity variations and mean longitudinal
magnetic field. (a) Time-latitude diagram of angular velocity variations
⟨∆Ω⟩ = ⟨Ω⟩ −Ω in cylindrical projection, elucidating the propagation of
equatorial and polar branches of torsional oscillations arising from strong
Lorentz-force feedbacks. The color indicates enhanced differential rotation
in red and periods of slower rotation in blue, with variations of up to ±10%
of the bulk rotation rate. (b) Time-latitude diagram of ⟨Bϕ⟩ at 0.95R⊙ in
cylindrical projection, exhibiting the equatorward migration of the wreaths
from the tangent cylinder and the poleward propagation of the higher latitude
field, with the polarity of the field such that red (blue) tones indicate positive
(negative) longitudinal field.

of the magnetic fields on the convection is captured in the ebb
and flow of the kinetic energy contained in the fluctuating ve-
locity field, which here varies by about 50% over the energy
cycle. These magnetic feedback mechanisms are in keeping
with the impacts of strong longitudinal fields in the convection
zone suggested by Parker (1987).
There is also the direct impact of the large-scale Lorentz

forces on the differential rotation (e.g., the Malkus & Proc-
tor (1975) effect). This process and the magnetic influences
described above combine to explain why the differential ro-
tation seen in Figure 1(b) cannot be fully maintained during
the cycle. Rather, the angular velocity has substantial vari-
ations throughout the cycle (Figure 2(a)), which are driven
by the strong feedback of the magnetic fields. In case K3S,
the properties of the energy in the differential rotation is not
attributable to any single mechanism. Rather, thermal shad-
owing, quenching of the Reynolds stress, and the Malkus-
Proctor effect all seem to be present, though acting with dif-
ferent strengths at different times as will be discussed in §9.1.
Such strong nonlinear Lorentz force feedbacks are not with-
out precedent, as they have been seen in previous convective
dynamo simulations as well (Brun et al. 2004; Brown et al.
2011).
The presence of large-scale and longitudinally-connected

magnetic structures is evident in Figures 1(c, d). Such toroidal
structures have been dubbed wreaths (Brown et al. 2010). In
K3S, there are two counter-polarized, lower-latitude wreaths
that form in the region near the tangent cylinder. This re-
gion is also where the peak in the gradient of the differential
rotation exists for much of a magnetic energy cycle. There

Augustson et al. 
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A. Brandenburg et al.: Flux-tube structure from vertical magnetic flux concentrations

Fig. 5. Similar to Fig. 4(b) i.e. MFS for Run Bv01/33 with
B0/Beq0 = 0.01, but with flow vectors included (white). The
flow speed varies from−0.27urms (downward) to 0.08urms (up-
ward). Blue vectors show mass flux, ρU .

return to this possibility in Sect. 3.5. Alternatively, it might be
related to the possibility that the coefficients in Eq. (21) could
actually be different.

The time evolution of the vertical magnetic field profiles,
B

max

z /B0 and B
max

z /Beq(z), are shown in Fig. 6 at differ-
ent times for the case B0/Beq0 = 0.05, corresponding to
Fig. 4(c). Here, we also show the time evolution of the cor-
responding profiles of Peff(z) and (−dPeff/d lnβ2)1/2. In the

Fig. 6. Time evolution of normalized vertical magnetic field
profiles, (a) B

max

z /B0 together with Beq(z)/B0 (shown by
blue line), (b) B

max

z /Beq(z), as well as (c) Peff(z) and
(d) (−dPeff/d lnβ2)1/2, from a MFS for Run Bv05/33 with
B0/Beq0 = 0.05 at t/τtd = 2.9 (dashed), 3 (dotted), 3.1 (dash-
dotted), 3.3, 3.7, 4.2., 5, and 50 (thick solid line). The blue solid
lines indicate Beq(z), normalized by (a) B0 and (b) by itself
(corresponding thus to unity). The red lines indicate the loca-
tions zB and zNL

B , as well as relevant intersections with normal-
ized values of Bmax

z and Beq.

kinematic regime, the peak of the latter quantity is a good in-
dicator of the peak of the eigenfunction (Kemel et al., 2013). In
the present case, the magnetic field in the kinematic phase peaks
at a height zB that is given by the condition (24). According
to the MFS of Losada et al. (2013), this condition is approxi-
mately the same for vertical and horizontal fields. Looking at
Fig. 6 for B0/Beq0 = 0.05, we see that at z/Hρ ≈ −0.5 we
have Beq/B0 ≈ 33, which agrees with Eq. (24). However, un-
like the case of a horizontal magnetic field, where in the kine-
matic phase the mean field was found to peak at a height below
that where (−dPeff/d lnβ2)1/2 peaks, we now see that the field
peaks above that position.

6
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Emergence  
from the lower layer  

to the surface

Jörn Warnecke et al.: Bipolar regions in a two-layer model

Fig. 3. Formation of bipolar regions for three different stratifications (left column: A3, middle: A5, right: A7). Top row: normalized vertical
magnetic field Bz/Beq plotted at the xy surface (z = 0) at times when the bipolar regions are the clearest. Second row: vertical rms magnetic field
Brms

z /Beq = ⟨B
2
z ⟩xy/Beq normalized by the local equipartition value as a function of t/τtd and z/Hρ. Third row: smoothed effective magnetic pressure

Peff as a function of t/τtd and z/Hρ. Blue shades correspond to negative and red to positive values. Bottom row: normalized magnetic energy
density plotted in the yz plane as a vertical cut through the bipolar region at x = 0. The domain has been replicated by 50% in the y direction
(indicated by the vertical dashed lines) to give a more complete impression about spot separation and arch length. The black-white dashed lines
mark the replicated part and in the last three rows the surface (z = 0).

maximum field strength peaks at ρbot/ρsurf = 42 and slightly de-
creases for higher stratification.

The strength of the bipolar regions still increases with higher
stratification. This is visible in the structure formation shown in
the top row of Figure 3, where we plot the vertical magnetic field

strength at the surface at the time of strongest bipolar region for-
mation. Run A3 with moderate stratification shows a magnetic
field concentration which has multiple poles and the structure is
not as clear as in Runs A5 and A7. In Run A7, the bipolar region
is more coherent and magnetic spots are closer to each other than

Article number, page 5 of 11
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Fig. 2. Dependence of magnetic field amplification and effective
magnetic pressure on stratification. Maximum vertical magnetic field
Bmax

z /B0 (solid black) at the surface, maximum of the large-scale verti-
cal magnetic field Bfil max

z /B0 (blue) at the surface, minimum of the effec-
tive magnetic pressure Peff (red), and the equipartition field strength at
the surface Beq0/B0 (dashed black) as a function of gHρ/c2

s and density
contrast ρsurf/ρbot for Set A.

in Run A5. Furthermore, the maximum of the large-scale mag-
netic field Bfil max

z /B0, which is an indication of the strength of
bipolar regions, increases with higher stratification, as shown by
the blue line in Figure 2. A maximum of the large-scale magnetic
field above 10 B0 seems to indicate bipolar flux concentrations.

An indicator of structure formation through the negative ef-
fective magnetic pressure instability (NEMPI) is the effective
magnetic pressure Peff . We start with the definition of the tur-
bulent stress tensor Π:

Π
(B)
i j ≡ ρu

′
iu
′
j +

1
2δi jµ

−1
0 b2 − µ−1

0 bib j, (7)

where the first term is the Reynolds stress tensor and the last two
terms are the magnetic pressure and Maxwell stress tensors. The
superscript (B) indicates the turbulent stress tensor under the in-
fluence of the mean magnetic field; Π(0)

i j is the turbulent stress
tensor without mean magnetic field, where both, the Maxwell
stress and the Reynolds stress are free from the influence of
the mean magnetic field. Here we define mean and fluctuations
through horizontal averages, B ≡ ⟨B⟩xy, such that B = B + b

and u = U + u′. Using symmetry arguments we can express the
difference in the turbulent stress tensor Π for the magnetic and
non-magnetic case in terms of the mean magnetic field (see e.g.
Brandenburg et al. 2012),

∆Πi j = Π
(B)
i j − Π

(0)
i j = −qpδi j

B
2

2
+ qsBiBj + qg

gig j

g2 B
2
, (8)

where qp, qs and qg are parameters expressing the importance
of the mean-field magnetic pressure, the mean-field magnetic
stress, and the vertical anisotropy caused by gravity. They are
to be determined in direct numerical simulations. gi are com-
ponents of g, which in our setup has only a component in the
negative z direction. The normalized effective magnetic pressure
is then defined as

Peff =
1
2 (1 − qp)

B
2

B2
eq
, (9)

where we can calculate from Equation (8)

qp = −
1
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In the third row of Figure 3, we show Peff for Runs A3, A5,
and A7, where Peff has been averaged into 50 × 20 bins in time
and height within the turbulent layer to avoid strong fluctuation.
From these maps, we deduct the minimum values Pmin

eff and list
them in the ninth column of Table 1; see also Figures 2, 4, and 5.

We find that the area with negative effective magnetic pres-
sure Peff decreases for stronger stratifications (see the third row
of Figure 3). For Run A3, the smoothed Peff is negative in basi-
cally all of the turbulent layer at all times, except for some short
time intervals. The values are often below −0.005, but occasion-
ally even below −0.01. For higher stratification, the intervals of
positive values of Peff become longer and the negative values
becomes in general weaker. In Run A7, the smoothed Peff fluc-
tuates around zero, with equal amounts of positive and negative
values. However, the smoothed Peff indicates the generation of
magnetic flux concentrations. In the second row of Figure 3, we
plot the horizontal averaged rms value of the vertical magnetic
field Brms

z = ⟨B2
z ⟩

1/2
xy , which is normalized by the local equipar-

tition value, as a function of time and height. Note that in the
coronal envelope, where turbulent forcing is absent, Beq is much
lower than in the turbulent layer. This leads to high values of
Brms

z /Beq in the coronal envelope. We chose this normalization
using Beq instead of Beq0 because of the better visibility of the
concentration of vertical flux. As Peff is plotted in the same time
interval as Brms

z , it enables us to compare the time evolutions of
structure formation and Peff . For Run A7, there seems to be a
relation between the two, i.e., structure formation occurs when
Peff is negative. When Brms

z has a strong peak at around τtd ≈ 1,
Peff has a minimum between τtd ≈ 0.5 and 1 close to the sur-
face. In Runs A3 and A5, Peff is also weak when Brms

z is strong,
but this happens not just when Brms

z is strong. In general, the
minimum value of the smoothened Peff does not indicate the ex-
istence of NEMPI as a possible formation mechanism of flux
concentration in the context of dependency on density stratifica-
tion. Indeed, there is a weak opposite trend: Peff becomes less
negative for large stratification, even though Bfil max

z increases for
larger stratification, see Figure 2. In particular, the growth rate of
NEMPI is proportional to

(

−dPeff/dB
2
)1/2

(Rogachevskii & Kleeorin 2007; Kemel et al. 2013) and not to
the minimum value of Peff .

A detailed comparison with Warnecke et al. (2013b) reveals
that the structure of the bipolar region and its τmax

td of case A is
not exactly the same as in Run A5, even thought the only dif-
ference is the resolution and precision. This suggests, that in the
simulations of Warnecke et al. (2013b) the resolution was not
sufficient to model this highly turbulent medium.

3.2. Dependence on magnetic Reynolds number

As a next step we investigate the dependency on magnetic
Reynolds number ReM . We keep Re fixed (around 40), and
change PrM by a factor of 16, see the seventh column in Ta-
ble 1. Run R1, has the lowest PrM and a magnetic Reynolds
number of ReM = 2.4. This implies that microscopic diffusion
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Fig. 3. Formation of bipolar regions for three different stratifications (left column: A3, middle: A5, right: A7). Top row: normalized vertical
magnetic field Bz/Beq plotted at the xy surface (z = 0) at times when the bipolar regions are the clearest. Second row: vertical rms magnetic field
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z /Beq = ⟨B
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z ⟩xy/Beq normalized by the local equipartition value as a function of t/τtd and z/Hρ. Third row: smoothed effective magnetic pressure
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mark the replicated part and in the last three rows the surface (z = 0).

maximum field strength peaks at ρbot/ρsurf = 42 and slightly de-
creases for higher stratification.

The strength of the bipolar regions still increases with higher
stratification. This is visible in the structure formation shown in
the top row of Figure 3, where we plot the vertical magnetic field

strength at the surface at the time of strongest bipolar region for-
mation. Run A3 with moderate stratification shows a magnetic
field concentration which has multiple poles and the structure is
not as clear as in Runs A5 and A7. In Run A7, the bipolar region
is more coherent and magnetic spots are closer to each other than
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Coronal extend
4

FIG. 4.— Visualizations of vertical cross-sections ofBz(y, z)/B0 together
with magnetic field vectors in the yz plane through the x location of the flux
convergence at t/τtd = 2.0. The dash-dotted line indicates the surface at
z = 0.

(2012), who used the same values of the fluid Reynolds num-
ber Re ≡ urms/νkf = 38, the magnetic Prandtl number
PrM = ν/η = 1/2, and thus of the magnetic Reynolds num-
ber ReM ≡ Re PrM = 19, which is known to lead to negative
effective magnetic pressure for the mean magnetic fields, B,
in the range 0 < |B|/Beq < 0.4. Here, B is obtained by
averaging over the scale of several turbulent eddies. The mag-
netic field is expressed in units of the local equipartition field
strength, Beq =

√
µ0ρurms, while the imposed magnetic

field B0 is specified in units of the value at z = 0, namely
Beq0 =

√
µ0ρ0 urms, where ρ0 = ρ(z = 0). Throughout this

paper, we use B0/Beq0 = 0.02, which is relatively weak and
also the field strength used in the main run of Brandenburg
et al. (2013). Time is expressed in turbulent-diffusive times,
τtd = (ηt0k21)

−1, where ηt0 = urms/3kf is the estimated
turbulent magnetic diffusivity.
The simulations are performed with the PENCIL CODE,1

which uses sixth-order explicit finite differences in space and
a third-order accurate time stepping method. We use a nu-
merical resolution of 256 × 256 × 512 mesh points in the x,
y, and z directions. We adopt periodic boundary conditions
in the xy plane and present our results by shifting our coor-
dinate system such that regions of interest lie at the center
around x = y = 0. On z = −π we apply a stress-free perfect
1 http://pencil-code.googlecode.com

conductor condition and on z = 2π a stress-free vertical field
condition.

3. RESULTS
We report the spontaneous formation and decay of a bipolar

region of vertical magnetic field at the surface (z = 0), which
is the boundary between regions with and without forcing.
These two parts resemble a surface region and a simplified
corona of the Sun. In Figure 1, we show the bipolar region as
the normalized vertical magnetic field Bz/Beq (upper panel)
and the normalized magnetic energy B2/B2

eq (lower panel)
at the moment of maximum strength, t/τtd = 2. Note that
the y direction points to the right, while the positive x di-
rection points downward, so the coordinate system has been
rotated by 90◦ to allow a view that is more similar to how
bipolar regions are oriented on the solar disk. The shapes
of both structures are nearly circular, but are still disturbed
by the turbulent motion acting on the magnetic field. The
field outside this bipolar region is weak: almost all the mag-
netic field is concentrated inside the bipolar region. We find
field strengths significantly above the equipartition value at
and slightly above the surface. This is seen more clearly in
Figure 2(a), where we show profiles of Bz(y)/Beq through
x = 0 at three heights. We normalize the magnetic field by its
local equipartition value, Beq(z), which is shown as a thick
line in Figure 2(b), normalized here by the strength of the im-
posed field B0. At the surface we have Beq(0)/B0 ≈ 50, but
it drops sharply for z > 0 to values below 20. At each height,
we have computed maximum and minimum field strengths as
functions of z, Bmax

z (z) and Bmin
z (z), respectively. It turns

out that Bmin
z (z) ≈ −Bmax

z (z), and that both functions also
drop sharply above z = 0, except during the time t/τtd ≈ 2,
whenBmin

z (z) and−Bmax
z (z) are clearly in excess ofBeq(z)

for values of z both slightly below 0 as well as in the range
0 < z/Hρ < 1.
To discuss the origin and mechanism of this structure for-

mation, we must investigate the temporal evolution of the
structure as well as of the different magnetic field compo-
nents. We recall that B0 is applied over the whole domain.
However, it quickly becomes tangled by the random velocity
field in the lower part of the domain where the forcing is act-
ing to produce small-scale magnetic fields on the scale of the
turbulence. In the upper part, however, this horizontal field
stays roughly unchanged up to the instant when it becomes
affected by a large-scale instability. As shown in Figure 2(c),
the rms values of the three components of the magnetic field
at the surface (z = 0) grow rapidly until they saturates at
around t/τtd = 0.2. At around t/τtd = 1, the magnetic field
has attained a strong vertical component while the horizon-
tal one declines. By the time t/τtd = 2, the vertical field is
stronger than the horizontal field until all three components
decay rapidly to a lower value and saturate there. In addi-
tion to changes of the vertical magnetic field near the surface,
there are also significant changes at larger depths. Both at
early times (t/τtd ≤ 2) and at late times (t/τtd ≥ 2.6) the
maximum values of Bz/B0 at z/Hρ ≈ −2 are around 40,
while at intermediate times when the bipolar region is best
developed, this value has dropped to values around 20. Al-
though we have considered here only maximum values of the
magnetic field, it suggests that magnetic flux has been redis-
tributed from deeper below the surface closer toward the sur-
face. We argue that it is in fact NEMPI, which leads to the
increase of vertical magnetic field and structure formation.
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ber Re ≡ urms/νkf = 38, the magnetic Prandtl number
PrM = ν/η = 1/2, and thus of the magnetic Reynolds num-
ber ReM ≡ Re PrM = 19, which is known to lead to negative
effective magnetic pressure for the mean magnetic fields, B,
in the range 0 < |B|/Beq < 0.4. Here, B is obtained by
averaging over the scale of several turbulent eddies. The mag-
netic field is expressed in units of the local equipartition field
strength, Beq =
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µ0ρurms, while the imposed magnetic

field B0 is specified in units of the value at z = 0, namely
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µ0ρ0 urms, where ρ0 = ρ(z = 0). Throughout this

paper, we use B0/Beq0 = 0.02, which is relatively weak and
also the field strength used in the main run of Brandenburg
et al. (2013). Time is expressed in turbulent-diffusive times,
τtd = (ηt0k21)

−1, where ηt0 = urms/3kf is the estimated
turbulent magnetic diffusivity.
The simulations are performed with the PENCIL CODE,1

which uses sixth-order explicit finite differences in space and
a third-order accurate time stepping method. We use a nu-
merical resolution of 256 × 256 × 512 mesh points in the x,
y, and z directions. We adopt periodic boundary conditions
in the xy plane and present our results by shifting our coor-
dinate system such that regions of interest lie at the center
around x = y = 0. On z = −π we apply a stress-free perfect
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conductor condition and on z = 2π a stress-free vertical field
condition.

3. RESULTS
We report the spontaneous formation and decay of a bipolar

region of vertical magnetic field at the surface (z = 0), which
is the boundary between regions with and without forcing.
These two parts resemble a surface region and a simplified
corona of the Sun. In Figure 1, we show the bipolar region as
the normalized vertical magnetic field Bz/Beq (upper panel)
and the normalized magnetic energy B2/B2

eq (lower panel)
at the moment of maximum strength, t/τtd = 2. Note that
the y direction points to the right, while the positive x di-
rection points downward, so the coordinate system has been
rotated by 90◦ to allow a view that is more similar to how
bipolar regions are oriented on the solar disk. The shapes
of both structures are nearly circular, but are still disturbed
by the turbulent motion acting on the magnetic field. The
field outside this bipolar region is weak: almost all the mag-
netic field is concentrated inside the bipolar region. We find
field strengths significantly above the equipartition value at
and slightly above the surface. This is seen more clearly in
Figure 2(a), where we show profiles of Bz(y)/Beq through
x = 0 at three heights. We normalize the magnetic field by its
local equipartition value, Beq(z), which is shown as a thick
line in Figure 2(b), normalized here by the strength of the im-
posed field B0. At the surface we have Beq(0)/B0 ≈ 50, but
it drops sharply for z > 0 to values below 20. At each height,
we have computed maximum and minimum field strengths as
functions of z, Bmax

z (z) and Bmin
z (z), respectively. It turns

out that Bmin
z (z) ≈ −Bmax

z (z), and that both functions also
drop sharply above z = 0, except during the time t/τtd ≈ 2,
whenBmin

z (z) and−Bmax
z (z) are clearly in excess ofBeq(z)

for values of z both slightly below 0 as well as in the range
0 < z/Hρ < 1.
To discuss the origin and mechanism of this structure for-

mation, we must investigate the temporal evolution of the
structure as well as of the different magnetic field compo-
nents. We recall that B0 is applied over the whole domain.
However, it quickly becomes tangled by the random velocity
field in the lower part of the domain where the forcing is act-
ing to produce small-scale magnetic fields on the scale of the
turbulence. In the upper part, however, this horizontal field
stays roughly unchanged up to the instant when it becomes
affected by a large-scale instability. As shown in Figure 2(c),
the rms values of the three components of the magnetic field
at the surface (z = 0) grow rapidly until they saturates at
around t/τtd = 0.2. At around t/τtd = 1, the magnetic field
has attained a strong vertical component while the horizon-
tal one declines. By the time t/τtd = 2, the vertical field is
stronger than the horizontal field until all three components
decay rapidly to a lower value and saturate there. In addi-
tion to changes of the vertical magnetic field near the surface,
there are also significant changes at larger depths. Both at
early times (t/τtd ≤ 2) and at late times (t/τtd ≥ 2.6) the
maximum values of Bz/B0 at z/Hρ ≈ −2 are around 40,
while at intermediate times when the bipolar region is best
developed, this value has dropped to values around 20. Al-
though we have considered here only maximum values of the
magnetic field, it suggests that magnetic flux has been redis-
tributed from deeper below the surface closer toward the sur-
face. We argue that it is in fact NEMPI, which leads to the
increase of vertical magnetic field and structure formation.

5

FIG. 5.— Time series of normalized magnetic energy densityB2/B2
eq0 in a vertical cut through the bipolar region at x = 0. Note the y axis is shifted by π to

visualize the formation of the loop.

After an initial approach and strengthening of the two po-
larities, they separate again, as can be seen in visualizations of
horizontal cross-sections of Bz(x, y)/Beq through z = 0 at
different times, see Figure 3. Note that we have only plotted
the data in the range −1.2 ≤ x/Hρ ≤ 1.2. At t/τtd = 1,
structures begin to form that become more coherent and more
circular while decreasing their distance to a minimum un-
til they lie directly next to each other (t/τtd = 2). This is
also the time of maximum field strength and maximum coher-
ence, and agrees with the peak of Brms

z in Figure 2(c). After
this time, the distance and field strength of the two polarities
decreases until no large-scale structures are visible anymore
(t/τtd = 3.5).
The orientation of the two polarities is peculiar in that it

does not agree with the picture of an Ω loop emerging at
y = 0; see Figure 4, where we plot a yz slice through the bipo-
lar region. The vertical magnetic field is color coded and the
arrow indicates the magnetic field vectors in the plane. The
field in the region of z > 3 is not disturbed by the structure
formation and represents the imposed magnetic field. This is
peculiar, because an emerging flux tube with similar field di-
rection as the imposed field would cause an inverted vertical
flux configuration.
To understand the course of the formation of bipolar re-

gions, let us begin by noting that the formation of magnetic

structures can be caused by the negative contribution of turbu-
lence to the effective large-scale magnetic pressure (the sum
of turbulent and non-turbulent contributions). For large mag-
netic Reynolds numbers, the turbulent contributions are larger
than the non-turbulent ones, and the effective magnetic pres-
sure becomes negative. This results in a large-scale instabil-
ity, which we argue is NEMPI that causes a redistribution of
mass so that a large-scale flow is generated. This flow lets the
magnetic field patches merge. Since turbulence has produced
similar strengths of all three components of the magnetic field,
and since NEMPI allows for stronger vertical fields than hori-
zontal ones (Brandenburg et al. 2013), the result is the forma-
tion of strong vertical field structures.
It is important to realize that our setup corresponds to an ini-

tial value problem in the sense that the magnetic field affects
the effective magnetic pressure. It changes first the horizon-
tally symmetric background state, which is however unstable
with respect to NEMPI. This leads to the formation of mag-
netic structures that tend to stabilize the system. This is the
reason why, with our present setup, a bipolar magnetic region
occurs only once. Of course, if we apply this mechanism to
the Sun, the imposed magnetic field would be provided by a
dynamo acting in the convection zone, which certainly will
show fluctuations. Also a much larger domain might produce
more bipolar regions, which can occur at different times.
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FIG. 4.— Visualizations of vertical cross-sections ofBz(y, z)/B0 together
with magnetic field vectors in the yz plane through the x location of the flux
convergence at t/τtd = 2.0. The dash-dotted line indicates the surface at
z = 0.

(2012), who used the same values of the fluid Reynolds num-
ber Re ≡ urms/νkf = 38, the magnetic Prandtl number
PrM = ν/η = 1/2, and thus of the magnetic Reynolds num-
ber ReM ≡ Re PrM = 19, which is known to lead to negative
effective magnetic pressure for the mean magnetic fields, B,
in the range 0 < |B|/Beq < 0.4. Here, B is obtained by
averaging over the scale of several turbulent eddies. The mag-
netic field is expressed in units of the local equipartition field
strength, Beq =

√
µ0ρurms, while the imposed magnetic

field B0 is specified in units of the value at z = 0, namely
Beq0 =

√
µ0ρ0 urms, where ρ0 = ρ(z = 0). Throughout this

paper, we use B0/Beq0 = 0.02, which is relatively weak and
also the field strength used in the main run of Brandenburg
et al. (2013). Time is expressed in turbulent-diffusive times,
τtd = (ηt0k21)

−1, where ηt0 = urms/3kf is the estimated
turbulent magnetic diffusivity.
The simulations are performed with the PENCIL CODE,1

which uses sixth-order explicit finite differences in space and
a third-order accurate time stepping method. We use a nu-
merical resolution of 256 × 256 × 512 mesh points in the x,
y, and z directions. We adopt periodic boundary conditions
in the xy plane and present our results by shifting our coor-
dinate system such that regions of interest lie at the center
around x = y = 0. On z = −π we apply a stress-free perfect
1 http://pencil-code.googlecode.com

conductor condition and on z = 2π a stress-free vertical field
condition.

3. RESULTS
We report the spontaneous formation and decay of a bipolar

region of vertical magnetic field at the surface (z = 0), which
is the boundary between regions with and without forcing.
These two parts resemble a surface region and a simplified
corona of the Sun. In Figure 1, we show the bipolar region as
the normalized vertical magnetic field Bz/Beq (upper panel)
and the normalized magnetic energy B2/B2

eq (lower panel)
at the moment of maximum strength, t/τtd = 2. Note that
the y direction points to the right, while the positive x di-
rection points downward, so the coordinate system has been
rotated by 90◦ to allow a view that is more similar to how
bipolar regions are oriented on the solar disk. The shapes
of both structures are nearly circular, but are still disturbed
by the turbulent motion acting on the magnetic field. The
field outside this bipolar region is weak: almost all the mag-
netic field is concentrated inside the bipolar region. We find
field strengths significantly above the equipartition value at
and slightly above the surface. This is seen more clearly in
Figure 2(a), where we show profiles of Bz(y)/Beq through
x = 0 at three heights. We normalize the magnetic field by its
local equipartition value, Beq(z), which is shown as a thick
line in Figure 2(b), normalized here by the strength of the im-
posed field B0. At the surface we have Beq(0)/B0 ≈ 50, but
it drops sharply for z > 0 to values below 20. At each height,
we have computed maximum and minimum field strengths as
functions of z, Bmax

z (z) and Bmin
z (z), respectively. It turns

out that Bmin
z (z) ≈ −Bmax

z (z), and that both functions also
drop sharply above z = 0, except during the time t/τtd ≈ 2,
whenBmin

z (z) and−Bmax
z (z) are clearly in excess ofBeq(z)

for values of z both slightly below 0 as well as in the range
0 < z/Hρ < 1.
To discuss the origin and mechanism of this structure for-

mation, we must investigate the temporal evolution of the
structure as well as of the different magnetic field compo-
nents. We recall that B0 is applied over the whole domain.
However, it quickly becomes tangled by the random velocity
field in the lower part of the domain where the forcing is act-
ing to produce small-scale magnetic fields on the scale of the
turbulence. In the upper part, however, this horizontal field
stays roughly unchanged up to the instant when it becomes
affected by a large-scale instability. As shown in Figure 2(c),
the rms values of the three components of the magnetic field
at the surface (z = 0) grow rapidly until they saturates at
around t/τtd = 0.2. At around t/τtd = 1, the magnetic field
has attained a strong vertical component while the horizon-
tal one declines. By the time t/τtd = 2, the vertical field is
stronger than the horizontal field until all three components
decay rapidly to a lower value and saturate there. In addi-
tion to changes of the vertical magnetic field near the surface,
there are also significant changes at larger depths. Both at
early times (t/τtd ≤ 2) and at late times (t/τtd ≥ 2.6) the
maximum values of Bz/B0 at z/Hρ ≈ −2 are around 40,
while at intermediate times when the bipolar region is best
developed, this value has dropped to values around 20. Al-
though we have considered here only maximum values of the
magnetic field, it suggests that magnetic flux has been redis-
tributed from deeper below the surface closer toward the sur-
face. We argue that it is in fact NEMPI, which leads to the
increase of vertical magnetic field and structure formation.
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FIG. 4.— Visualizations of vertical cross-sections ofBz(y, z)/B0 together
with magnetic field vectors in the yz plane through the x location of the flux
convergence at t/τtd = 2.0. The dash-dotted line indicates the surface at
z = 0.

(2012), who used the same values of the fluid Reynolds num-
ber Re ≡ urms/νkf = 38, the magnetic Prandtl number
PrM = ν/η = 1/2, and thus of the magnetic Reynolds num-
ber ReM ≡ Re PrM = 19, which is known to lead to negative
effective magnetic pressure for the mean magnetic fields, B,
in the range 0 < |B|/Beq < 0.4. Here, B is obtained by
averaging over the scale of several turbulent eddies. The mag-
netic field is expressed in units of the local equipartition field
strength, Beq =

√
µ0ρurms, while the imposed magnetic

field B0 is specified in units of the value at z = 0, namely
Beq0 =

√
µ0ρ0 urms, where ρ0 = ρ(z = 0). Throughout this

paper, we use B0/Beq0 = 0.02, which is relatively weak and
also the field strength used in the main run of Brandenburg
et al. (2013). Time is expressed in turbulent-diffusive times,
τtd = (ηt0k21)

−1, where ηt0 = urms/3kf is the estimated
turbulent magnetic diffusivity.
The simulations are performed with the PENCIL CODE,1

which uses sixth-order explicit finite differences in space and
a third-order accurate time stepping method. We use a nu-
merical resolution of 256 × 256 × 512 mesh points in the x,
y, and z directions. We adopt periodic boundary conditions
in the xy plane and present our results by shifting our coor-
dinate system such that regions of interest lie at the center
around x = y = 0. On z = −π we apply a stress-free perfect
1 http://pencil-code.googlecode.com

conductor condition and on z = 2π a stress-free vertical field
condition.

3. RESULTS
We report the spontaneous formation and decay of a bipolar

region of vertical magnetic field at the surface (z = 0), which
is the boundary between regions with and without forcing.
These two parts resemble a surface region and a simplified
corona of the Sun. In Figure 1, we show the bipolar region as
the normalized vertical magnetic field Bz/Beq (upper panel)
and the normalized magnetic energy B2/B2

eq (lower panel)
at the moment of maximum strength, t/τtd = 2. Note that
the y direction points to the right, while the positive x di-
rection points downward, so the coordinate system has been
rotated by 90◦ to allow a view that is more similar to how
bipolar regions are oriented on the solar disk. The shapes
of both structures are nearly circular, but are still disturbed
by the turbulent motion acting on the magnetic field. The
field outside this bipolar region is weak: almost all the mag-
netic field is concentrated inside the bipolar region. We find
field strengths significantly above the equipartition value at
and slightly above the surface. This is seen more clearly in
Figure 2(a), where we show profiles of Bz(y)/Beq through
x = 0 at three heights. We normalize the magnetic field by its
local equipartition value, Beq(z), which is shown as a thick
line in Figure 2(b), normalized here by the strength of the im-
posed field B0. At the surface we have Beq(0)/B0 ≈ 50, but
it drops sharply for z > 0 to values below 20. At each height,
we have computed maximum and minimum field strengths as
functions of z, Bmax

z (z) and Bmin
z (z), respectively. It turns

out that Bmin
z (z) ≈ −Bmax

z (z), and that both functions also
drop sharply above z = 0, except during the time t/τtd ≈ 2,
whenBmin

z (z) and−Bmax
z (z) are clearly in excess ofBeq(z)

for values of z both slightly below 0 as well as in the range
0 < z/Hρ < 1.
To discuss the origin and mechanism of this structure for-

mation, we must investigate the temporal evolution of the
structure as well as of the different magnetic field compo-
nents. We recall that B0 is applied over the whole domain.
However, it quickly becomes tangled by the random velocity
field in the lower part of the domain where the forcing is act-
ing to produce small-scale magnetic fields on the scale of the
turbulence. In the upper part, however, this horizontal field
stays roughly unchanged up to the instant when it becomes
affected by a large-scale instability. As shown in Figure 2(c),
the rms values of the three components of the magnetic field
at the surface (z = 0) grow rapidly until they saturates at
around t/τtd = 0.2. At around t/τtd = 1, the magnetic field
has attained a strong vertical component while the horizon-
tal one declines. By the time t/τtd = 2, the vertical field is
stronger than the horizontal field until all three components
decay rapidly to a lower value and saturate there. In addi-
tion to changes of the vertical magnetic field near the surface,
there are also significant changes at larger depths. Both at
early times (t/τtd ≤ 2) and at late times (t/τtd ≥ 2.6) the
maximum values of Bz/B0 at z/Hρ ≈ −2 are around 40,
while at intermediate times when the bipolar region is best
developed, this value has dropped to values around 20. Al-
though we have considered here only maximum values of the
magnetic field, it suggests that magnetic flux has been redis-
tributed from deeper below the surface closer toward the sur-
face. We argue that it is in fact NEMPI, which leads to the
increase of vertical magnetic field and structure formation.
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Conclusions

•Equatorward propagation in simulation are related to 

the negative shear. 

•Migration of  mean magnetic field can be entirely 

explained by an alpha-omega-dynamo wave  

•  Near-surface shear layer in the Sun might be important 

to produce the solar dynamo. 

•  Simple setup is enough for spontaneous formation. 

•  NEMPI might be a possibility for formation of  sunspots


