STELLAR DYNAMOS

JÖRN WARNECKE Max Planck Institute For Solar System Research

DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS

6th of Nove

Number	Symbol	Formular	The Sun	Earth Core
Ekman number	Е	$ u/\Omega d $	10^{-15}	10^{-15}
Taylor number	Ta	$\frac{4}{\mathrm{E}^2}$	10^{31}	10^{31}
Rayleigh number	Ra	$\frac{GM_{\odot}d^4}{\nu\chi R_{\odot}^2} \left(-\frac{1}{c_{\rm P}} \frac{\mathrm{d}s_{\rm hs}}{\mathrm{d}r} \right)_{r_{\rm m}}$	10^{24}	10^{27}
Prandtl number	\Pr	ν/χ	10^{-6}	10^{-1}
mag. Prandtl number	\Pr_M	$ u/\eta $	10^{-3}	10^{-6}
Rossby number	Ro	$u/\Omega d$	1	10^{2}
Coriolis number	Co	$2/\mathrm{Ro}$	1	10^{-2}
Reynolds number	Re	ud/ u	10^{12}	10^{9}
mag. Reynolds number	Re_M	ud/η	10^{9}	10^{5}
Pecley number	Pe	ud/χ	10^{6}	10^{8}

6th of November 2015

density contrast: 6x10⁷ temperature contrast: 600 pressure contrast: 7x10¹⁰

sound speed: 200 to 5 km/s

pressure scale height: 100 to 0.1 Mm

Number	Symbol	The Sun [bot]	The Sun [top]
turnover time	au	months	mins
velocity	u	1 km/s	$0.1 \mathrm{~km/s}$
pressure scale height	H_p	100 Mm	0.1 Mm
Ekman number	Е	10^{-16}	10^{-12}
Taylor number	Ta	10^{32}	10^{24}
Rayleigh number	Ra	10^{24}	10^{25}
Prandtl number	\Pr	10^{-3}	10^{-10}
mag. Prandtl number	\Pr_M	1	10^{-7}
Rossby number	Ro	1	10^{3}
Coriolis number	Co	1	10^{-3}
Reynolds number	Re	10^{13}	10^{10}
mag. Reynolds number	${ m Re}_M$	10^{10}	10^{6}
Pecley number	Pe	10^{3}	10^{7}

Time scales

The Pencil Code

TITC T CITCIT COM

6th of November 2015

Planet formation

Anders Johansen (Lund Observatory)

Global convective dynamo simulations

$$\begin{aligned} \frac{\partial A}{\partial t} &= u \times B + \eta \nabla^2 A \\ \frac{D \ln \rho}{D t} &= -\nabla \cdot u \\ \frac{D u}{D t} &= g - 2\Omega_0 \times u + \frac{1}{\rho} \left(J \times B - \nabla p + \nabla \cdot 2\nu \rho S \right) \\ T \frac{D s}{D t} &= \frac{1}{\rho} \nabla \cdot \left(K \nabla T + \chi_t \rho T \nabla s \right) + 2\nu S^2 + \frac{\mu_0 \eta}{\rho} J^2 - \Gamma_{\text{cool}}(r), \end{aligned}$$

high-order finite-difference code
scales up efficiently to over 60.000 cores
compressible MHD

Global convective dynamo simulations

 $0.7R < r < R \qquad \quad \theta_1 < \theta < \theta_2 \qquad \quad 0 < \phi < \Delta \phi \qquad k_{\rm f} = 2\pi/\Delta R$

We model a spherical sector (`wedge') where only parts of the latitudinal and longitudinal extents are taken into account.

Normal field condition for B at the outer radial boundary and perfect conductor at all other boundaries. Impenetrable stress-free boundaries on all boundaries.

6th of November 2015

Initial conditions

CTENTOTON COTTOTOTO

6th of November 2015

Characterization of the model

NTEEL OF TAMPETATI AT ATTA TTA AND

 $Ta=1.5 \times 10^{10}$

 $Ra=4 \ge 10^7$

Rotation

DAILY SUNSPOT AREA AVER

6th of Nove

Equatorward Migration I

6th of November 2015

Electromotive force

$= \alpha \overline{B} + \gamma \times \overline{B} + \beta \nabla \times \overline{B} + \delta \times (\nabla \times \overline{B}) + \kappa \nabla \overline{B}$

Simplifications:

 \mathcal{E}

 $u' \times b'$)

Mean field models

Magnetic field generation

There is Hope !

Conclusions

- Solar dynamo produce an cyclic magnetic field.
- Large density and pressure contrast in convection zone.
- Pressure scale height varies from 100 Mm to 0.1 Mm.
- Pencil code is great!
- Mean field theory is a good approach.
- Solar/Stellar dynamos might be complicated.
- Observations gives as hope, that there is a simple picture.