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Abstract. We investigate the evolution of magnetic helicity
density in the course of 2D and 3D kinetic magnetic recon-
nection through thin current sheets. In 2D, the helicity den-
sity near a reconnection X-line becomes purely quadrupolar
structured, while in 3D, an additional dipolar structure oc-
curs. This dipolar structure is related to kinetic current insta-
bilities and becomes dominant for spontaneous 3D reconnec-
tion, in accordance with the dominating current instabilities.
The 2D simulations have been carried out with a newly devel-
oped Vlasov-code and the 3D simulations with the particle-
in-cell code GISMO.

1 Introduction

Magnetic reconnection is an important process in space plas-
mas. Examples in the solar system where magnetic recon-
nection is assumed to play an important role are coronal mass
ejections (e.g. Low, 1994; Schwenn et al., 1997; Wiegelmann
et al., 2000) and geo-magnetic substorms (e.g. Birn, 1980).
An important constraint is the magnetic helicity. Most solar
system plasmas as the solar corona or the Earth’s magneto-
tail are nearly ideal, and the plasma is frozen in the mag-
netic field. In a strictly ideal plasma, changes in topology
are not possible and thus, magnetic reconnection cannot oc-
cur; the magnetic helicity is conserved exactly (e.g. Woltjer,
1960). A strictly ideal plasma, however, does not exist in na-
ture and thus, magnetic reconnection is possible, in principle.
It has been conjectured by Taylor (1974) that the magnetic
helicity is still approximately conserved during relaxation
processes involving magnetic reconnection. Later, Berger
(1984) proved that the total helicity is decreasing slower than
the magnetic energy. Under very special conditions, with
strictly antiparallel magnetic fields, the magnetic helicity is
conserved exactly under magnetic reconnection. As pointed
out by Hornig (1999a), such configurations fulfill E - B =0
and consequently, the parallel electric field vanishes. This
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condition is fulfilled in the 2D concept of magnetic merg-
ing (Vasyliunas, 1975). Reconnection (or magnetic merg-
ing) was described there as a plasma flow across a separa-
trix separating regions of different magnetic topology. This
implies an electric field perpendicular to the reconnection
plane and parallel to the separator, and a localized viola-
tion of the ideal Ohm’s law. Axford (1984) described mag-
netic reconnection as a localized breakdown of the frozen-
in field condition and the resulting changes of connection.
The definition given by Vasyliunas has the drawback of be-
coming structural unstable during any slight variation of the
system. A more general definition of magnetic reconnection
was given by Schindler et al. (1988) and Hesse and Schindler
(1988). Within this concept of the so-called general mag-
netic reconnection, magnetic merging is only a special case
with B = 0 in the reconnection region, known as the zero-
B reconnection. The authors argued that in the generic 3D
case, the reconnection region contains a finite magnetic field
and parallel electric fields. It was also shown that a non-
negligible parallel electric field in the reconnection region
has global effects. Hence, the total magnetic helicity may
change. Hornig (1999b) confirmed this result in a covari-
ant formulation, showing that for vanishing E - B, the he-
licity is frozen in a virtual fluid flow of stagnation type. For
E - B # 0, the helicity is still approximately conserved if
the non ideal reconnection zone is small, as compared to the
length scale of the magnetic structure. In general, however, a
non vanishing E - B may be a source for helicity production
(Hornig and Rastétter, 1997).

These investigations, which were all carried out in the fra-
mework of magnetohydrodynamics, require a non ideal re-
gion, e.g. a resistivity in the reconnection region. The nature
of such a resistivity cannot be calculated within MHD and ad
hoc assumptions are necessary to prescribe the transport co-
efficients (e.g. resistivity). The concept of general magnetic
reconnection by Schindler et al. (1988) assumes that a finite
magnetic field component should be present in the generic
case of 3D magnetic reconnection. It does not, however,
identify the source of such a component within a spontaneous
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reconnection process. The cause of a non ideal behaviour
in space plasma in localized regions has been assumed to be
anomalous resistivity in thin current sheets. The formation of
these thin current sheets can be understood within the frame-
work of sequences of ideal MHD equlibria (e.g. Schindler
and Birn, 1993; Parker, 1994; Wiegelmann and Schindler,
1995). Resistive MHD computations (e.g. Biskamp and Wel-
ter, 1980; Matthaeus and Lamkin, 1985, 1986) show the for-
mation of current sheets as a consequence of turbulent mag-
netic reconnection. The further development of these thin
current sheets cannot be investigated within the framework
of magnetohydrodynamics since their sheet widths become
comparable with the ion gyro scale and thus, kinetic effects
have to be considered.

Consequently, the investigation of kinetic effects is neces-
sary to overcome several limitations of MHD, e.g. the ne-
cessity of ad hoc assumptions for a resistivity profile, the
limitations of time and length scales compared with kinetic
scales, the lack of explanation for possible sources of finite
magnetic field components in the reconnection zone, and the
impossibility of investigating the structure of the reconnec-
tion zone. As pointed out by Winglee (1991), the generation
of a magnetic field component in the current direction (B )
is a pure particle effect, due to the different motion of elec-
trons and ions, as predicted by Terasawa (1983). These 2D
investigations can be considered as a first step towards a full
understanding of kinetic magnetic reconnection. Later, sev-
eral authors pointed out the intrinsic 3D structure of kinetic
magnetic reconnection (Biichner and Kuska, 1996; Pritch-
ett et al., 1996; Zhu and Winglee, 1996; Biichner, 1999). A
main difference between 2D and 3D configurations is, that
in 3D configurations, additional instabilities can occur in the
current direction (which is assumed to be invariant in 2D),
leading to drift current instabilities (e.g. Blichner and Kuska,
1999) and these drift current instabilities couple with re-
connection (e.g. Biichner, 1999; Wiegelmann and Biichner,
2000).

Here we investigate the consequences of kinetic effects on
the helicity evolution in the course of reconnection. The pa-
per is organised as follows. In Sect. 2 we outline our simula-
tion approach and in Sect. 3, we briefly describe the Vlasov-
code which has been used for the 2D investigations. Section
4 contains the results of our 2D and 3D numerical simula-
tions. We summarize our work in Sect. 5 and give an outlook
to future work.

2 Simulation approaches

First, it is necessary to determine the initial state of the sim-
ulation model. The basic equation is the Vlasov equation
of collisionless plasmas. Stationary solutions of the Vlasov
equation can be found with the help of constants of motion
under some constraints. If one assumes a 2D configuration in
space (x, z), 9/dy = 0, with the current having only a com-
ponent in the invariant direction, j, one finds that the Hamil-
ton function H; = (Mj/2)vf + g ;¢ and the generalized mo-

mentum p, ; = M;jvy ; + g;A, are constants of motion.
Assuming a drifting Maxwell distribution and quasineutral-
ity, the stationary Vlasov equation can be solved with the
Grad-Shafranov-equation —AA , = j,(Ay). This leads us to
stationary state distribution functions in the form

M; 2., .2
fi=pk,2)exp (_ﬁ(v" + [vy — uayjl” + Uz))

where p(x, z) is the density profile and u gy the drift veloci-
ties. A well known current sheet solution is the Harris sheet
profile (Harris, 1962) which has an additional invariance in
X:

p(2) (1)

~ coshl(z)
where x, z are normalized by the sheet half width L. Con-
figurations with a modified Harris sheet profile in z, but slight
variations in x, are also solutions of the Grad-Shafranov equa-
tion (Schindler, 1972). We will use a configuration in the
form:

p(x,z) =[1—e1c08(2merx/L)]

cosh?(z) @
where €1 « 1 for a smooth variation, and L is the simulation
box length in x. With —L/2 < x < L/2 and x = 0 in the
center of the box, e; = 1 will lead to a X-point in the center
of the box, and €2 = 2 to a sheet with X-point at x = 0, and
two O-points at x = +L/4. With the boundary condition
A;(zmin) = A;(zmax) = 0.0, we get the flux function for the
modified Harris sheet

Ay(x,2) = /[1 — €1 cosmezx/L)] (3)
-(Incosh(zmax) — Incosh(z))

The advantage of a modified Harris sheet solution (2) is
that it prescribes the location of X- and O-points, which is
useful for diagnostic purposes. Furthermore, the initial per-
turbation of the Harris sheet reduces the reconnection time
by a factor of about 5.

We investigate four different cases:

1. 2D reconnection (3/dy = 0) with a modified Harris
sheet, according to (2) with an X-line at the center;

2. 3D reconnection of a Harris sheet with a 2D magnetic
field perturbation;

3. 3D reconnection of a Harris sheet with a 3D magnetic
field perturbation;

4. Spontaneous 3D reconnection of an unperturbed Harris
sheet.

The pure 2D simulations are carried out with a newly de-
veloped Vlasov-code, which is briefly described in Sect. 3.
We also provide the simulation parameters for case 1. The
3D simulations (cases 2—4) are carried out with the particle
in cell code GISMO, which has been described in detail by
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Table 1. Simulation parameters

| [ code | dim | m/me | pert | cpu | memory [ grid |
1. | Vlasov | 2D | 16 2D 8h 64 MB | 40*20
2. | PIC 3D | 25 2D 6d 1GB | 643
3. | PIC 3D |25 3D | 6d 1GB | 643
4. | PIC 3D | 25 - 21d 1GB | 643

Kuska and Biichner (1999). In the following table, we pro-
vide information about the codes used (Vlasov-code or PIC-
code), the dimension of the simulation box, the mass ratio,
the type of perturbation, the required CPU-time (on a work-
station) and the required memory.

In cases 2—-4 we use the following parameter set: a grid of
64 x 64 x 64 grid points and 2 million particles. The box
length corresponds to 12L in each direction, where L, is
the sheet half width. We use a reduced mass ratio of ions and
electrons M; /M, = 25, and a temperature ratio 7; /T, = 5.
We resolve the ion Debye length by 1.5 grid points and the
electron Debye length by 0.7 grid points. We resolve a full
electron gyro period by 18 integration time steps and a full
ion gyro period by 450 time steps. Thus one ion gyro time
Qc‘il is resolved by 72 time steps. The Harris sheet half width
has the same order of magnitude as the ion gyro radius. The
initial Harris sheet profile is in z, while x and y are invariant
directions in the initial state. The initial magnetic field is in
the x direction, and y is the direction of the current flow. In
two of our simulation runs (cases 2, 3), we superimpose a
magnetic flux perturbation to enforce an x-line in the center
(x, z) of the box (invariant in y):

case2 : Wpert = —Wo Cos(2mx/L)cos(wz/L)

where L = 12L_, corresponds to the length of simulation
box. Wpert corresponds to the perturbed flux and o is the
amplitude of perturbation. Here we choose a flux perturba-
tion of 20% (Wo = 0.2Bg2L;). Let us note that the flux-
function W corresponds to the y component of the magnetic
vector potential A.

In case 3, we enforce an X point in the center of the sim-
ulation box by a magnetic flux perturbation structured in the
y direction:

case3 : Wpert = —Wo cos(2mx/L) cos(wrz/L) cos(2my/L)

In case 3, we use a flux perturbation of 33%. There are neu-
tral lines at x = 0 and x = + — L/2, which change character
from X-line to O-line at |y| = L/4, such that in the center,
at x = 0, there is an X-line for |y| < L/4 and an O-line for
|y| > L/4. The reverse happens at |x| = L/2. This choice
enforces a 3D structure. We also initialized a pure Harris
sheet without any perturbation to investigate spontaneous 3D
reconnection (case 4).

Note, that due to the necessity of resolving the velocity
space (Vlasov) or particles (PIC) in kinetic simulations, the
amount of memory is incomparably larger than in
MHD for comparable spatial size. The tradeoff in the more

realistic kinetic approach is a restriction on the size of the
simulation box.

3 Brief description of the Vlasov code

The case 1 simulations were carried out with a newly devel-
oped Vlasov-code. We describe its main features and param-
eters in this section. The basic kinetic equations describing
the evolution of plasmas is the VVlasov equation

ofi
at

where f; = f;(x,z, vx, vy, v7) is the distribution function
and the index j stands for both ions f; and electrons f,. F =
(gj/M;) (E + v x B) is the Lorentz force.

PIC codes like GISMO solve for the motion of macro-
particles, while a Vlasov code directly solves Eq. (4) for
electrons and ions, respectively.

While the full Vlasov equation is 6 dimensional, we as-
sume spatial invariance in the y-direction. This leads to 5
dimensional equations (3 dimensions in velocity space and 2
dimensions in configuration space).

The Vlasov equations have to be solved selfconsistently
with the Maxwell equations

+v-Vfj+F-V,fj=0 @)

V-B=0, V-E =o, VXB_J,VXE_—— (5)

where B is the magnetic field, E the electric field, o the
charge density and j the current density.

With help of the magnetic vector potential A and the elec-
tric potential ¢, (B =V x Aand E = —V¢ — 0A/dt), we
derive the Poisson equations from Maxwell equations:

—AA=j, —Ap=0, V-A=0 (6)

The charge density o and the current density j are calculated
by moments of the distribution functions f; and f:

/fldv—i-qc/fcdv
Jj= /v,fldv—i—qe/vefedv

We solve the Poisson equations with the help of an implicit
Gauss-Seidel matrix solver (e.g. Faires and Burden, 1993).
We use Dirichlet boundary conditions in the z-direction and
periodic boundary conditions in the x-direction. The time in-
tegration of the Vlasov equation is carried out by a Leap frog
scheme. The boundary conditions are the same as in Pois-
son equations. The integration time step At has to be suf-
ficiently small to fulfill the CFL-condition for explicit time
integrations, but not too small to avoid numerical diffusion
(e.g. Potter, 1973).

We normalize the magnetic field by the maximum lobe
field By, the vector potential A by BoL_, the helicity den-
sity h by BgLZ, the mass by the proton mass M;, the time
t by ion gyro frequency Q. = Bo/M;, the velocity v; by
L., the thermal energy 7'; by thermal velocity M;vZ.., the
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electric field E by BoL .., the current density j by Bo/L;,
the charge density by E/L, and the electric potential ® by
EL;. The distribution functions f; are normalized by the
condition

M.
/exp (—ﬁ (v)f + [vy — uayj1? + v§>> d*v=1
J

The Vlasov-simulation results, presented here in this pa-
per, use a reduced mass ration of M;/M, = 16 and a tem-
perature ratio of 7; /7T, = 1. We use a spatial grid of 40
grid points in x and 20 grid points in z. The box length
is —8L, < x < 8L, and —4L, < z < 4L,. The tem-
perature is 7; = T, = 0.3 and the Debye Length for both
ions and electrons is 0.54L, and thus, the Debye length is
resolved by 1.4 grid points. We resolve the phase space by
10 x 10 x 10 grid points and a box length in phase space of
6 thermal velocities (—3vr; < v; < 3vr;). Notice that the
thermal velocities of ions and electrons are different by a fac-
tor of 4 for our parameter set (v, = «/M;/M./T./T;vr;)
and thus, we use different grids in phase space for the distri-
bution function of ions and electrons. This is justified since
the Vlasov-equations for ions and electrons are only coupled
by the electromagnetic field. We resolve the ion gyro time
Qc‘il by 130 time steps and the electron gyro time by 8 time
steps.

As initial configuration we use a perturbed Harris sheet
profile (2) with €1 = 0.05 and €, = 1 (X-point in center of
sheet). We also present results of simulations with a longer
box in the x-direction (—16L, < x < 16L;) and e; = 2,
which corresponds to an extension of the previous simulation
box at both ends in order to include two O-points.

4  Simulation results
4.1 Time evolution

In this section we compare different aspects of the four inves-
tigated cases. We are mainly interested in the magnetic field
structure after magnetic reconnection has occurred. Since
we compare perturbed sheets, triggered and spontaneous re-
connection runs, we diagnose the magnetic field component

|B;| = \/Bi?, averaged over the whole box. In Fig. 1, we
show the time evolution of | B ;| normalized to the maximal
lobe field By ! for all cases. In the following presentation, we
refer to fully developed reconnection when a level of B /By
is reached, close to its maximum and before the influence of
the boundaries becomes essential. Due to the different initial
states, the reconnection time differs:

case 1 (2D Vlasov, 2D modified Harris sheet) 1452;.1
case 2 (3D PIC, 2D perturbation) 501
case 3 (3D PIC, 3D perturbation) 20t
case 4 (3D PIC, spontaneous) 2201

IWe used By corresponding to a maximal lobe field of 6 - 104
Gauss and we choose a sheet width of L, = 372000 cm.

Reconnection is fastest in the 3D configurations with mag-
netic field perturbation (cases 2, 3). In these cases, the Harris
sheet is not in an exact equilibrium and, therefore, more un-
stable than the exact equilibrium (case 4) or in the slightly
modified Harris equilibrium (case 1). The modified Harris-
equilibrium includes an X-point as a seed for the occurrence
of magnetic reconnection. In spontaneous reconnection, the
configuration has to find this seed itself from the fluctuations.
Consequently, reconnection is faster in case 1 than in the un-
perturbed case 4, but slower than in configurations with mag-
netic field perturbation (cases 2, 3). Notice that 2D Vlasov-
Code simulations for an unperturbed Harris sheet (not shown
here) lead to spontaneous magnetic reconnection after ap-
proximately 609;.1. This is by a factor of about 2.5 slower
than the occurrence of spontaneous magnetic reconnection
in case 4. The magnetic reconnection process is faster in
3D because Kinetic current instabilities (Blichner and Kuska,
1999) occur and couple with reconnection (Biichner, 1999;
Wiegelmann and Biichner, 2000). The Kinetic current insta-
bilities are in the current direction (y). Thus, they cannot
occur in 2D simulations of the classical reconnection plane
xz. Therefore, in 2D, reconnection and current instabilities
can only be investigated independently from each other; they
couple in 3D. The current instabilities are not a result of re-
connection, but rather the result of fast flows of the ions.

4.2 Structure of reconnection

In this paper, we mainly investigate the helicity evolution.
The magnetic helicity can be determinedas H = [ A-BdV.
The total magnetic helicity H = [ A - B dV is gauge invari-
ant for configurations with B - n = 0 on the boundary. The
latter condition is fulfilled for the Harris sheet equilibria with
periodic boundary conditions investigated in this paper.
Since it contains important information about the struc-
ture of the magnetic field, we diagnose the helicity density
h = A - B. 2 This can be seen in analogue to fluid dynamics
(e.g. Levy et al., 1990; Moffat and Tsinober, 1992), where
the helicity density v - @ contains important information re-
garding the flow, e.g. it helps to localize the vortex core and
its axis. It can also be shown that the helicity density in ax-
isymmetric fluid flows changes its sign across a separation
line. Similar effects occur in the magnetic helicity density
which helps us to identify the core of a perpendicular mag-
netic field B, and, in the 2D, case the magnetic helicity den-
sity changes its sign across a separation line which separates
regions of different magnetic topology after reconnection oc-
curred. The magnetic field is a vector and the magnetic he-
licity density is a scalar. Contourplots of this scalar value
help to visualize and analyse important characteristics of the
magnetic field. It is far more complicated to directly anal-
yse the 3D vector field B. Note the similarity of the role of
flow vortex helicity density for fluid flow vorticity in hydro-
dynamics, and the role of magnetic helicity density for the

2Obviously this value depends on the gauge of A. The structure
of the helicity density does not depend on the gauge, however.
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Fig. 1. B;/By for 2D (upper left, case 1), 3D with 2D perturbation (upper right, case 2), 3D with 3D perturbation (lower left, case 3) and
spontaneous 3D (lower right, case 4), as a function of time.
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Fig. 2. Magnetic field lines for 2D kinetic reconnection (Vlasov-code-simulation). Initial state on the lefthand side and after magnetic
reconnection had occurred, on the righthand side. As a consequence of the quadrupolar structure of By, the field lines become distorted
perpendicular to the reconnection plane. We over rate the B, component by a factor of 5, for illustration.
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magnetic field connectivity in plasmas.
4.2.1 Casel (2D Vlasov)

In pure 2D Harris sheets, which are invariant in the current
(y) direction, the magnetic field obtains a component perpen-
dicular to the reconnection plane, but no helicity change can
be seen. Figure 2 shows a configuration with an X-point and
Fig. 4, a configuration with two additional O-points (longer
box, accommodating two tearing mode wavelength). As one
can see in Figs. 2 and 4, the initial plane sheet (left-hand side
of the figures) becomes bend in the current direction (y) after
magnetic reconnection has occurred, as predicted by Tera-
sawa (1983). This bending corresponds to the formation of
a quadrupolar distribution of the magnetic field component
B, which arises from the Hall effect of different mobilities,
resulting in a quadrupolar structure of the helicity density
around the X-line (Fig. 5 upper left and right panel).

The occurrence of the quadrupolar structure can be ex-
plained as follows. Due to the difference mass between elec-
trons and ions, the mobility of electrons and ions is different.
Consequently, the particle flux of ions and electrons out of
the reconnection zone (X-point) is different (see Fig. 3, lower
panels). The ions are streaming mainly parallel to the x-axis,
but the electrons are along the wings of the magnetic field.
The different particle flows cause four ring currents around
the central X-point (see Fig. 3, upper right panel). Each of
these ring currents in the xz-plane naturally causes a mag-
netic field B, perpendicular to the reconnection plane (see
Fig. 3, upper left panel). Due to the orientation of the four
ring currents, we obtain the observed quadrupolar structure
in By. In 2D, we have approximately A - B ~ A, B, and,
consequently, the helicity density also contains a quadrupo-
lar structure.

Notice that, since the effect of bending is small, we over
rate the magnetic field component B, by a factor of 5, in
Figs. 2 and 4, to illustrate the effect more clearly. The fur-
ther plots correspond to the shorter simulation box (only one
X-line, our case 1, see Fig. 2). Figure 5, shows in the up-
per left panel, a contourplot of the magnetic field compo-
nent in the current direction B, which was developed as
a consequence of magnetic reconnection. As one can see,
this magnetic field component contains a pure quadrupolar
structure. The quadrupolar structure of B, corresponds to a
quadrupolar structure in the helicity density as presented in
the upper right panel of Fig. 5. Meanwhile, the total helic-
ity is approximately conserved,; this can be seen in the upper
left panel of Fig. 10 where the thick line shows the over-
all helicity. The dotted line in the same panel corresponds
to the evolution of the integrated helicity density of the up-
per right and lower left corners of the reconnection plane,
and the dashed line, to the evolution of the integrated he-
licity density in the opposite corners. The amplitudes are
both increasing during the reconnection process, but they are
anti-symmetric, so that the total magnetic helicity remains
constant. As pointed out by Hornig (1999a), cases of mag-
netic reconnection with E - B = 0 conserve the magnetic

helicity exactly. When E - B = 0 no parallel electric fields
E\ = E - B/|B| evolve during the reconnection process. In-
deed, one can see, in the lower left panel of Fig. 5, the parallel
electric field is very weak by a factor of about 35 smaller than
the reconnection electric field E, (lower right panel). Con-
sequently, the magnetic helicity is practically conserved. Let
us note that E,, reaches its maximum at the X-point, as ex-
pected for 2D reconnection. The very weak parallel electric
field has a quadrupolar symmetry and reaches its maximum
in the wings of the reconnection zone. In 2D reconnection,
the magnetic field has a singularity at the X-points (here, B,
vanishes as well). This corresponds to classical magnetic
field line merging (Vasyliunas, 1975), which is a special case
of general magnetic reconnection, known as B = 0 recon-
nection (Schindler et al., 1988).

4.2.2 Remarks on cases 2—4

In 3D (cases 2-4), kinetic current instabilities occur in addi-
tion to the pure tearing instability (Btichner, 1999). The cou-
pling of these current instabilities and tearing dominates in
spontaneous reconnection (case 4; Wiegelmann and Biichner,
2000). To obtain some insights regarding the structure of 3D
reconnection, we try to find a rather smooth transition from
pure 2D reconnection (case 1) to full 3D reconnection (case
4). Such an intermediate case would consist of a process
where current instabilities are available, but not dominating.
While the growth rate of the drift current instability (Biichner
and Kuska, 1999) is controlled by the physical system, al-
though it is not affected by the initial magnetic field pertur-
bation, we can externally encourage the reconnection process
with the help of external magnetic field perturbations. This
ensures that the wave amplitude of drift current instabilities
is smaller for driven 3D reconnection than for spontaneous
3D reconnection. Reconnection goes faster in case 3 than in
case 2 and, consequently, the role of kinetic current instabil-
ities is more important in case 2 than in case 3.

To compare cases 2-4 (3D PIC) with case 1 (2D simula-
tions), we present the fields in the xz-reconnection plane at
the center of the current direction (y = 0), and present the
same quantities (B,, helicity density, £, E,), as in case 1.

4.2.3 Case 2 (3D PIC, 2D perturbation, Fig. 6)

Both B, and the helicity density exhibit a quadrupolar struc-
ture (upper panels). It is, however, somewhat fuzzy com-
pared with the pure 2D case, as a result of the occurrence
of a kinetic current instability. As one can see, the mag-
netic field does not vanish completely at the X-point. Thus,
we do not observe 2D magnetic merging, but a more gen-
eral reconnection, which is defined by changes of magnetic
connectivity (Axford, 1984). While in MHD, the localized
breakdown of the frozen-in field condition would need an
ad hoc resistivity; the system finds its resistivity itself within
the framework of the kinetic approach used here in this work.
The small finite magnetic field component B, in the current
direction, leads to B # 0 everywhere in the reconnection re-
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Fig. 3. The upper left panel shows a contourplot of magnetic field component By, (in 106 G) correspondent to the magnetic field configura-
tion in Fig. 4, right panel. The contour lines correspond to a projection of magnetic field lines in the plane. The three other panels correspond
to the flow of the current density, the particle flux of ions, and particle flux of electrons, respectively.

Fig. 4. Magnetic field lines for 2D reconnection (Vlasov-simulation). Initial state on the left-hand side and after magnetic reconnection has
occurred on the right-hand side. Here, we extended the simulation box by a factor of two in the x-direction to include two tearing mode

wavelength (i.e. two O-points). As a result of the quadrupolar structure of magnetic helicity density, the field lines become distorted in the y
direction. The effect is small and we over rate the By, component by a factor of 5, for illustration.
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ular electric field (in 10—3 CGSyg)) after magnetic reconnection occurred in the framework of 2D Vlasov-simulations.
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Fig. 6. Case 2: Perpendicular magnetic field (in 10=3 G), helicity density (in G2cm), parallel electric field (in 10~3 CGSyg)) and perpendic-

ular electric field (in 103 CGS|g)) after magnetic reconnection has occurred in the framework of 3D PIC-simulations with a 2D magnetic
field perturbation.



T. Wiegelmann and J. Biichner: Evolution of magnetic helicity in the course of kinetic magnetic reconnection 135

By

.07

_6—6—4—20 246 - 0.08

X
6 Epar .07
a
2
N O ‘

_2 ™

_4

-6
—6-4-20 246 ~_-0.05

X

Helicity

6 0.06
4
2 * o
N O
Y <
-4
—6
—6-4-20 24 6 - _0.06
X
Ey 0.04

_6—&4~2o 246 - o0.05
X

Fig. 7. Case 3: Perpendicular magnetic field (in 10~3 G), helicity density (in G2cm), parallel electric field (in 10~2 G) and perpendicular
electric field (in 103 CGS|g)) after magnetic reconnection has occurred in the framework of 3D PIC-simulations with a 3D magnetic field
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gion, in case for general magnetic reconnection (Schindler et
al., 1988). One finds a finite £ of the same order of mag-
nitude as E,. The very regular structure of the reconnection
electric field, as seen in the 2D-case, disappears in the 3D
case. The upper right panel of Fig. 10 shows the time evolu-
tion of the helicity density, integrated over the diagonal op-
posite wings of the reconnection plane. The helicity density
in the wings changes as in the pure 2D case. The total he-
licity is not exactly conserved here, but exact conservation
of helicity is only expected for B = 0 reconnection, while
for finite B reconnection, the helicity may slowly dissipated.
We find, however, that the total helicity is still approximately
conserved. Finite B reconnection allows E - B # 0 (finite
Ey).

4.2.4 Case 3 (3D PIC, 3D perturbation, Fig. 7)

The structure of B, and the helicity density, shown in the
upper panel of Fig. 7, is less fuzzy here than in case 2. In-
stead, it resembles the pure quadrupolar structure in case 1
(2D Vlasov). The reason is that due to the fast reconnection,
the current instability does not succeed in growing to an es-
sential amplitude. A main difference is, however, that E,
which was negligible in case 1, dominates here (lower pan-
els). The parallel electric fields even exceed E,. While the
structure of E| is quadrupolar similar to the 2D case, the am-
plitude of the parallel electric field is by a factor of 20 higher.
The total helicity is approximately conserved during the time
evolution, as presented by the thick solid line in the lower left
panel of Fig. 10.

4.2.5 Case 4 (3D spontaneous reconnection, Fig. 8)

As one sees in the upper panels of Fig. 8, in the case of spon-
taneous 3D-reconnection, neither B, nor the helicity density
contains the quadrupolar structure, as observed in cases 1-3.
Instead, there seems to be a dipole structure for both B, and
the helicity. In contrast to the other three cases of triggered
reconnection, however, the structure of B, and helicity den-
sity are not similar. The helicity density in the wings, which
would correspond to a quadrupolear structure, is oscillating
(lower right panel of Fig. 10). This oscillation corresponds to
the current driven unstable wave moving through the struc-
ture. The coupling of kinetic current instabilities and recon-
nection dominates here. The helicity is only approximately
conserved, as in cases 2 and 3; this corresponds to the de-
velopment of a finite £y component, i.e. a finite magnetic
field component B, (lower left panel of Fig. 8). The ampli-
tude of the parallel electric field is approximately half of E
presented in the lower right panel of Fig. 8. The intrinsic
3D structure of magnetic reconnection (Biichner and Kuska,
1996; Pritchett et al., 1996; Blichner, 1999; Zhu and Winglee,
1996), which occurs in case 4, can certainly not contain very
special constraints, such as a vanishing magnetic field in the
reconnection region, and a corresponding vanishing paral-
lel electric field (or E - B = 0), as in case 1. While these
constraints are necessary to ensure an exact conservation of

magnetic helicity, the helicity can slowly dissipate as a result
of 3D magnetic reconnection.

4.3 Diagnostics regarding quadrupolar and dipolar struc-
ture

Let us now concentrate on the question of whether we ob-
serve a quadrupolar or dipolar structure in the helicity den-
sity in the four different cases. In order to do so, we show
the time evolution of the different contributions to the helic-
ity in Fig. 11. The solid lines depict the quadrupolar com-
ponent, the thick dotted line depicts the dipolar component
with asymmetry in x, and the dashed line depicts the dipolar
component with asymmetry in z. For the 2D case (upper left
panel), we observe a pure quadrupolar structure and no dipo-
lar component of the helicity structure. A quadrupolar part
of the helicity is also always available in the 3D cases, but
the structure also contains a dipolar component in 3D. In all
investigated cases, the x dipolar component is stronger than
the z dipolar one; its amplitude is only somewhat lower than
the quadrupole part of the helicity density structure for case 2
(3D with 2D-perturbation, upper right panel of Fig. 11). For
case 3 (3D with 3D-perturbation, lower left panel of Fig. 11)
this dipolar part is available as well, but its amplitude is far
lower than the amplitude of the quadrupole. We note that
the absolute amplitude of the quadrupolar component is by
a factor of 4 larger than in the other cases, and the absolute
dipolar amplitude is of the same order of magnitude for cases
2 and 3. For case 4 (spontaneous 3D without any perturba-
tion, lower right panel of Fig. 11), we can still identify a
quadrupolar part of the helicity structure; its absolute ampli-
tude in the reconnected state is of the same order of magni-
tude as in cases 1 and 2. The amplitude of the main dipolar
part, however, is dominating by a factor of about 3 over the
quadrupole amplitude. The dipolar component’s amplitude
oscillates in correspondence with the drift current instability
moving through the structure. The dipolar part in the helicity
structure, which is present in all 3D simulations (and thus, in
all cases where drift current instabilities occur) explains the
differences in the helicity density structure between pure 2D
and 3D reconnection. Due to the overwhelming drift current
instabilities and thus, the overwhelming dipole structure in
the helicity structure, naked eye observation, e.g. Fig. 8, do
not show the quadrupole component, although it is always
present.

4.4 3D helicity density structure

While we have shown the helicity density structure in the
center plane y = 0 in the upper right panels of Figs. 5-8
for the four investigate cases, we present the 3D structure of
the helicity density in Fig. 9. Here, we show 3D equicontour
surfaces after reconnection has occurred (same times as in
the 2D cuts). The red surfaces correspond to a positive helic-
ity and the green surfaces correspond to a negative helicity.
(The surfaces correspond to a helicity density of 30% of the
maximum amplitude.)
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Fig. 9. Equicontourplots of magnetic helicity density (positive red, negative green, 0.3 of maximum) for 2D (upper left), 3D with 2D
perturbation (upper right), 3D with 3D perturbation (lower left) and spontaneous 3D (lower right) after reconnection has occurred.

— Case 1 (2D Vlasov, Fig. 9 upper left panel): The panel — Case 3 (3D PIC with 3D perturbation, Fig. 9 lower left
shows the pure quadrupolar structure, invariantin y, due panel): The helicity structure becomes more complex,
the 2D approach (3/0y = 0). due to the 3D magnetic field perturbation. The pure

quadrupole is present only in the plane y = 0 (similar
to cases 1 and 2). The helicity density changes its sign
along the y-axis. This is certainly not an intrinsic effect
of the reconnection process itself, but obviously occurs
due to the construction of the perturbing magnetic field,
which enforces the 3D structure.

— Case 2 (3D PIC with 2D perturbation, Fig. 9 upper right
panel): The quadrupolar structure is still present here,
but the helicity densities are becoming structured in the
current direction (y), as a result of a current instability.
The structure is no longer purely quadrupolar, as men-
tioned before, while the naked eye observations would — Case 4 (3D PIC spontaneous, Fig. 9 lower right panel):
still speak in favour of a fuzzy quadrupole. Here the helicity density shows a somewhat fuzzy dipole,
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asymmetric in x, because the dipolar part of the helicity
density is clearly dominating, as a result of the evolution
of the current instability.

5 Conclusions and outlook

In this paper, we investigated the helicity evolution in 2D
and 3D kinetic reconnection, with the help of numerical sim-
ulations, using a Vlasov code in 2D and PIC simulations in
3D. We start with a Harris type current sheet, with a sheet
width comparable to the ion gyroradius. Our results confirm
the prediction of Terasawa (1983), that in 2D, the magnetic
structure exhibits a pure quadrupolar structure in the recon-
nection region, and the magnetic field becomes distorted per-
pendicular to the reconnection plane. The overall helicity is
conserved. In accordance with the general magnetic recon-
nection investigations (Schindler et al., 1988), the parallel
electric field and the magnetic field vanishes in the 2D re-
connection region (B = 0 reconnection, E - B = 0 recon-
nection ). While the helicity conservation was predicted for
this special case of magnetic reconnection within the frame-
work of MHD investigations, it certainly could not explain
the local helicity density structure around the X-point. The
situation becomes more difficult in 3D. Here, additional drift
current instabilities occur in the current direction (Buichner
and Kuska, 1999) and couple with the magnetic reconnection
process (Blichner, 1999; Wiegelmann and Biichner, 2000).
The consequence for the local helicity density distribution is
that a dipolar magnetic structure additionally evolves in 3D,
which eventually becomes dominating. 3D reconnection is
characterized by essential amounts of parallel electric fields.
As a result, the overall helicity is no longer conserved, as in
2D (B = 0 and E - B = 0). While the concept of general
magnetic reconnection within the framework of MHD just
assumes an intrinsic 3D magnetic field in the reconnection
region, our kinetic simulations of thin current sheets iden-
tified kinetic current instabilities as its possible cause. Our
simulations also confirm parallel electric fields and slow time
variation of the total helicity. Additionally, they give insights
into the local helicity density structure in the reconnection
region and identify physical reasons for different behaviour
of 2D and 3D magnetic reconnection. As a next step, we
will investigate the influence of an external magnetic shear
component, By, in the initial Harris sheet configuration. The
results will be presented in a subsequent paper.
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