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ABSTRACT

Context. Knowledge about the coronal magnetic field is important to the understanding of many phenomena, such as flares and
coronal mass ejections. Routine measurements of the solar magnetic field vector are traditionally carried out in the photosphere. We
compute the field in the higher layers of the solar atmosphere from the measured photospheric field under the assumption that the
corona is force-free. However, those measured data are inconsistent with the above force-free assumption. Therefore, one has to apply
some transformations to these data before nonlinear force-free extrapolation codes can be applied.
Aims. Extrapolation codes of cartesian geometry for medelling the magnetic field in the corona do not take the curvature of the
Sun’s surface into account. Here we develop a method for nonlinear force-free coronal magnetic field medelling and preprocessing of
photospheric vector magnetograms in spherical geometry using the optimization procedure.
Methods. We describe a newly developed code for the extrapolation of nonlinear force-free coronal magnetic fields in spherical
coordinates over a restricted area of the Sun. The program uses measured vector magnetograms on the solar photosphere as input and
solves the force-free equations in the solar corona. We develop a preprocessing procedure in spherical geometry to drive the observed
non-force-free data towards suitable boundary conditions for a force-free extrapolation.
Results. We test the code with the help of a semi-analytic solution and assess the quality of our reconstruction qualitatively by
magnetic field line plots and quantitatively with a number of comparison metrics for different boundary conditions. The reconstructed
fields from the lower boundary data with the weighting function are in good agreement with the original reference fields. We added
artificial noise to the boundary conditions and tested the code with and without preprocessing. The preprocessing recovered all main
structures of the magnetogram and removed small-scale noise. The main test was to extrapolate from the noisy photospheric vector
magnetogram with and without preprocessing. The preprocessing was found to significantly improve the agreement between the
extrapolated and the exact field.
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1. Introduction

The magnetic field in the solar corona dominates over non-
magnetic forces such as plasma pressure and gravity because of
low plasma beta (Gary 2001). Knowledge of the coronal mag-
netic field is therefore important in understanding the structure
of the coronal plasma and obtaining insights into dynamical pro-
cesses such as flares and coronal mass ejections. Routine mea-
surements of the solar magnetic field are still mainly carried out
in the photosphere. Therefore, one has to infer the field strength
in the higher layers of the solar atmosphere from the measured
photospheric field based on the assumption that the corona is
force-free. The extrapolation methods involved in this assump-
tion include potential field extrapolation (Schmidt 1964; Semel
1967), linear force-free field extrapolation (Chiu & Hilton 1977;
Seehafer 1978, 1982; Semel 1988; Clegg et al. 2000), and non-
linear force-free field extrapolation (Amari et al. 1997, 1999,
2006; Cuperman et al. 1991; Demoulin et al. 1992; Mikic &
McClymont 1994; Roumeliotis 1996; Sakurai 1981; Valori et al.
2005; Wheatland 2004; Wiegelmann 2004; Wu et al. 1990; Yan
& Sakurai 2000).

Among these, the nonlinear force-free field has the most real-
istic description of the coronal magnetic field. The computation
of nonlinear force-free fields is however, more challenging for

several reasons. Mathematically, problems regarding the exis-
tence and uniqueness of various boundary value problems deal-
ing with nonlinear force-free fields remain unsolved (see Amari
et al. 2006, for details). Another issue is their numerical analysis
of given boundary values. An additional complication is to de-
rive the boundary data from observed photospheric vector mag-
netic field measurements, which are consistent with the force-
free assumption. High noise in the transverse components of the
measured field vector, ambiguities regarding the field direction,
and non-magnetic forces in the photosphere complicate the task
of deriving suitable boundary conditions from measured data.
For a more complete review of existing methods for comput-
ing nonlinear force-free coronal magnetic fields, we refer to the
review papers by Amari et al. (1997), Schrijver et al. (2006),
Metcalf et al. (2008), and Wiegelmann (2008).

The magnetic field is not force-free in either the photo-
sphere or the lower chromosphere (with the possible exception
of sunspot areas, where the field is strongest). Furthermore, mea-
surement errors, in particular for the transverse field components
(e.g. perpendicular to the line of sight of the observer), would de-
stroy the compatibility of a magnetogram with the condition of
being force-free. One way to ease these problems is to prepro-
cess the magnetograph data as suggested by Wiegelmann et al.
(2006). The vector components of the total magnetic force and
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the total magnetic torque on the volume considered are given
by six boundary integrals that must vanish if the magnetic field
is force-free in the full volume (Molodensky 1969; Aly 1984,
1989; Low 1985). The preprocessing changes the boundary val-
ues of B within the error margins of the measurement in such a
way that the moduli of the six boundary integrals are minimized.
The resulting boundary values are expected to be more suit-
able for an extrapolation into a force-free field than the original
values. In the practical calculations, the convergence properties
of the preprocessing iterations, as well as the calculated fields
themselves, are very sensitive to small-scale noise and appar-
ent discontinuities in the photospheric magnetograph data. This
problem should, in principle, disappear if small spatial scales
were sufficiently resolved. However, the numerical effort for that
would be enormous. The small-scale fluctuations in the magne-
tograms are also presumed to affect the solutions only in a very
thin boundary layer close to the photosphere (Fuhrmann et al.
2007). Therefore, smoothing of the data is included in the pre-
processing.

The good performance of the optimization method, as indi-
cated in Schrijver et al. (2006), encouraged us to develop a spher-
ical version of the optimization code such as in Wiegelmann
(2007) for a full sphere. In the first few sections of this paper, we
describe a newly developed code that originates from a cartesian
force-free optimization method implemented by Wiegelmann
(2004). Our new code takes the curvature of the Sun’s surface
into account when modeling the coronal magnetic field in re-
stricted area of the Sun. The optimization procedure considers
six boundary faces, but in practice only the bottom boundary
face is measured. On the other five faces, the assumed boundary
data may have a strong influence on the solution. For this reason,
it is desirable to move these faces as far away as possible from
the region of interest. This, however, eventually requires that the
surface curvature is taken into account.

DeRosa et al. (2009) compared several nonlinear force-free
codes in cartesian geometry with stereoscopic reconstructed
loops as produced by Aschwanden et al. (2008). The codes
used as input vector magnetograms from the Hinode-SOT-SP,
which were unfortunately available for only a very small field of
view (about 10 percent of the area spanned by STEREO-loops).
Outside the Hinode FOV (field of view) line-of-sight magne-
tograms from SOHO/MDI were used and in the MDI-area, dif-
ferent assumptions about the transversal magnetic field were
made. Unfortunately, the comparison inferred that when differ-
ent codes were implemented in the region outside the Hinode-
FOV in different ways, the resulting coronal magnetic field mod-
els produced by the separate codes were not consistent with the
STEREO-loops. The recommendations of the authors are that
one needs far larger high resolution vector magnetograms, the
codes need to account for uncertainties in the magnetograms,
and one must have a clearer understanding of the photospheric-
to-corona interface. Full disc vector magnetograms will soon be-
come available with SDO/HMI, but for a meaningful application
we have to take the curvature of the Sun into account and carry
out nonlinear force-free computations in spherical geometry. In
this paper, we carry out the appropriate tests. We investigate first
ideal model data and later data that contain artificial noise. To
deal with noisy data and data with other uncertainties, we de-
veloped a preprocessing routine in spherical geometry. While
preprocessing does not model the details of the interface be-
tween the forced photosphere and the force-free base of the solar
corona the procedure helps us to find suitable boundary condi-
tions for a force-free modelling from measurements with incon-
sistencies.

In this paper, we develop a spherical version of both the
preprocessing and the optimization code for restricted part of
the Sun. We follow the suggestion of Wiegelmann et al. (2006)
to generalize their method of preprocessing photospheric vector
magnetograms to spherical geometry just by considering the cur-
vature of the Sun’s surface for larger field of views. The paper
is organized as follows: in Sect. 2, we describe an optimization
procedure in spherical geometry; then, in Sect. 3, we apply it to a
known nonlinear force-free test field and calculate some figures
of merit for different boundary conditions. We derive force-free
consistency criteria and describe the preprocessing procedure in
spherical geometry in Sects. 4 and 5, respectively. In Sect. 6, we
use a known semi-analytic force-free model to check our method
and in Sect. 5, we apply the method to different noise models.
Finally, in Sect. 7, we draw conclusions and discuss our results.

2. Optimization procedure

Stationary states of the magnetic field configuration are de-
scribed by the requirement that the Lorentz force be zero.
Optimization procedure is one of several methods that have been
developed over the past few decades to compute the most general
class of those force-free fields.

2.1. Optimization principle in spherical geometry

Force-free magnetic fields must obey the equations

(∇ × B) × B = 0 , (1)

∇ · B = 0. (2)

Equations (1) and (2) can be solved with the help of an op-
timization principle, as proposed by Wheatland et al. (2000)
and generalized by Wiegelmann (2004) for cartesian geometry.
The method minimizes a joint measure (Lω) of the normalized
Lorentz forces and the divergence of the field throughout the
volume of interest, V . Here we define a functional in spherical
geometry (Wiegelmann 2007):

Lω =
∫

V
ω(r, θ, φ)

[
B−2

∣∣∣(∇×B)×B
∣∣∣2+ ∣∣∣∇·B∣∣∣2]r2 sin θdrdθdφ , (3)

where ω(r, θ, φ) is a weighting function and V is a computational
box of wedge-shaped volume, which includes the inner physical
domain V ′ and the buffer zone (the region outside the physical
domain), as shown in Fig. 3 of the bottom boundary on the pho-
tosphere. The physical domain V ′ is a wedge-shaped volume,
with two latitudinal boundaries at θmin = 20◦ and θmax = 160◦,
two longitudinal boundaries at φmin = 90◦ and φmax = 270◦,
and two radial boundaries at the photosphere (r = 1 R�) and
r = 2 R�. The idea is to define an interior physical region V ′ in
which we wish to calculate the magnetic field so that it fulfills the
force-free or MHS equations. We define V ′ to be the inner region
of V (including the photosphere) with ω = 1 everywhere includ-
ing its six inner boundaries δV ′. We use the position-dependent
weighting function to introduce a buffer boundary of nd = 6
grid points towards the side and top boundaries of the computa-
tional box, V . The weighting function,ω is chosen to be constant
within the inner physical domain V ′ and declines to 0 with a co-
sine profile in the buffer boundary region. The framed region
in Figs. 3a–c corresponds to the lower boundary of the physical
domain V ′ with a resolution of 48×62 pixels in the photosphere.

It is obvious that the force-free Eqs. (1) and (2) are ful-
filled when Lω equals zero. For fixed boundary conditions, the
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functional Lω in Eq. (3) can be numerically minimized with the
help of the iteration

∂B
∂t
= μF̃ , (4)

where μ is a positive constant and the vector field F̃ is calculated
from

F̃ = ωF + (Ωa × B) × ∇ω + (Ωb · B)∇ω, (5)

F=∇×(Ωa×B)−Ωa×(∇×B)+∇(Ωb·B)−Ωb(∇·B)+(Ω2
a+Ω

2
b)B, (6)

Ωa = B−2(∇ × B) × B, (7)

Ωb = B−2(∇ · B)B. (8)

The field on the outer boundaries is always fixed here as
Dirichlet boundary conditions. Relaxing these boundaries is pos-
sible (Wiegelmann & Neukirch 2003) and leads to additional
terms. For ω(r, θ, φ) = 1, the optimization method requires that
the magnetic field is given on all six boundaries of V ′. This
causes a serious limitation of the method because these data
are only available for model configurations. For the reconstruc-
tion of the coronal magnetic field, it is necessary to develop a
method that reconstructs the magnetic field only from photo-
spheric vector magnetograms (Wiegelmann 2004). Since only
the bottom boundary is measured, one has to make assumptions
about the lateral and top boundaries, e.g., assume a potential
field. This leads to inconsistent boundary conditions (see Aly
1989, regarding the compatibility of photospheric vector magne-
tograph data). With the help of the weighting function, the five
inconsistent boundaries are replaced by boundary layers and we
consequently obtain more flexible boundaries around the phys-
ical domain that will be adjusted automatically during the iter-
ation. This diminishes the effect of the top and lateral bound-
aries on the magnetic field solution inside the computational box.
Additionally, the influence of the boundaries is diminished, the
farther we move them away from the region of interest.

The theoretical deviation of the iterative Eq. (4) as outlined
by Wheatland et al. (2000) does not depend on the use of a spe-
cific coordinate system. Previous numerical implementations of
this method were demonstrated by Wiegelmann (2007) for the
full sphere. Within this work, we use a spherical geometry, but
for only a limited part of the sphere, e.g., large active regions,
several (magnetically connected) active regions and full disc
computations. Full disc vector magnetograms should become
available soon from SDO/HMI. This kind of computational box
will become necessary when the observed photospheric vector
magnetogram becomes available for only parts of the photo-
sphere.

We use a spherical grid r, θ, φ with nr, nθ, nφ grid points in
the direction of radius, latitude, and longitude, respectively. We
normalize the magnetic field with the average radial magnetic
field on the photosphere and the length scale with a solar radius.
The method works as follows:

1. we compute an initial source surface potential field in the
computational domain from Br in the photosphere at r =
1 R�;

2. we replace Bθ and Bφ at the bottom photospheric boundary at
r = 1 R� with the measured vector magnetogram. The outer
radial and lateral boundaries are unchanged from the initial
potential field model. For the purpose of code testing, we
also tested different boundary conditions (see next section);

3. we iterate for a force-free magnetic field in the computa-
tional box by minimizing the functional L of Eq. (3) by ap-

plying Eq. (4). For each iteration step (k), the vector field F̃
(k)

is calculated from the known field B(k), and a new field may

simply be computed as B(k+1) = B(k) + F̃
(k)
Δt for sufficiently

small Δt;
4. the continuous form of Eq. (4) ensures a monotonically de-

creasing functional L. For finite time steps, this is also en-
sured if the iteration time step dt is sufficiently small. If
L(t + dt) ≥ L(t), this step is rejected and we repeat this step
with dt reduced by a factor of 2;

5. after each successful iteration step, we increase dt by a factor
of 1.01 to ensure a time step as large as possible within the
stability criteria. This ensures an iteration time step close to
its optimum;

6. the iteration stops if dt becomes too small. As a stopping
criteria, we use dt ≤ 10−6.

2.2. Figures of merit

To quantify the degree of agreement between vector fields B (for
the input model field) and b (the NLFF model solutions) spec-
ified on identical sets of grid points, we use five metrics that
compare either local characteristics (e.g., vector magnitudes and
directions at each point) or the global energy content in addi-
tion to the force and divergence integrals as defined in Schrijver
et al. (2006). The vector correlation (Cvec) metric generalizes the
standard correlation coefficient for scalar functions given by

Cvec =
∑

i

Bi · bi

/ ⎛⎜⎜⎜⎜⎜⎝∑
i

|Bi|2
∑

i

|bi|2
⎞⎟⎟⎟⎟⎟⎠

1/2

, (9)

where Bi and bi are the vectors at each point grid i. If the vector
fields are identical, then Cvec = 1; if Bi ⊥ bi , then Cvec = 0.

The second metric, CCS is based on the Cauchy-Schwarz in-
equality (|a · b| ≤ |a||b| for any vector a and b)

CCS =
1
N

∑
i

Bi · bi

|Bi||bi| , (10)

where N is the number of vectors in the field. This metric is
mostly a measure of the angular differences between the vector
fields: CCS = 1, when B and b are parallel, and CCS = −1, if they
are anti-parallel; CCS = 0, if Bi ⊥ bi at each point.

We next introduce two measures of the vector errors, one
normalized to the average vector norm, one averaging over rela-
tive differences. The normalized vector error EN is defined as

EN =
∑

i

|bi − Bi|/
∑

i

|Bi|. (11)

The mean vector error EM is defined as

EM =
1
N

∑
i

|bi − Bi|
|Bi| . (12)

Unlike the first two metrics, perfect agreement between the two
vector fields results in EM = EN = 0.

Since we are also interested in determining how well the
models estimate the energy contained in the field, we use the
total magnetic energy in the model field normalized to the to-
tal magnetic energy in the input field as a global measure of the
quality of the fit

ε =

∑
i |bi|2∑
i |Bi|2 , (13)
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where ε = 1 for closest agreement between the model field and
the nonlinear force-free model solutions.

3. Test case and application to ideal boundary
conditions

3.1. Test case

To test the method, a known semi-analytic nonlinear solution is
used. Low & Lou (1990) presented a class of axisymmetric non-
linear force-free fields with a multipolar character. The authors
solved the Grad-Shafranov equation for axisymmetric force-free
fields in spherical coordinates r, θ, and φ. The magnetic field can
be written in the form

B =
1

r sin θ

(
1
r
∂A
∂θ

êr − ∂A
∂r

êθ + Qêφ

)
, (14)

where A is the flux function and Q represents the φ-component
of B, depending only on A. The flux function A satisfies the
Grad-Shafranov equation

∂2A
∂r2
+

1 − μ2

r2

∂2A
∂μ2
+ Q

dQ
dA
= 0 , (15)

where μ = cos θ. Low & Lou (1990) derive solutions for

dQ
dA
= α = const, (16)

by looking for separable solutions of the form

A(r, θ) =
P(μ)
rn

(17)

Low & Lou (1990) suggested that these field solutions are the
ideal solutions for testing methods of reconstructing force-free
fields from boundary values. They have become a standard test
for nonlinear force-free extrapolation codes in cartesian geome-
try (Amari et al. 1999, 2006; Wheatland et al. 2000; Wiegelmann
& Neukirch 2003; Yan & Li 2006; Inhester & Wiegelmann 2006;
Schrijver et al. 2006) because the symmetry in the solution is no
longer obvious after a translation that places the point source
outside the computational domain and a rotation of the symme-
try axis with respect to the domain edges.

Here we use a Low and Lou solution in spherical coordi-
nates. The solution used is labelled P1,1 with Φ = π/10, in Low
& Lou’s, notation (Low & Lou 1990). The original equilibrium
is invariant in φ, but we can produce a φ-variation in our coordi-
nate system by placing the origin of the solution at l = 0.25 solar
radius position from the sun centre. The corresponding configu-
ration is then no longer symmetric in φ with respect to the solar
surface, as seen in the magnetic field map in the top row of Fig. 3,
which shows the three components Br, Bθ, and Bφ on the pho-
tosphere, respectively. We remark that we use the solution only
for the purpose of testing our code and the equilibrium is not as-
sumed to be a realistic model for the coronal magnetic field. We
do the test runs on spherical grids (r, θ, φ) of 20 × 48 × 62 and
40 × 96 × 124 grid points.

3.2. Application to ideal boundary conditions

Here we used different boundary conditions extracted from the
Low and Lou model magnetic field.

– Case 1: the boundary fields are specified on V ′(all the six
boundaries δV ′ of V ′).

– Case 2: the boundary fields are only specified on the photo-
sphere (the lower boundary of the physical domain V ′).

– Case 3: the boundary fields are only specified on the photo-
sphere (the lower boundary of the physical domain V ′) and
with boundary layers (at the buffer zone) of nd = 6 grid
points toward top and lateral boundaries of the computa-
tional box V .

For the boundary conditions in case 1, the field line plot (as
shown in Fig. 1) agrees with original Low and Lou reference
field because the optimization method requires all boundaries
bounding the computational volume as boundary conditions.

For the boundary conditions in case 2, we used an optimiza-
tion code without a weighting function (nd = 0) and with a pho-
tospheric boundary. Here the boundaries of the physical domain
coincide with the computational boundaries. The lateral and top
boundaries assume the value of the potential field during the it-
eration. Some low-lying field lines are represented quite well
(right-hand picture in Fig. 1 second row). The field lines close to
the box center are of course close to the bottom boundary and far
away from the other boundaries. The (observed) bottom bound-
ary has a higher influence on the field here than the potential lat-
eral and top boundary. Other field lines, especially high-reaching
field lines, deviate from the analytic solution.

For the boundary condition in case 3, we implemented an op-
timization code with a weighting function of nd = 6 grid points
outside the physical domain. This reduces the effect of top and
lateral boundaries where B is unknown as ω drops from 1 to 0
outward across the boundary layer around the physical domain.

The comparison of the field lines of the Low & Lou model
field with the reconstructed field of case 3 (the last picture in
Fig. 1) shows that the quality of the reconstruction improves sig-
nificantly with the use of the weighting function. Additionally,
the size and shape of a boundary layer influences the quality
of the reconstruction (Wiegelmann 2004) for cartesian geome-
try. The larger computational box displaces the lateral and top
boundary further away from the physical domain and its influ-
ence on the solution consequently decreases. As a result, the
magnetic field in the physical domain is dominated by the vector
magnetogram data, which is exactly what is required for appli-
cation to measured vector magnetograms. A potential field re-
construction obviously does not agree with the reference field.
In particular, we are in able to compute the magnetic energy
content of the coronal magnetic field to be approximately cor-
rect. The figures of merit show that the potential field is far away
from the true solutions and contains only 67.6% of the magnetic
energy.

The degree of convergence towards a force-free and
divergence-free model solution can be quantified by the integral
measures of the Lorentz force and divergence terms in the min-
imization functional in Eq. (3), computed over the entire model
volume V:

Lf =

∫
V
ω(r, θ, φ)B−2

∣∣∣(∇ × B) × B
∣∣∣2r2 sin θdrdθdφ,

Ld =

∫
V
ω(r, θ, φ)

∣∣∣∇ · B∣∣∣2r2 sin θdrdθdφ,

Lω = Lf + Ld,

where Lf and Ld measure how well the force-free and
divergence-free conditions are fulfilled, respectively. In Table 1,
we list the figures of merit for our extrapolations results as intro-
duced in previous section. Column 1 indicates the corresponding
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(a) Original (b) Potential

(c) Case 1 (d) Case 2

(e) Case 3

Fig. 1. The figure shows the original reference
field, a potential field, and the results of a non-
linear force-free reconstruction with different
boundary conditions (case 1–3, see text). The
color coding shows Br on the photosphere and
the disc centre corresponds to 180◦ longitude.

test case. Columns 2–4 show how well the force and solenoidal
condition are fulfilled, where Col. 2 contains the value of the
functional Lω as defined in Eq. (3) and Lf and Ld in Cols. 3 and 4
correspond to the first (force-free) and second (solenoidal free)
part of Lω. The evolution of the functional Lω, | j× B|, and |∇ · B|
during the optimization process is shown in Fig. 2. One can see
from this figure that the calculation does not converge for case 2,
because of the problematic boundaries where the fields are un-
known. Column 5 contains the L∞ norm of the divergence of the
magnetic field

‖ ∇ · B ‖∞= sup
x∈V
|∇ · B|

and Col. 6 lists the L∞ norm of the Lorentz force of the magnetic
field

‖ j × B ‖∞= sup
x∈V
| j × B|.

The next five columns of Table 1 contain different measure-
ments comparing our reconstructed field with the semi-analytic

reference field. The two vector fields agree perfectly if Cvec, CCS,
and ε are unity and if EN and EM are zero. Column 12 con-
tains the number of iteration steps until convergence, and Col. 13
shows the computing time on 1 processor.

A comparison of the original reference field (Fig. 1a) with
our nonlinear force-free reconstructions (cases 1–3) shows that
the magnetic field line plots agree with the original for case 1
and case 3 within the plotting precision. Case 2 shows some de-
viations from the original, but the reconstructed field lines are
much closer to the reference field than the initial potential field.
The visual inspection of Fig. 1 is supported by the quantitative
criteria shown in Table 1. For case 1 and case 3 the formal force-
free criteria (Lω, Lf , Ld) are smaller than the discretization error
of the analytic solution and the comparison metrics show almost
perfect agreement with the reference field. The comparison met-
rics (of Table 1) show that there is discrepancy between the ref-
erence field and case 2 as the magnetic field solution is affected
by nearby problematic top and lateral boundaries. In Fig. 1 we

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912529&pdf_id=1
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Table 1. Quality of our reconstructions with several figures of merit as explained in Sect. 3.2.

Model Lω Lf Ld ‖ ∇ · B ‖∞ ‖ j × B ‖∞ Cvec CCS EN EM ε Steps Time
Spherical grid 20 × 48 × 62

Original 0.029 0.015 0.014 1.180 1.355 1 1 0 0 1
Potential 0.020 0.007 0.014 1.706 1.091 0.736 0.688 0.573 0.535 0.676
Case 1 0.006 0.004 0.002 0.454 0.774 0.999 0.983 0.012 0.016 1.005 10 000 7.14 min
Case 2 33.236 7.806 25.430 47.843 24.135 0.757 0.726 0.397 0.451 0.745 110 1.28 min
Case 3 0.009 0.006 0.03 0.367 0.787 0.994 0.967 0.187 0.097 0.989 12 011 17.54 min

Spherical grid 40 × 96 × 124
Original 0.005 0.003 0.002 0.38 0.71 1 1 0 0 1
Potential 0.30 0.0003 0.30 0.44 0.23 0.67 0.77 0.70 0.67 0.75
Case 1 0.002 0.001 0.0006 0.38 0.32 0.998 0.999 0.004 0.007 1.001 12 522 1 h 21 min
Case 2 26.27 10.20 16.07 20.40 30.53 0.799 0.759 0.411 0.456 0.798 5673 1 h 1 min
Case 3 0.24 0.20 0.04 0.630 0.747 0.996 0.971 0.186 0.112 0.996 12 143 4 h 57 min

We compute the figures for the three different cases along with the model reference field and potential field.

Fig. 2. Evolution of Lω (as defined in Eq. (3)), max(|force|), and
max(|divB|) during the optimization process. The solid line corresponds
to case 3, the dash-dotted line to case 1, the long-dashed line to case 2.

compare magnetic field line plots of the original model field with
a corresponding potential field and nonlinear force-free recon-
structions with different boundary conditions (case 1–case 3).
The colour coding shows the radial magnetic field in the photo-
sphere, as also shown in the magnetogram in Fig. 3a. The images
show the results of the computation on the 20 × 48 × 62 grid.

4. Consistency criteria in spherical geometry

A more fundamental requirement of the boundary data is its con-
sistency with the force-free field approximation. As shown by
Molodensky (1969) and Aly (1989), a balance between the total
momentum and angular momentum exerted onto the numerical
box in cartesian geometry by the magnetic field leads to a set of
boundary integral constraints on the magnetic field. These con-
straints should also be satisfied on the solar surface for the field
at the coronal base in the vicinity of a sufficiently isolated mag-
netic region and in a situation where there is no rapid dynamical
development. As explained in detail in Molodensky (1974), the
sense of these relations is that on average a force-free field can-
not exert a net tangential force on the boundary or shear stresses
along axes lying along the boundary. In summary, the boundary
data for the force-free extrapolation should fulfill the following
conditions:

1. the boundary data should coincide with the photospheric ob-
servations within measurement errors;

2. the boundary data should be consistent with the assumption
of a force-free magnetic field above;

3. for computational reasons (finite differences), the boundary
data should be sufficiently smooth.

Additional a-priori assumption is about the photospheric data are
that the magnetic flux from the photosphere is sufficiently distant
from the boundaries of the observational domain and that the net
flux is balanced, i.e.,∫

S
Br(r = 1Rs, θ, φ)dΩ = 0, (18)

where S is the area of a bottom boundary of the physical domain
on the photosphere.

Generally, the flux balance criterion must be applied to the
entire, closed surface of the numerical box. However, we can
only measure the magnetic field vector on the bottom photo-
spheric boundary and the contributions of the lateral and top
boundary remain unspecified. However, if a major part of the
known flux from the bottom boundary is uncompensated, the

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912529&pdf_id=2
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final force-free magnetic field solution will depend markedly
on how the uncompensated flux is distributed over the other
five boundaries. This would result in a major uncertainty on
the final force free magnetic field configuration. We therefore
demand that the flux balance is satisfied with the bottom data
alone (Wiegelmann & Inhester 2006). If this is not the case, we
classify the reconstruction problem as not being uniquely solv-
able within the given box. Aly (1989) used the virial theorem to
define the conditions that a vector magnetogram must fulfill to
be consistent with the assumption of a force-free field above in
cartesian geometry. Here in this paper, we assume the force-free
and torque-free conditions for spherical geometry as formulated
in Sakurai (1994), i.e.,

1. The total force on the boundary vanishes∫
S

[1
2

(
B2
θ + B2

φ − B2
r

)
sin θ cosφ−BrBθ cos θ cosφ

+ BrBφ sin φ
]
dΩ = 0, (19)

∫
S

[1
2

(
B2
θ + B2

φ − B2
r

)
sin θ sin φ − BrBθ cos θ sinφ

− BrBφ cosφ
]
dΩ = 0, (20)

∫
S

[1
2

(
B2
θ + B2

φ − B2
r

)
cos θ + BrBθ sin θ

]
dΩ = 0. (21)

2. The total torque on the boundary vanishes1

∫
S

Br

(
Bφ cos θ cosφ + Bθ sin φ

)
dΩ = 0, (22)

∫
S

Br

(
Bφ cos θ sin φ − Bθ cosφ

)
dΩ = 0, (23)

∫
S

BrBφ sin θdΩ = 0. (24)

As with the flux balance, these criteria must in general, be ap-
plied to the entire surface of the numerical box. Since we as-
sumed that the photospheric flux is sufficiently concentrated in
the center and the net flux is in balance, we can expect the mag-
netic field on the lateral and top boundaries to remain weak and
hence these surfaces do not represent a significant contribution
to the integrals of the constraints above. We therefore impose the
criteria on the bottom boundary alone. From this beginning, we
use the following notation for simplicity:

E−B =
1
2

(
B2
θ + B2

φ − B2
r

)
, EB =

∫
S

(
B2

r + B2
θ + B2

φ

)
dΩ,

B1 = Bθ cos θ cosφ − Bφ sin φ, B2 = Bθ cos θ sin φ + Bφ cosφ,

B3 = Bφ cos θ cosφ + Bθ sin φ, B4 = Bφ cos θ sinφ − Bθ cosφ.

To quantify the quality of the vector magnetograms with re-
spect to the above criteria, we introduce three dimensionless

1 See Appendix A for derivation of those torque-balance equations.

parameters similar to those in Wiegelmann et al. (2006), but now
for spherical geometry:

1. The flux balance parameter

εflux =

∫
S

BrdΩ∫
S
|Br|dΩ

.

2. The force balance parameter

εforce =

(∣∣∣∣ ∫
S

[
E−B sin θ cosφ−BrB1

]
dΩ

∣∣∣∣+∣∣∣∫
S

[
E−B sinθ sin φ

− BrB2

]
dΩ

∣∣∣+∣∣∣ ∫
S

[
E−B cosθ+BrBθsin θ

]
dΩ

∣∣∣)/EB.

3. The torque balance parameter

εtorque=

(∣∣∣∫
S

BrB3dΩ
∣∣∣+∣∣∣∫

S
BrB4dΩ

∣∣∣+∣∣∣ ∫
S

BrBφsin θdΩ
∣∣∣)/EB

An observed vector magnetogram is then flux-balanced and con-
sistent with the force-free assumption if: εflux 
 1, εforce 
 1
and εtorque 
 1.

5. Preprocessing method
The strategy of preprocessing is to define a functional L of the
boundary values of B, such that on minimizing L the total mag-
netic force and the total magnetic torque on the considered vol-
ume, as well as a quantity measuring the degree of small-scale
noise in the boundary data, simultaneously become small. Each
of the quantities to be made small is measured by an appropri-
ately defined subfunctional included in L. The different subfunc-
tionals are weighted to control their relative importance. Even
if we choose a sufficiently flux balanced isolated active region
(εflux 
 1), we find that the force-free conditions εforce 
 1 and
εtorque 
 1 are not usually fulfilled for measured vector mag-
netograms. We therefore conclude, that force-free extrapolation
methods should not be used directly on observed vector mag-
netograms (see Gary 2001 for β > 1 in photosphere), particu-
larly not on very noisy transverse photospheric magnetic field
measurements. The large noise in the transverse components of
the photospheric field vector, which is one order of magnitude
higher than the LOS-field (∼the transverse Bθ and Bφ at the bot-
tom boundary), provides us freedom to adjust these data within
the noise level. We use this freedom to drive the data towards
being more consistent with Aly’s force-free and torque-free con-
ditions.

The preprocessing scheme of Wiegelmann et al. (2006) in-
volves minimizing a two-dimensional functional of quadratic
form similar to the following:

L = μ1L1 + μ2L2 + μ3L3 + μ4L4. (25)

Here we write the individual terms in spherical co-ordinates as:

L1 =

(∑
p

[
E−B sin θ cosφ−BrB1

]
sin θ

)2
+

(∑
p

[
E−B sin θ sin φ

− BrB2

]
sin θ

)2
+

(∑
p

[
E−B cos θ+BrBθsinθ

]
sin θ

)2
, (26)

L2 =

(∑
p

BrB3 sin θ
)2
+

(∑
p

BrB4 sin θ
)2
+

(∑
p

BrBφ sin2 θ
)2
,

(27)
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L3 =
∑

p

(
Br−Brobs

)2
+
∑

p

(
Bθ − Bθobs

)2
+
∑

p

(
Bφ−Bφobs

)2
, (28)

L4 =
∑

p

[(
ΔBr

)2
+
(
ΔBθ

)2
+
(
ΔBφ

)2]
(29)

The surface integrals are replaced by a summation
( ∫

S
dΩ →

Σp sin θΔθΔφ, omitting the constant ΔθΔφ over all p grid nodes
of the bottom surface grid, with an elementary surface of
sin θΔφ × Δθ

)
. The differentiation in the smoothing term (L4)

is achieved by the usual five-point stencil for the 2D-Laplace
operator. Each of the constraints Ln is weighted by a yet unde-
termined factor μn. The first term (n = 1) corresponds to the
force-balance condition, and the next (n = 2) to the torque-free
condition. The following term (n = 3) ensures that the optimized
boundary condition agrees with the measured photospheric data,
and that the last term (n = 4) controls the smoothing. The 2D-
Laplace operator is designated by Δ.

The aim of our preprocessing procedure is to minimize L so
that all terms Ln, if possible, become small simultaneously. This
will yield a surface magnetic field:

Bmin = argmin(L). (30)

Besides a dependence on the observed magnetogram, the solu-
tion in Eq. (25) now also depends on the coefficients μn. These
coefficients are a formal necessity because the terms Ln represent
different quantities. By means of these coefficients, however, we
can also give more or less weight to the individual terms in the
case where a reduction in one term opposes a reduction in an-
other. This competition obviously exists between the observation
term (n = 3) and the smoothing term (n = 4). The smoothing is
performed consistently for all three magnetic field components.

To obtain Eq. (30) by iteration, we need the derivative of L
with respect to each of the three field components at every node
(q) of the bottom boundary grid. We have, however, taken into
account that Br is measured with much higher accuracy than Bθ
and Bφ. This is achieved by assuming that the vertical component
is invariable compared to horizontal components in all terms
where mixed products of the vertical and horizontal field com-
ponents occur, e.g., within the constraints (Wiegelmann et al.
2006). The relevant functional derivatives of L are therefore2

∂L
∂(Bθ)q

= 2μ1(Bθ sin2 θ cosφ − Br sin θ cos θ cosφ)q

×
∑

p

[
E−B sin θ cosφ − BrB1

]
sin θ

+ 2μ1(Bθ sin2 θ sin φ − Br sin θ cos θ sinφ)q

×
∑

p

[
E−B sin θ sinφ − BrB2

]
sin θ

+ 2μ1(Bθ sin θ cos θ + Br sin2 θ)q (31)

×
∑

p

[
E−B cos θ + BrBθ sin θ

]
sin θ

+ 2μ2

[
(Br sin θ sin φ)q

∑
p

BrB3 sin θ

− (Br sin θ cosφ)q

∑
p

BrB4 sin θ
]

+ 2μ3(Bθ − Bθobs)q + 2μ4(Δ(ΔBθ))q,

2 See Appendix B for partial derivative of L4 with respect to each of
the three field components.

∂L
∂(Bφ)q

= 2μ1(Bφ sin2 θ cosφ + Br sin θ sin φ)q

×
∑

p

[
E−B sin θ cosφ − BrB1

]
sin θ

+ 2μ1(Bφ sin2 θ sin φ − Br sin θ cosφ)q

×
∑

p

[
E−B sin θ sin φ − BrB2

]
sin θ

+ 2μ1(Bφ sin θ cos θ)q

∑
p

[
E−B cos θ + BrBθ sin θ

]
sin θ

+ 2μ2

[
(Br cos θ cosφ sin θ)q

∑
p

BrB3 sin θ

+ (Br cos θ sinφ sin θ)q

∑
p

BrB4 sin θ

+ (Br sin2 θ)q

∑
p

BrBφ sin2 θ
]
+ 2μ3(Bφ − Bφobs)q

+ 2μ4(Δ(ΔBφ))q, (32)

∂L
∂(Br)q

= 2μ3(Br − Brobs)q + 2μ4(Δ(ΔBr))q. (33)

The optimization is performed iteratively by a simple Newton or
Landweber iteration, which replaces

(Br)q ←− (Br)q − μ ∂L
∂(Br)q

, (34)

(Bθ)q ←− (Bθ)q − μ ∂L
∂(Bθ)q

, (35)

(Bφ)q ←− (Bφ)q − μ ∂L
∂(Bφ)q

, (36)

at every step. The convergence of this scheme towards a solu-
tion of Eq. (25) is obvious: L has to decrease monotonically
at every step as long as Eqs. (26)–(28) have a nonzero compo-
nent. These terms, however, vanish only if an extremum of L is
reached. Since L is fourth order in B, this may not necessarily be
a global minimum; in rare cases, if the step size is handled care-
lessly, it may even be a local maximum. In practical calculation,
this should not, however, be a problem and from our experience
we rapidly obtain a minimum Bmin of L, once the parameters μn
are specified (Wiegelmann et al. 2006).

6. Application to different noise-models

We extract the bottom boundary of the Low and Lou equilibrium
and use it as input for our extrapolation code (see Wiegelmann
2004). This artificial vector magnetogram (see first row of Fig. 3)
extrapolated from a semi-analytical solution is of course in per-
fect agreement with the assumption of a force-free field above
(Aly-criteria) and the result of our extrapolation code was in rea-
sonable agreement with the original. True measured vector mag-
netograms are not ideal (and smooth) of course, and we simulate
this effect by adding noise to the Low and Lou magnetogram
(Wiegelmann et al. 2006). We add noise to this ideal solution in
the form:

Noise model I:
δBi = nl · rn · √Bi, where nl is the noise level and rn a random
number in the range −1...1. The noise level was chosen to be
nl = 10.0 for the transverse magnetic field (Bθ, Bφ) and nl = 0.5
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Fig. 3. Top row: vector magnetogram derive from the Low and Lou solution. From left to right the three components Br, Bθ & Bφ are shown). Middle
row: the same magnetogram as in the first row, but with noise added (noise model I). Bottom row: magnetogram resulting from preprocessing of
the disturbed magnetogram shown in the second row. The magnetic fields are measured in gauss. The vertical and horizontal axes show latitude, θ
and longitude, φ on the photosphere respectively.

for Br. This mimics a real magnetogram (see the middle row of
Fig. 3) with Gaussian noise and significantly higher noise in the
transverse components of the magnetic field.

Noise model II:
δBi = nl · rn, where nl is the noise level and rn a random number
in the range −1...1. The noise level was chosen to be nl = 20.0
for the transverse magnetic field (Bθ, Bφ) and nl = 1.0 for Br).
This noise model adds noise, independent of the local magnetic
field strength.

Noise model III:
δBr = constant, δBt =

δB2
t min√

B2
t +B2

t min

, where we choose a constant

noise level δBr of 1 and a minimum detection level δBt min = 20.
This noise model mimics the effect in which the transverse
noise level is higher in regions of low magnetic field strength
(Wiegelmann et al. 2006).

The bottom row of Fig. 3 shows the preprocessed vector
magnetogram (for noise model I) after applying our procedure.
The aim of the preprocessing is to use the resulting magnetogram
as input for a nonlinear force-free magnetic field extrapolation.

Figure 4 shows in panel a) the original Low and Lou solution
and in panel b) a corresponding potential field reconstruction. In
Fig. 4 we present only the inner region of the whole magne-
togram (marked with black rectangular box in Fig. 3a) because
the surrounding magnetogram is used as a boundary layer (6 grid
points) for our nonlinear force-free code. The computation was
done on a 26×60×74 grid including a 6 pixel boundary layer to-
wards the lateral and top boundary of the computational box V .
In the remaining panels of Fig. 4, we demonstrate the effect of
the noise model (I) on the reconstruction. The noise levels were
chosen so that the mean noise was similar for all three noise
models. Figure 4c shows a nonlinear force-free reconstruction
with noisy data (noise model I, magnetogram shown in the cen-
tral panel of Fig. 3), and Fig. 4d presents a nonlinear force-free
reconstruction after preprocessing (magnetogram shown in the
bottom panel of Fig. 3). After preprocessing (see Fig. 4d), we
achieve far closer agreement with the original solution (Fig. 4a).
Field lines are plotted from the same photospheric footpoints in
the positive polarity.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912529&pdf_id=3
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(a) Original reference field (b) Potential field

(c) Field from noisy data (d) Field from preprocessed data

Fig. 4. a) Some field lines for the original
Low and Lou solution. b) Potential field recon-
struction. c) Nonlinear force-free reconstruction
from noisy data (noise model I) without prepro-
cessing. d) Nonlinear force-free reconstruction
from noisy data (noise model I) after prepro-
cessing the vector magnetogram with our newly
developed spherical code.

Table 2. Figures of merit for the three different noise models with and without preprocessing along with model reference field and potential field.

Model Preprocessed L L1 L2 ‖ ∇ · B ‖∞ ‖ j × B ‖∞ Cvec CCS EN EM ε Steps
Original 0.029 0.015 0.014 1.180 1.355 1 1 0 0 1
Potential 0.020 0.007 0.014 1.706 1.091 0.736 0.688 0.573 0.535 0.676
Noise model I No 22.015 8.612 13.403 25.531 11.671 0.819 0.767 0.337 0.421 0.861 1337
Noise model I Yes 0.105 0.066 0.039 1.746 1.806 0.951 0.947 0.197 0.105 0.964 12 191
Noise model II No 18.957 7.915 11.042 23.089 9.871 0.828 0.774 0.321 0.417 0.869 1484
Noise model II Yes 0.097 0.057 0.040 1.533 1.617 0.963 0.951 0.191 0.099 0.971 11 423
Noise model III No 17.718 7.615 10.103 20.763 8.992 0.859 0.781 0.310 0.402 0.873 1497
Noise model III Yes 0.081 0.043 0.038 1.382 1.407 0.979 0.957 0.189 0.098 0.982 10 378

For the other noise models II and III, we find that the pre-
processed data agree more closely with the original Fig. 4a. We
check the correlation of the original solution with our recon-
struction with help of the vector correlation function as defined
in (9).

Table 2 confirms the visual inspection of Fig. 4. The corre-
lation of the reconstructed magnetic field with the original im-
proves significantly after preprocessing of the data for all noise
models. We knew already from previous studies (Wiegelmann
& Neukirch 2003; Wiegelmann 2004) that noise and inconsis-
tencies in vector magnetograms have a negative influence on the
nonlinear force-free reconstruction, and the preprocessing rou-
tine described in this paper shows us how to overcome these
difficulties in the case of spherical geometry. As indicated by
Fig. 5, the higher the noise level we have added to the original

magnetogram, the smaller the vector correlation will be for the
field reconstructed from the magnetogram with noise, compared
with the reference field. However, the corresponding vector cor-
relations for the field reconstructed from the preprocessed mag-
netogram has no significant change as the code largely removes
the noise we have added to the original magnetogram with dif-
ferent noise levels.

7. Conclusion and outlook

In this paper, we have developed and tested the optimization
method for the reconstruction of nonlinear force-free coronal
magnetic fields in spherical geometry by restricting the code to
limited parts of the Sun, as suggested by Wiegelmann (2007).
The optimization method minimizes a functional consisting of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200912529&pdf_id=4
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Fig. 5. Vector correlation plotted against noise level for noise model I.

a quadratic form of the force balance and the solenoidal con-
dition. Without a weighting function, all the six boundaries are
equal likely to influence the solution. The effect of top and lat-
eral boundaries can be reduced by introducing a boundary layer
around the physical domain (Wiegelmann 2004). The physical
domain is a wedge-shaped area within which we reconstruct the
coronal magnetic field that is consistent with the photospheric
vector magnetogram data. The boundary layer replaces the hard
lateral and top boundary used previously. In the physical domain,
the weighting function is unity. It drops monotonically in the
boundary layer and reaches zero at the boundary of the com-
putational box. At the boundary of the computational box, we
set the field to have the value of the potential field computed
from Br at the bottom boundary. Our test calculations show that
a finite-sized weighted boundary yields far more reliable results.
The depth nd of this buffer boundary influences the quality of
reconstruction, since the magnetic flux in these test cases is not
concentrated well inside the interior of the box.

In this work, we have presented a method for preprocessing
vector magnetogram data to be able to use the preprocessing re-
sult as input for a nonlinear force-free magnetic field extrapola-
tion with help of an optimization code in spherical geometry. We
extended the preprocessing routine developed by Wiegelmann
et al. (2006) to spherical geometry. As a first test of the method,
we use the Low and Lou solution with added noise from differ-
ent noise models. A direct use of the noisy photospheric data
for a nonlinear force-free extrapolation showed no good agree-
ment with the original Low and Lou solution, but after applying
our newly developed preprocessing method we obtained a rea-
sonable agreement with the original. The preprocessing method
changes the boundary data within their noise limits to drive the
magnetogram towards boundary conditions that are consistent
with the assumption of a force-free field above. The transverse
field components with higher noise level are modified more than
the radial components.

To carry out the preprocessing, we use a minimization prin-
ciple. On the one hand, we control the final boundary data to
be as close as possible (within the noise level) to the original
measured data, and the data are forced to fulfill the consistency
criteria and be sufficiently smooth. Smoothness of the boundary
data is required by the nonlinear force-free extrapolation code,
but also necessary physically because the magnetic field at the
basis of the corona should be smoother than in the photosphere,
where it is measured. In addition to these, we found that adding a

larger amount of noise to the magnetogram decreases its vector
correlation with the model reference field whenever we recon-
struct it without preprocessing.

We plan to use this newly developed code for future mis-
sions such as SDO (Solar Dynamic Observatory) when full disc
magnetogram data become available.
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Appendix A: Torque-balance equations

To solve the torque-balance equations in Eqs.(22)–(24), we as-
sume that the volume integral of torque in the computational box
vanishes to fulfill the force-free criteria.∫

V

(
r × F

)
dV = 0, (A.1)

where the force F is

F =
1

4π
(∇ × B) × B. (A.2)

Substituting Eq. (A.2) into Eq. (A.1) and using vector identity

∇(A ·B) = A× (∇×B)+B× (∇× A)+ (A ·∇)B+ (B ·∇)A, (A.3)

along with the Gauss divergence theorem we can find the fol-
lowing expression∫

V

(
r × F

)
dV =

1
2

∫
S

B2
(
r × dS

)
−
∫

S

(
r × B

)(
B · dS

)
= 0. (A.4)

The vector dS is directed into the volume V , with dS =
R2� sin θdθdφêr. The origin of the vector r = R�êr is taken to be
the centre of the Sun. Therefore, Eq. (A.4) reduces to the form∫

S

(
r × B

)(
B · dS

)
= 0, (A.5)

since
(
r × dS

)
= 0. Where B = Brêr + Bθêθ + Bφêφ, we have

B · dS = R2�Br sin θdθdφ = R2�BrdΩ. By substituting the vector
r × B into Eq. (A.5), one can find∫

S

[
− R�Bφêθ + R�Bθêφ

]
BrR

2
�dΩ = 0. (A.6)

Hence the torque balance along the x-component will be

êx ·
[ ∫

S

(
− R�Bφêθ + R�Bθêφ

)
BrR

2
�dΩ

]
= 0, (A.7)

where êx is the unit vector along the x-axis. Normalizing this
equation by assuming that R� = 1, Eq. (A.7) reduces to∫

S
Br

(
Bφ cos θ cosφ + Bθ sin φ

)
dΩ = 0. (A.8)

Similarly one can obtain Eqs. (23) and (24).
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Appendix B: Partial derivative of L4

We derive the partial derivative of L4 with respect to each of
the three magnetic field components in its discretized form as
indicated in Eqs. (32)–(33). We used a five-point stencil on the
photospheric boundary for Laplace in L4. Those derivatives are
carried out at every node (q) of the bottom boundary grid. The
partial derivative of Eq. (29) with respect to Br, for instance can
be written as

∂L4

∂(Br)q
= 2

∑
p

(ΔBr)p
∂

∂(Br)q
(ΔBr)p. (B.1)

We demonstrated the effect of the derivative by using the conven-
tional Laplacian ΔBr in one dimension using three-point stencil
with geometry-dependent coefficients c & a. Then

(ΔBr)p = a(Br)p−1 + c(Br)p + a(Br)p+1, (B.2)

and after substituting Eq. (B.2) into the derivative term in
Eq. (B.1), we find

∂

∂(Br)q
(ΔBr)p =

∂

∂(Br)q

(
a(Br)p−1 + c(Br)p + a(Br)p+1

)
= aδp−1,q + cδp,q + aδp+1,q. (B.3)

Therefore, using Eq. (B.3), we can reduce Eq. (B.1) to

∂L4

∂(Br)q
= 2

∑
p

(ΔBr)p

(
aδp−1,q + cδp,q + aδp+1,q

)
= 2

∑
p

[
a(ΔBr)q+1 + c(ΔBr)q + a(ΔBr)q−1

]
(B.4)

= 2
∑

p

(
Δ(ΔBr)

)
q
.

One can similarly derive the partial derivative of L4 with respect
to the other two field components.
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