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ABSTRACT

The X-ray corona of the Sun consists of the diffuse X-ray
background and the bright X-ray loops (107 erg/cm2sec)
confined in the strong (100 Gauss) bipolar fields of mag-
netic active regions. The bipolar fields are rooted in
the solar granules which continually intermix the photo-
spheric footpoints of the bipolar fields and progressively
interlace the field lines. The intermixing is too slow to
produce MHD waves. The magnetic field is never far
from static equilibrium. The interlacing of the field lines,
on scales of100 − 1000 km, produces magnetic stresses
within the field that drive the field toward internal sur-
faces of tangential discontinuity (current sheets). This is
the familiar rapid reconnection process, in which the field
gradients are driven to ever increasing steepness, so that
the slight electrical resistivity soon eats up the interlacing
components of the field as fast as the magnetic stresses
can steepen the gradients.

We suggest that this process is the principal heat source
responsible for the X-ray corona of the Sun. It predicts
that there are large numbers of nanoflares and picoflares
throughout the X-ray loops. Katsukawa and Tsuneta find
evidence in the Yohkoh X-ray observations of myriads of
brightness fluctuations of the order of1021 − 1023 ergs
over times of 100 sec., opening the way for direct quanti-
tative observational studies of the phenomenon.
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1. INTRODUCTION

The quiet corona of the Sun seems to be heated largely by
the microflaring among the tiny magnetic features swept
into the boundaries of the supergranule convective cells
(Martin, 1984; Porter, et al. 1987; Porter and Moore,
1988). The estimated heat input to maintain the quiet
corona is about0.5 × 106 ergs/cm2sec (Withbroe and
Noyes, 1977). There appears to be sufficient energy in
the microflaring for that purpose, although more precise
observational studies are desirable. One imagines a suit-
able frequency spectrum of electromagnetic waves emit-

ted from the microflares to provide heating both near and
far out in the corona. The high ion temperature mea-
sured in the solar wind at 1 AU indicates active heating
for some considerable distance out into space.

The recent analysis of white light corona pictures by R.
Woo at the Jet Propulsion Laboratory adds a new dimen-
sion to the theory of heating in coronal holes. Comparing
high resolution pictures of the corona taken at intervals
of a few minutes, he finds strong variations in the indi-
vidual radial striations, suggesting that the striations may
be part of the coronal heating process. The characteris-
tic time is about the same as the life of the photospheric
granule. We note that an Alfvén wave created by a gran-
ule in a 10 Gauss field evolves, according to the WKB
approximation, into a supersonic wave elongated radially
as a consequence of the large Alfvén speed in the corona.

The active X-ray corona, on the other hand, confined
within the bipolar magnetic fields (102 Gauss) of ac-
tive regions, requires a heat input of the order of
107 ergs/cm2sec (Withbroe and Noyes, 1977), i.e. about
twenty times more than the quiet corona. So the mi-
croflaring is evidently not the major source of heat. The
X-ray emission spectrum of the X-ray corona indicates
that the temperature of the emitting gas is strongly inho-
mogeneous, ranging over1 − 5 × 106 K across the fine
(unresolved) filamentary structure along the field.

The photospheric convective cells - the granules - are
the only known source of free energy at the solar sur-
face with enough vigor to provide 107 ergs/cm2sec. The
characteristic scalel of the granules is5 × 102 km,
and the characteristic gas velocityv is of the order of
1 km/sec. Thus the characteristic granule turnover time
τ = l/v is of the order of5 × 102 sec. The gas density
is ρ ≈ 2 × 10−7 gm/cm3, so the kinetic energy density
is 1

2
ρv2 ≈ 103 ergs/cm3 and the characteristic convec-

tive energy flux is1

2
ρv3 ≈ 108 ergs/cm2sec, or about 10

times the heat input to the active corona. Consequently
the granules have been viewed as the likely source of heat
responsible for the active X-ray corona. The question is
how to convert the convective energy flux1

2
ρv3 into heat

in the million degree X-ray corona.

One possibility is Alfvén waves (cf. Alfvén, 1947) in-
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troduced into the 100 Gauss bipolar magnetic field by
the convective motions at the photospheric footpoints of
the field. So one approach has been to understand how
an Alfvén wave, with a photospheric velocity amplitude
comparable to the 1 km/sec granule velocity, might dissi-
pate in the bipolar field of the X-ray corona. Wave damp-
ing by resistivity, anomalous resistivity, viscosity, and
thermal conductivity have been considered, along with
the possibility of resonance, phase mixing, etc. The fun-
damental difficulty with the concept is simply that the
convective deformation of the bipolar field is too slow to
generate Alfvén waves . The Alfvén transit time around
a bipolar field of total lengthh is h/C, whereC is the
Alfvén speedB/(4πρ)1/2. The Alfvén speed in the X-
ray corona is typically2 × 103 km/sec (1010 hydrogen
ions/cm3, 102 Gauss), so the characteristic propagation
time around a bipolar field of lengthh = 105 km is
only 50 sec. Thus the slow moving, long lived granule,
with a correlation time of the order of 500 sec, provides
only a slow quasi-static deformation of the bipolar field.
To put it another way, a wave with a period of 500 sec
would have a wavelength of106 km, well in excess of the
0.7 × 106 km radius of the Sun.

Now the granules are turbulent, with Reynolds numbers
of the order of 108, so there must be smaller shorter lived
eddies within each granule. Assuming the classical Kol-
mogoroff spectrum, in which the velocityv(λ) of the ed-
dies with characteristic scaleλ is proportional toλ1/3, it
follows that the eddy life or correlation timeτ(λ) is pro-
portional toλ2/3. The energy flux1

2
ρv3 is proportional

to λ, and therefore proportional toτ3/2. So a reduction
in correlation time by a factor 10 reduces the power level
by a factor of about 30, and the available energy becomes
insufficient.

2. QUASI-STATIC FIELD DEFORMATION

It would appear that the basic quasi-static deformation of
the bipolar magnetic field must, somehow, provide the
principal heat input to the X-ray corona. The random
shuffling and intermixing of the photospheric footpoints
of the bipolar field continually interlace the field, provid-
ing the untidy field line topology sketched in Fig. 1 and
the associated magnetic free energy. The interlacing takes
place on the granule scale of5 × 102 km. The question
is how does the interlacing produce sufficient magnetic
dissipation to supply the107 ergs/cm2sec to maintain the
X-ray corona? The magnetic field at the photosphere is
in the form of intense and widely spaced magnetic fibrils,
with characteristic diameters of the order of 100 km and
field intensities of the order of 1500 Gauss. Thus, in an
active region where the mean field is 100 Gauss, the mag-
netic fibrils occupy a fraction 0.07 of the photosphere. So
the fibril separation is about 400 km, or roughly the same
as the characteristic scale, or correlation length, of the
granules. Hence, we expect the individual fibrils to move
with some degree of independence in the randomly shift-
ing convective motions of the granules. The interlacing

Figure 1. A schematic drawing of the magnetic field lines
in the bipolar field of an active region, showing the inter-
lacing produced by the random convective displacements
of the photospheric footpoints of the field.

of the flux bundles in the bipolar magnetic field above the
photosphere, sketched in Fig. 1, is the result.

Now the coronal flux bundle defined by an individual
fibril is displaced among the neighboring flux bundles,
soon developing an inclinationΘ relative to the mean
field direction, as do the neighboring flux bundles as
well. Then, if the individual flux bundles are not strongly
twisted, they are each flattened by the pressure of their
misaligned neighbors. We pointed out some years ago
(Parker, 1981a,b) that the flattening would reduce the
thicknessγ of a bundle, thereby enhancing the resistive
dissipation. For the record, then, the characteristic resis-
tive dissipation time over a scaleγ is γ2/4η, where the
resistive diffusion coefficientη = c2/4πσ in terms of
the electrical conductivityσ. For fully ionized hydrogen
η ≈ 0.5 × 1013/T 3/2 cm2/sec. Thus, at coronal tem-
peraturesη ≈ 104 cm2/sec. It follows that the resistive
dissipation over 100 km is3× 109 sec, or 102 years. Ifγ
is as small as 1 km, the dissipation time is3× 105 sec, or
3 days. We wondered if the flattening of the flux bundles
might provide sufficient dissipation. In retrospect, it is
not clear that the flattening and thinning of the individual
flux bundle can go far enough.

For instance, the cross sectional area of the flux bundle is
typically of the order of 104 km. Thus, if the thickness is
reduced to 1 km, the width becomes 104 km, and it is not
clear how so many thin sheets could be accommodated in
the interlaced topology of Fig. 1, remembering that the
over all scale of the bipolar region might not be much
larger than 104 km. That is to say, wide sheets stack up
like paper, rather than tangle and interlace like strings.

The concept of interlaced and mutually inclined flux bun-
dles has been revisited by Priest, Hayvaerts, and Tile
(2002) using up date observations of the magnetic fine
structure, where they refer to the dislocation of the indi-
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vidual flux bundles asflux tube tectonics. They point out
the additional complication that the magnetic flux of any
given photospheric magnetic fibril at one end of a bipo-
lar field may be presumed to connect into two or more
fibrils at the other end. Since each of the connected fib-
rils moves independently, one expects that the flux bun-
dle from a fibril splits directly into several flux bundles
all heading for different destinations at the other end of
the bipolar field (Longcope, 2001; Close, Hayvaerts, and
Priest, 2004; Close, Parnell, and Priest, 2004).

The problem, then, is to estimate the rate of dissipation
of magnetic energy at the current sheets. Passive resis-
tive diffusion at the discontinuity where two nonparallel
magnetic field components±B press together produces
an evolution of the field described by the error function
Berf[x/(4ηt)1/2] if the plasma does not move, wherex
represents distance measured perpendicular to the surface
of discontinuity atx = 0. The current density is

j(x, t) =
cB

4π(4πηt)1/2
exp

(

−
x2

4ηt

)

. (1)

The dissipation rate is

j(x, t)2

σ
=

B2

16π2t
exp

(

−
x2

2ηt

)

ergs/cm3sec. (2)

The dissipation per unit area is

2

∞
∫

0

dx
j2

σ
=

B2

8π

( η

2πt

)1/2

ergs/cm2sec, (3)

and the total energy dissipated in the timet is
(B2/8π)(2ηt/π)1/2 ergs/cm2 . The essential point is
that the rate of conversion of magnetic energy into heat
declines as1/t1/2 with the passage of time. Therefore,
without some ongoing dynamical effect, e.g. unlimited
flattening, to steepen the field gradient or rapid reconnec-
tion, the rate of dissipation quickly falls to negligible lev-
els.

3. UBIQUITOUS RAPID RECONNECTION

As it turns out, there is a general dynamical effect intro-
duced by the Maxwell stresses in the interlaced field line
topology of the bipolar magnetic field of Fig. 1, so that
the details of the interlacing become relatively unimpor-
tant. That is to say, the Maxwell stresses in the magnetic
field automatically drive the field gradients to steepen
without limit as a consequence of the expected interlaced
field topology (Parker, 1972, 1983, 1988). The dissipa-
tion of magnetic energy does not decline to zero with the
passage of time, but remains at some relatively high level.

So the magnetic field can be everywhere continuous ini-
tially, and, if the field topology involves any significant
interlacing, then the dynamical relaxation to static equi-
librium (the lowest available energy state) involves the
formation of surfaces of tangential discontinuity (TD’s)
in the field, i.e. current sheets of vanishing thickness and
unbounded intensity in the ideal case of a perfectly con-
ducting ambient fluid. This is, of course, the familiar phe-
nomenon ofrapid reconnectionof the magnetic field, and
the cause of magnetic flares on the Sun and other stars. It
is unavoidable in an untidy field topology. So the X-ray
corona of the Sun seems to be heated by the nanoflares
arising in the current sheets in the small-scale interlac-
ing of the bipolar magnetic fields, thanks to the peculiar
properties of the Maxwell stresses in the interlaced field
topology.

To show why and how the relaxation to the equilibrium
described by Eq. (7) causes rapid reconnection, consider
the idealized situation (Parker, 1986) in which a uniform
magnetic fieldB extends in thez-direction through an
ideal infinitely conducting fluid from an infinitely con-
ducting end plate atz = 0 to an infinitely conducting end
plate atz = L. At time t = 0 switch on the 2D incom-
pressible fluid motion,

vx = + kz
∂Ψ

∂y
, vy = − kz

∂Ψ

∂x
, vz = 0 , (4)

where the stream functionΨ = Ψ(x, z, kzt) is bounded,
continuous, andn-times differentiable, but otherwise ar-
bitrary. The endplate atz = L participates in this motion.
After a timet the magnetic field has the smooth bounded
continuous form

Bx = +Bkt
∂Ψ

∂y
, By = −Bkt

∂Ψ

∂x
, Bz = B , (5)

sketched in Fig. 2. At timet we turn off the motion and
hold both endplatesz = 0, L fixed while releasing the
fluid throughout0 < z < L so that the field can relax
to the lowest available energy state, i.e. stable equilib-
rium. A small viscosity is introduced to dissipate the mo-
tions over a period of time. The fluid pressure is main-
tained uniform at the endplates, with the result that the
fluid pressure is uniform throughout0 < z < L.

In the final asymptotic equilibrium state the Maxwell
stresses, described by the stress tensor

Mij = − δij
B2

8π
+

BiBj

4π
, (6)

are in equilibrium among themselves. The equilibrium
state is described by



4

∇× B(r) = α(r)B(r) , (7)

where the torsion coefficientα(r) is a scalar function of
position.

Now this equilibrium equation is an unusual partial dif-
ferential equation, having mixed characteristics. The curl
of the equilibrium equation yields

B×∇α = ∇
2
B + α2

B , (8)

while the divergence provides the simple restriction that

B · ∇α = 0 . (9)

It is evident from the Laplacian operator in Eq. (8) that the
equilibrium equation has two families of complex char-
acteristics. It is a quasilinear second order elliptic equa-
tion. On the other hand, it is evident from Eq. (9) that
the torsion coefficientα(r) is constant along each field
line, indicating that the field lines represent a family of
real characteristics. We recall that a characteristic curve
of a differential equation represents its own little world,
with specification of the unknown function anywhere on a
given characteristic curve determining the function every-
where else along the curve, but in no way determining the
function on the neighboring characteristic curves. Thus
the torsion coefficientα need not be continuous from one
characteristic curve to the next.

So the equilibrium Eq. (7) has both real and complex
characteristics, and therefore has properties beyond the
more familiar equations of physics, which are usually ei-
ther purely elliptic or purely hyperbolic. We must keep
this in mind as we proceed with the investigation.

Now the solar granules introduce random swirling and
mixing of the footpoints of the field, so we expect to find
the field lines to be wrapped about their neighbors first
one way and then the other at different locations along
each field line, as suggested by Fig. 1 and Fig. 2. This is
troubling because the torsion coefficientα is a measure
of the local circulation of magnetic field around the di-
rection of the field, which presumably varies in sign as
a field line circulates in one direction and then the other
around the neighboring field lines. However, Eq. (9) as-
serts that in equilibrium the torsion coefficient does not
vary along the field. Yet with the field tied at both ends
z = 0, L and no resistive dissipation of the field, there is
surely an equilibrium. This fact seems to bd contradicted
by Eq. (9).

To be clear on the physical implications of the torsion
coefficient, letΓ represent the magnetic circulation

Γ =

∮

C

ds ·B (10)

Figure 2. A schematic drawing of the interlaced field
lines produced by the 2D incompressible motion de-
scribed by the stream functionΨ(x, y, kzt).

around a small closed contourC circling the fieldB at
some pointP . In the limit of a small contour and a contin-
uous fieldB, it follows from Stokes’ theorem and Eq. (7)
that α = Γ/Φ, whereΦ is the magnetic flux across the
surfaceS enclosed by the contourC

Φ =

∫

S

dS ·B . (11)

It follows that the torsion coefficientα represents the
magnetic circulation per unit magnetic flux,Γ/Φ .

Obviously, if the field circles one way around the neigh-
boring field at one location along the field and the other
way somewhere else along the field, thenα changes sign
along the field in direct contradiction to Eq. (9). There
can be no equilibrium, then, in a magnetic field exhibit-
ing interlacing topology. To investigate this contradic-
tion further, we dilate the system in thez-direction by
the large factorQ (≫ 1). This has little effect on the
z-component of the magnetic field, but it expands and di-
minishes the transverse field intensitiesBx andBy by the
factorQ. The derivative∂/∂z is diminished by the same
factor, while the transverse derivatives∂/∂x and∂/∂y
remain essentially unchanged. In the limit of largeQ the
equilibrium Eq. (9) reduces to the two dimensional vor-
ticity equation for an ideal incompressible inviscid fluid,
showing thatα evolves withz in the same way that the
vorticity ω evolves with timet. The vorticity equation
has been the subject of intense mathematical investiga-
tion over the years (see review by Kraichnan and Mont-
gomery, 1980), showing how the vorticity varies with
time t, the enstrophyω2 migrating to ever smaller scales.
Thus in the equilibrium magnetic field it follows thatα2
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evolves with increasingz in the same way.

Now the interlacing of the magnetic field and the associ-
atedα are determined ahead of time by the arbitrary func-
tion Ψ(x, y, kzt), which does not have the proper time
evolution to provide the properz variation forα to satisfy
the vorticity-like equilibrium equation. Only if we pre-
cisely tailor the interlacing topology of the field to satisfy
the special vorticity requirements can there be an equi-
librium. It is evident, then, that the mathematical solu-
tions to the equilibrium equation cannot be applied to the
magnetic field created by the arbitrary successive swirls
introduced byΨ(x, z, kzt). But physically we know that
an equilibrium exists for a field tied at both endplates and
preserved in the infinitely conducting fluid between.

Evidently we have introduced an unnecessary constraint
into the mathematics, thereby excluding the possibility of
a mathematical solution of the equilibrium Eq. (7). Re-
calling that the field lines represent a family of real char-
acteristics and that specification of the torsion coefficient
α on any one field line does not constrainα on the neigh-
boring field lines, consider the possibility that the mathe-
matical solution of the equilibrium equation contains sur-
faces of tangential discontinuity (TD’s), i.e. shear planes
and hence current sheets, across which the magnitude, but
not the direction, of the field is continuous. Note, then,
that a TD represents the surface of contact between the
two regions of continuous field on either side. So neither
the field nor its curl is defined on the TD. This releases
us from the contradiction implied by Eq. (9) for a contin-
uous field. Any variation in torsion or circulation along
the field is accommodated by the unrestricted variation of
the field shear across the TD.

We are obliged to conclude, then, that the relaxation of
the interlaced magnetic field to equilibrium involves the
creation of TD’s by the Maxwell stresses in the field.
Since we know from simple physical considerations that
in the absence of resistivity the field relaxes asymptoti-
cally to a final equilibrium, it follows that the magnetic
stresses must be of such form as to push the fluid to form
the necessary TD’s to create a final equilibrium. That is,
of course, the basis for ongoing rapid reconnection and
dissipation of magnetic field in the real world, with the
Maxwell stresses continually sharpening the field gradi-
ents as the resistivity diffuses them. It follows that the
expected interlacing of the field lines in the bipolar mag-
netic fields of active regions is an effective means for dis-
sipating the free energy of the interlacing into heat in the
X-ray corona. The formal mathematical treatment of the
TD raises the question of the physics of the formation of
the TD. The formation of a TD at a 2D X-type neutral
point is sketched in Fig. 3. Increased pressure across the
X-type neutral point (Fig. 3a) deforms the neutral point,
sketched in Fig. 3b, into two Y-type neutral points with a
TD extending between.

The problem can be treated formally using the optical
analogy, which states that a field line in the equilibrium
field described by Eq. (7) follows the same path through
space as an optical ray path in a medium with an index

Figure 3. (a) A sketch of the field lines in the vicinity
of the 2D X-type null point in a 3D magnetic field. (b)
The flattening of the X-type null point by an enhanced
local pressure, forming two Y-type null points with a TD
between.

of refraction proportional to the field magnitudeB(r)
(Parker, 1989a,b, 1990,1991, 1994). Thus the local max-
ima distributed throughout a field with untidy topology
tend to exclude field lines, the optical path length being
shorter if the field lines go around, rather than through,
the local maximum (Fermat’s principle). The region of
avoidance creates a gap in the flux surfaces, allowing
the continuous fields on either side to come into contact
through the gap. Those two fields are generally not paral-
lel where they meet in the gap, so their contact surface
becomes a TD. That is illustrated in Fig. 3b, with the
TD caused by the squashing of the initial X-type neutral
point, i.e. the expulsion of field from between the two
sectors of continuous field so that they no longer meet at
a point as in Fig. 3a.

A relatively weak local field enhancement∆B (≪ B)
with scalew is sufficient to create an exclusion of field
when the field lines are anchored at some large distance
λ (≫ w) in either direction from the maximum. It is
easy to show that the condition for excluding the field
and creating a gap is

∆B

B
>

w

λ
(12)

in order of magnitude.
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4. APPLICATION TO THE SOLAR CORONA

To illustrate how the creation of TD’s in the untidy topol-
ogy of a bipolar magnetic field of an active region of the
Sun may heat the X-ray corona, consider the idealized ex-
ample illustrated in Fig. 4. We show a single flux bundle
attached to a wandering footpoint that moves with con-
stant speedv (representing the granule motions) along a
random meandering path among a static forest of fixed
vertical flux tubes. The upper end of the wandering flux
bundle is fixed at a heightL. After a timet the wandering
footpoint has traveled a distancevt and the flux bundle is
inclined to the vertical by the angleΘ, where

tanΘ =
vt

L
. (13)

The vertical field intensity is denoted byB, so that the in-
clinationΘ is associated with the transverse (horizontal)
componentB⊥ = B tan Θ. The tension in the wander-
ing flux bundle pulls back against the forward motion v
of the footpoint with a force per unit horizontal area given
by the Maxwell stress

F =
B⊥B

4π
. (14)

It follows that the forward motion v does work o the field
at the rate

W = vF , (15)

= v
B2

4π
tan Θ . (16)

In the Sun the individual flux bundles all resist the im-
posed convective swirling of their footpoints , so that the
granules do work on the field at a rate of the order of our
estimatedW . The resistive dissipation at the incipient
TD’s in the bipolar field above the photosphere limits the
increase inΘ, of course, and we can estimate the value
of Θ from the necessity to do workW at the heating rate
required by observations, viz.W = 107 ergs/cm2sec.
With B = 102 Gauss andv = 1 km/sec, it follows that
tan Θ = 0.1 approximately, for whichΘ = 6◦. This
is quite a modest requirement. Unfortunately the scale
of variation ofΘ across the field is small, presumably of
the order of102 km or less, so direct observation is not
possible at the present time.

Recent observations of the X-ray emission spectrum and
the small-scale flickering in X-ray brightness appear to
confirm the general picture, however. Both numeri-
cal simulations and laboratory experiments show that
rapid reconnection tends to progress in bursts rather than
smoothly. Thus we expect the X-ray corona to exhibit
small scale flaring - nanoflares. To make a crude esti-
mate of the energy release from an individual burst event

Figure 4. A schematic drawing of a single flux bundle
whose photospheric footpoint wanders at random with
velocity v among a forest of fixed vertical flux bundles.
The upper end of the flux bundles are fixed at some large
heightL.

we estimate the magnetic free energy available around
a local TD. Consider a volume with transverse scalel
and extending a distancel/ tanΘ along the inclined lo-
cal field. The associated volume isl3/ tanΘ and the
available magnetic energy density isB2

⊥
/8π. Thus with

tan Θ = 0.1, B⊥ = 10 Gauss, andl = 102 km, the
free energy is of the order of4 × 1022 ergs. If a burst of
reconnection were to dissipate one tenth of the available
energy, the result would be a flaring event of4×1021 ergs.
So we might expect to observe bursts of energy over some
range of the order of1020 − 1024 ergs. The coronal tem-
perature in the region would fluctuate up and down on
some small transverse scale. The temperature rise would
take place during the short life of the burst of reconnec-
tion - the nanoflare - and the subsequent cooling time at
a densityN = 1010 /cm3 is estimated at perhaps 30 min-
utes.

It is interesting to note, then, that Katsukawa (2003; Kat-
sukawa and Tsuneta, 2005) has studied the fluctuations in
the individual pixels of the Yohkoh X-ray telescope. Kat-
sukawa finds an excess over the expected thermal back-
ground noise, indicating rapidly varying X-ray emission
with individual bursts in the range1020−1024 ergs. Then
some years ago, Sturrock, et al.(1990) and Feldman, et
al (1992) analyzed the X-ray emission spectrum in some
detail, finding that no combination of steady coronal tem-
peratures could duplicate it. The problem was with the
relative degrees of ionization. They pointed out that in-
termittent heating of the gas with short bursts of energy
fitted the observed spectrum. So we seem to be look-
ing at a sea of nanoflares, and, as Katsukawa points
out, picoflares given that the standard large solar flare is
1032 ergs.
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The general suggestion is that anywhere that magnetic
fields become interlaced we may expect the formation
of TD’s with the associated rapid reconnection provid-
ing local heating and particle acceleration. Thus, for in-
stance, the X-ray emission from other stars may be pre-
sumed to have an origin similar to the X-rays from the
Sun. Then the active aurora seems to be associated with
the onset of flux transfer effects in the terrestrial mag-
netosphere when the solar wind carries a south point-
ing magnetic field builds up the geotail with flux bundles
stripped off the sunward magnetopause. We may reason-
ably suppose that the individual flux bundles are stretched
out into the geotail in some degree of disarray, forming
TD’s whose lower ends we sometimes see as the auroral
curtains (Parker, 1994). Other planets may be similarly
affected.
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